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ABSTRACT

Greedy forward routing (abbreviated by GFR) in wireless
ad hoc networks is a localized geographic routing in which
each node discards a packet if none of its neighbors is closer
to the destination of the packet than itself, or otherwise
forwards the packet to the neighbor closest to the destina-
tion of the packet. If all nodes have the same transmission
radii, the critical transmission radius for GFR is the smallest
transmission radius which ensures that packets can be deliv-
ered between any source-destination pairs. In this paper, we
study the asymptotic critical transmission radius for GFR
in randomly deployed wireless ad hoc networks. We assume
that the network nodes are represented by a Poisson point
process of density n over a convex compact region of unit

area with bounded curvature. Let o = 1/ (% - 2—‘/5) ~ 1.6%.

We show that g/ﬂowl% is asymptotically almost surely (ab-
breviated by a.a.s.) the threshold of the critical transmission
radius for GFR. In other words, for any 3 > o, if the trans-
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mission radius is

, it is a.a.s. packets can be delivered
between any source-destination pairs; for any 8 < (o, if the
transmission radius is 4/ ’671:1", it is a.a.s. packets can’t be
delivered between some source-destination pair.
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1. INTRODUCTION

A wireless ad hoc network is a collection of wireless devices
distributed over a geographic region. Each ad hoc device is
equipped with an omnidirectional antenna. A communica-
tion session is established either through a single-hop radio
transmission if the communication party is close enough, or
through relaying by intermediate devices otherwise. The se-
lection of the intermediate relaying nodes is determined by
the routing algorithm. Greedy forward routing (abbreviated
by GFR) is one of the localized geogrphic routing algorithms
proposed in the literature.

In GFR, each node discards a packet if none of its neigh-
bors is closer to the destination of the packet than itself, or
otherwise forwards the packet to the neighbor closest to the
destination of the packet. Therefore, each node only need
to maintain the locations of its one-hop neighbors and each
packet should contain the location of the destination node.
Thus, it can be implemented in a localized and memory-
less manner. There are some variants of GFR. For example,
in [6] and [7], the shortest projected distance to the des-
tination on the straight line joining the current node and
the destination node is considered as the greedy metrics.
In [6], packets are allowed to be sent backward if there is no
forwarding neighbor. In [7], only the nodes whose Voronoi
cells intersect with the source-destination line segment are
eligible.



Due to the existence of local minima where none of neigh-
bors is closer to the destination than the current node, a
packet may be discarded before it reaches its destination. To
ensure that every packet can reach its destination, all nodes
should have sufficiently large transmission radii to avoid the
existence of local minima. Let B (z,r) denote the disk of
radius r centered at x. If V is a set of network nodes, rep-
resented by a point set, in the plane, let

V)= max min w — ul .
(V) (u,v)eVZ weEB(v,lu—v]) I |
u#v

In the definition, (u,v) is a source-destination pair and w is
a node that is closer to v than w. If the transmission radius
is not less than ||w — ul||, w might be the one to relay pack-
ets from u to v. Therefore, for each (u,v), the minimum
of ||w — ul| over all nodes on B (v, |[u — v||) guarantees there
exists one node that can route packets from u to v, and the
maximum of the minimum over all (u,v) pairs guarantees
the existence of relay nodes between any source-destination
pair. Clearly, if the transmission radius is at least p(V),
packets can be delivered between any source-destination
pairs. On the other hand, if the transmission radius is less
than p (V), there must exist some source-destination pair,
e.g. the (u,v) that gives the value p (V'), such that pack-
ets can’t be delivered. Therefore, p (V) is called the critical
transmission radius for GFR that guarantees the delivery of
packets between any source-destination pair of nodes among
V.

The analytic work of GFR can date back to 1984 by Tak-
agi and Kleinrock [6] (1984). They studied the optimal
transmission radius to maximize the expected progress of
packets based on most forward and least backward routing
strategy in which every node delivers each packet to the
neighbor (not including itself) with the shortest projected
distance to the destination on the straight line joining the
current node. However, the deliverability of packets is not
considered. In the last two decades, there is no significant
progress. Recently, Xing et al. [7] (2004) show that in a fully
covered homogeneous wireless sensor network, if the trans-
mission radius is larger than 2 times of the sensing radius,
the deliverability can be gauranteed between any source-
destination pair by greedy forwarding schemes in which a
packet is sent to the neighbor either with the shortest Eu-
clidean distance to the destination [2] [4] or with the short-
est projected distance to the destination on the straight line
joining the current node and the destination node [6] and by
bounded Voronoi greedy forwarding scheme in which only
those nodes whose Voronoi cells intersect with the line seg-
ment between the source and destination are eligible to relay
the packet. In this paper, we consider the deliverability by
given the asymptotics of p (V) where V is Poisson point
process. We assume that the deployment region D is convex
compact region whose boundary has bounded curvature. By
proper scaling, D is assumed to have unit area. We use P,
to denote a Poisson point process of density n over D. Let

Bo =1/ (3 — ﬁ) ~ 1.6°. We show that p(P,) is asymp-

3 2m

totically almost surely at most \/’871% for any 8 > (o and

at least % for any 8 < fo.

In what follows, ||z|| is the Euclidean norm of a point

26

x € R? and |z —y| is the Euclidean distance between
two points z,y € R |A| is shorthand for 2-dimensional
Lebesgue measure (or area) of a measurable set A C R2. All
integrals considered will be Lebesgue integrals. The diame-
ter of a set A C R? is denoted by diam (A). The topological
boundary of a set A C R? is denoted by A. For any two
points u,v € R2, the lune of v and v, denoted by L., is
the set B (u, ||lu —v||) N B (v, ||lu — v]]). Po()) represents a
Poisson RV with mean A. An event is said to be asymptotic
almost sure (abbreviated by a.a.s.) if it occurs with a proba-
bility converges to one as n — oco. The symbols O, ©,, o, ~
always refer to the limit n — oco. To avoid trivialities, we
tacitly assume n to be sufficiently large if necessary. For
simplicity of notation, the dependence of sets and random
variables on n will be frequently suppressed.

The remaining of this paper is organized as follows. In
section 2, we present several useful geometric results. In
Section 3, we derive the a.a.s. bounds on the minimum of
a collection of Poisson RVs. In section 4, we derive a.a.s.
bounds on p (Pr). We summarize this paper in Section 5.

2. GEOMETRIC PRELIMINARIES

If ||lu— || = 1/4/7, a straightforward calculation yields
that |Lus| = % — g = L. Let D denote a convex compact
set whose boundary has bounded curvature. We use R to
denote the minimum of the radius of curvature over 0. We

have the following lemma.

LEMMA 1. For any u,v € D, if |[u — v|| < R then
|Lyo ND| > |Luw| /2.

PrROOF. Clearly, |Lyy ND|/|Lys| achieves the minimum
when both v and v are in OD. Thus, it is sufficient to show
the lemma for u,v € 0D. Suppose that u,v € JD. Since
|lu — v]| < R, both B (u,||u —v||) and B (u, |[u — v||) are di-
vided into two parts by OD. Let u’ denote the intersection
point of 8B (u, ||u — v||) and OD rather than v, and v de-
note the intersection point of OB (v, |u — v||) and 0D rather
than u. (See Fig. 1.) Then, the two sectors Lu'uv and

Figure 1: u and v are in 0D. One of the two half
lunas divided by the segment uv is contained in D.

Luvv’ are both contained in . Note that the lune Ly, is
divided into two halves by the segment uv. One of them is
contained in £u'uvN Luvv’ and thus is contained in . This
implies that |Lyy ND| > |Luo| /2. O



LEMMA 2. Assume ¢ = 0.039, R > 0, and a1,b1,a2,bs €
]RQ. Let z1 = % (a1 +b1), ry = Ha1 761”, 2o = % (a2 +b2) ;
and vy = |laz — bo||. If r1,72 € [3R,R], ||lz1 — 22 < V3R,
al,bl ¢ La252, and ag,bg ¢ Lfllbu then

|La1b1 U La2b2| - |La1b1| > cR Hzl - ZQH .

PROOF. The proof is given in Appendix. [

For any convex compact set C C R?, we use C_,. to denote
the set of points of C that are away from 9C by at least r.

LEMMA 3. Suppose that C C R? is a conver compact set
with diameter at most d. Then,

|C_r| > |C| — wdr.

ProOOF. First, we assume C'is a polygon. To get the lower
bound of |C_,|, we draw a rectangle by each edge of C' with
width r toward the inner of C. Since C'\ C_, is fully covered
by these rectangles, we have |C_,.| > |C| —peri (C) r, where
peri (C) is the perimeter of C. According to the isodiametric
inequality [5] [3], the disk with diameter d has the longest
perimeter wd over all convex compact sets with diameter d.
Thus peri (C') < wd, which implies that |C_,| > |C| — wdr.

If C is a convex compact set, the lemma can be proved
using the fact that C' can be approximated by a sequence of
polygons contained in C. [

An e-tessellation is a technique that divides the plane by
vertical and horizontal lines into a grid in which each grid
cell has width e. Without loss of generality, we assume the
origin is a corner of cells. In a tesselation, a polyquadrate is
a collection of cells intersecting with a convex compact set.
For example, in Fig. 2, the shaded cells form a polyquadrate
induced by a polygon. The horizontal span of a polyquad-
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Figure 2: The cells intersecting with the polygon
form a polyquadrate.
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rate is the horizontal distance measured in the number of
cells from the left to the right. The vertical span of a poly-
quadrate is defined similarly but in the vertical direction. If
the span of a polygon is s and the width of each cell is [, the
span of the corresponding polyquadrate is at most [s/l]+1.

LEMMA 4. If S consists of m cells and T is a positive
integer constant, the number of polyquadrates with span at
most T and intersecting with S is © (m).

PrOOF. For a specified cell, since 7 is a constant, the
number of polyquadrates that contain the cell and have span
at most 7 is also a constant (depending on 7). For each cell
in S, the number of polyquadrates that contain the cell and
have span at most 7 is © (1). Therefore, since there are m
cells in S, the total number of polyquadrates with span at
most 7 and intersecting with S is © (m). O

At the end of this section, we introduce a technique to
obtain the Jacobian determinant in the change of variables
that will be implicitly used in Subsection 4(B). Assume a

tree topology is fixed over z1,xa, -,z € R?. Without
loss of generality, we may assume (zx_1, %) is one of edges.
Let zp—1 = 2 (k-1 +xk), 7 = 3 |lzr — zk-1], and 6 be

the slope of zx_1zk. For 1 < i < k — 2, we use p(x;) to
denote x;’s parent in the tree rooted at xx, and let z; =
1 (zi +p(xi)). Let I> denote a 2 x 2 identity matrix and 0
denote a 2 X 2 zero matrix. Then, the Jacobian determinant
for changing variables x1, -+ ,xx_1, %k by 21, - , 2k—1, (1,0)
is

8(21, e 7Zk—13,r79)

_ O(@1+p(x1), -, oh—1+p(Tr_1),Tk)
O (z1,++ ,2k—1,1,0)

‘8(1’17 s 7361%173%)

T T Tp_1+pP(Tp—
. a<1+g( 1)7“4’ k—1 I;(kl),mk)
:4 -
8(217“' ,Zk_l,'f',e)
! O(z1, 21, Tk — Zk—1)
8(217“‘ 7Zk—17r59)
Io --- 0 0
k—1 : :
4 I 0
0 cosf —rsiné
sinf  rcosf
=4k,

In the first equality, each non-root variable is added by its
parent variable. The equality stands since the Jacobian de-
terminant is equal to 1 as we add one variable to another.
We remark that in most cases, the function in the integral is
independent of the variable . Thus, 27 will be the outcome
of the integral over # in such cases.



3. MINIMUM OF A COLLECTION OF
POISSON RVS

Let ¢ be the function over (0, co) defined by ¢ (1) = 1—pu+
pln p. A straightforward calculation yields ¢’ (p) = In p and
¢" (1) = 1/p . Thus, ¢ is strictly convex and has the unique
minium zero at p = 1. (See Fig. 3.) Let ¢~* : (0,1] — [0,1)

4t
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0 —— 1 1 !
0 1 2 3 4

Figure 3: ¢ () =1+ plnpu — p.
be the inverse of the restriction of ¢ to (0,1]. We define a
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Figure 4: The z-axis is 3, and the y-axis is ¢~ ' (1/03).

functions £ over (0, c0) by

L) :{ gdfl(l/ﬁ) i8> 1,

otherwise.

The curve of 8 — ¢~ ' (1/83) is illustrated in Fig. 4, and
the curve of L is illustrated in Fig. 5. £ is a monotonic
increasing function of 3.

We first present an estimation of the lower-tail distribu-
tion of a Poisson RV.

LEMMA 5. For any p € (0,1), as A — oo,

LS N vt

® DT

15T

Figure 5: The curve is £ (3).

PRrROOF. First, for any p € (0,1), we show that the lower
tail distribution of a Poisson RV can be given by

Pr(Po()) < p)\) ~ ﬁ Pr(Po (A) = ).

Since
DALY
Pr(Po(\)=k—-1)  G=m¢ _k
Pr(Po(\) =k) Ak—’?e*A N
we have

k=pA
223 (uA)
= fk Pr(Po(\) = p))
k=0
HA k
A
~ (“Ak) Pr (Po(A) = p))
k=0

N ﬁ Pr(Po()) = ).

By Sterling’s formula, we have

1 A

Pr(Po () < pA) ~ T4 (/M\)!e
1 ARA A

L= 1 2mpx (pa) > e i
- 1 1 e MtHA

L= p2mpdpm
_ L 1 e MtHA—pAInp

L — p\/2mpX
_ L 1 Le—/\(l—uﬂbhw)

Ver i (1= p) VX

1 1 L xsw)

T Vi —m

Thus, the lemma is proved. [

The next lemma gives an a.a.s. lower bound for the min-
imum of a collection of Poisson RVs.



LEMMA 6. Assume that lim 22 = 3 for some 8 > 1. Let

Inn

Y1,Ys,--- Y7, be I, Poisson RVs with means at least Ay

1. If I, = o(n lnn), then for any 1 < B < 8,
min/*, Y; > £ () Inn a.as..

2. If In = O(\/1=), then for any 1 < B < B,
min;", Y; > 1£(28') Inn a.a.s..

ProOF. We first assume that Yi,Ya,---,Y7, all have
means A,. Let Y be a Poisson RV with mean \,. We
claim that for any p > 0,

In
Pr |:II1_1{1YZ < ,u)\n] < LPr[Y < ph.l.

Let X; be the indicator of the event Y; < pA,. Then X;
is a Bernoulli RV with probability Pr[Y < pA,]. Let X =
X144 Xz,. Then, min!*, ¥; < p, if and only if X > 1.
By Markov’s inequality,
In
Pr [m_l{lYZ < /,LAn:| =Pr[X >1]

In

<EX]=)Y E[XJ]=ILPr[Y <p\].

Now, assume that I, = o (n In n) . Since L () < L (),

we have £ (8') /B < ¢~ (1/8). We choose a constant u €
(£(6') /8,9~ (1/B)). Then, u € (0,1),uB > L(B) and

B¢ (1) > 1. Thus, for sufficiently large n, pA, > £ (8')Inn,
which implies that
I, In
Pr {r@{lﬁ <L (ﬁ/) In n} < Pr {r@{lﬁ < ,u)\n}
<L Pr[Y <pl.].
By Lemma 5,

Pr [rerlL{lY; <L (ﬁ') In n]

< 1 1 In__ 1-Own/ln)e(u)
~ V2rB (1= k) nvinn
Since
1—(An/Inn) ¢ (u) —1— B¢ () <0,
we have

In
Pr In_l{lY; <L(B)nn| =0(1).

Hence min*, V; > £ (') Inn a.as..

Next, assume that I, = O (/1% ). Since £(28') <
L (283), we have L (26')/(28) < ¢~ (1/(28)). We choose
a constant pu € (L£(26')/(268),¢ " (1/(283))). Thus, pu €
(0,1),u8 > $£(24') and B¢ (u) > 1/2. Thus, for suffi-
ciently large n, uA, > 1£(26’) Inn, which implies that

Ip In
PrminY; < lﬁ (26') In n} < Pr |:rninYi < M)\n}
i=1 2 i=1

<L Pr[Y <pl.].
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By Lemma 5,

I’.L 1 /
Pr rzn:l?Y; < 55 (QB)lnn

<1 1 In__ L 1/2=0on/ nm)d(u)
~ V2B (1 —u) Vilnn
Since
1/2 = (An/Inn) ¢ (1) — 1/2 = Bo (1) <0,
we have

In 1 /
Pr Ipzl{le_Qﬁ(Qﬁ)lnn o(1)

Hence min/", V; > 1£(24')Inn a.as..

Finally, we consider that general case that Y7,Ya,--- Y7,
have means An,1, An,2, -, An,1,, respectively with Ap; > Ay
for each 1 <4 < I,. Let Y{,Y5,---,Y; be I, Poisson RVs
with means \,,. For each 1 < i < I,,, let Y’ be a Poisson RV
with mean A, ; — A, which is independent with Y;. Then by
the superposition property of Poisson RVs, YV; = Y, + Y.
Therefore, min/™, Y; > min!®, ¥/ > p\,. By the above
argument, the lemma also holds in this general case. [l

At the end of this section, we state the Palm theory [1] on
the Poisson process that will be used in Subsection 4(B).

THEOREM 7. Let n > 0. Suppose k € N, and h (Y, X)
is a bounded measurable function defined on all pairs of the
form (Y, X) with X C R? being a finite subset and Y being
a subset of X, satisfying h (Y, X) = 0 except when Y has k
elements. Then

k
E| > hO.Pu)| = 7B (X, GUP)]
yeP, :

where the sum on the left-hand side is over all subsets Y of
the random Poisson point set Pp, and on the righthand side
the set Xj is a binomial process with k nodes, independent

of Pn.

4. GREEDY FORWARD ROUTING

The main result of this paper is given in the following
theorem.

THEOREM 8. Suppose that nwrl =
some (3 > 0.

B+o)Inn for

1. If B > Bo, then p(Pr) < 7Ty is a.a.s..

2. If B < fo, then p(Prn) > ryn is a.a.s..



4.1 Upper Boundsfor theCritical
Transmission Radius

This subsection is dedicated to the proof of Theorem 8(1).
We need a technique tool called minimal scan statistics for
the proof. For any finite point set V' C D and any r > 0,
define

SV,r) =

u,vED, |lu—v||=r

|V N Lyl

We claim that the event S (Pn,rn) > 0 implies the event
p(Pr) < rn. Note that p(P,) < rp if and only if for any
pair of nodes u and v with ||u — v|| > 7y, there is at least
one node inside B (u, ) N B (v, ||u — v||). Assume to the
contrary that p (Pn) > rn. Then there are a pair of nodes u
and v such that ||u — v|| > r, and no one node of P, is inside
B (u,m5) N B (v, |Ju — v]|). Let w be the intersection point of
the segment uv and the circle 9B (u, ||[u — v]|). (See Fig. 6.)
Then ||lu —w| = rn, and B (w, ||u —w|]) C B (v, ||lu —v||).

Figure 6: w is the intersection point of the segment
uv and the circle B (u,r). The shaded area is B (u,7)N
B (w,r) which is contained in B (u,r) N B (v, ||u — v]]).

Hence, Luw C B (u,my) N B (v, ]|u — v|]). This implies that
Ly contains no nodes of Py,. Thus, S (Pr,r) = 0, which is
a contradiction. Therefore, our claim is true.

Based on the previous claim, to prove p (Pr) < ry is a.a.s.,
it is enough to show that S (Pn,rn) > 0 a.a.s.. Below, we

shall give a stronger result that provides an a.a.s. lower
bound for § (P, r,) with r, = W and implies
S (Pn,rn) > 01is a.as. if 8> Bo.

LEMMA 9. Suppose that nwrz = (8 + o (1)) Inn for some

B > Bo. Then for any constant 51 € (Bo, B), it is a.a.s. that

S (Pn,rn) > 1£ <&) Inn
Bo

PROOF. Choose a constant B2 € (31,3) and let ¢ =

6\/15/60 ( — %) Let d = v/3r,,. Consider an ed-tessellation.

Let I,, denote the number of polyquadrates in D with span

2
at most 1 and area at least g—i ";", and Y; be the number

of nodes on the i-th polyquadrate. Then Y; is a Poisson RV
with rate at least (g—i + 0(1)) Inn. By Lemma 4,

n=o((z)) =0 )

By Lemma 6, it is a.a.s. that

min/", Y; >r B
Inn - Bo '

Now, let I}, denote the number of polyquadrates in D\ D_,

2
with span at most 1 and area at least 222722 and Y/ be
€ 2B B

the number of nodes on the i-th polyquadrate. Then Y/
is a Poisson RV with rate at least % (g—§ + 0(1)) Inn. By

Lemma 4,
_o(l) n
In_o(ed) _O( lnn)'

By Lemma 6, it is a.a.s. that

. I f
min, ™, Y; 1 51
— == >_-L|=].
> 5

Inn

Therefore, it is a.a.s. that

min (minf;l Y;, minfil Yi’) 1./8
>-c(2H).
Inn -2 Bo
Thus, the lemma follows if we can show that

In I
S (Pn,7n) = min (mi?Yi, ming/) .
To prove this inequality, it is sufficient to show that for any
lune L of two points in D which are separated by a distance

of r,, it either contains a polyquadrate in D with span at

most % and area at least g—i W;" , or contains a polyquadrate

in D\D_, with span at most  and area at least
We shall prove this in two cases.

Case 1: L is contained in D. Let P denote the polyquad-
rate induced by L_ 5., Then, P C L C D, and the span
of P is at most [%‘fsd—‘ +1< é By Lemma 3 and using

the fact that |L| = 7r2 /B0 = 7wd?/ (3530), we have

2
182 ™y
280 B °

1P| 2 |L_yaeq 2 |L| - 7d (V2ed)
= |L| - V2erd® = |L] (1 - 3V2h0¢ )
> |L| (1 - 6\/5@)5)
Pa 1
Bo B~
Case 2: L is not contained in D. Then L must be disjoint

with D_g4. Let L’ = LND and let P’ denote the polyquadrate

induced by L'_\@Ed. Then P’ C L' C D\ D_, and the the

span of P is also at most % By Lemma 3 and Lemma 1, we

_ B
=51 =



have

\Y]

(P2 | ol > 1] ~ md (V2

Y]

1
5L - V2nred?

1
5 1L (1 - 6\/§ﬁos)
152 Fl&“_ri
20 T 280 B

Thus, the lemma is proved. O

4.2 Lower Boundsfor the Critical
Transmission Radius

This subsection is dedicated to the proof of Theorem 8(2).
Assume (31 and (32 are positive constants, and R; and Ry are
given by nmR? = 1 Inn and nwtR2 = (2 Inn, respectively.
Choose 1,2 such that max (360,8) < B1 < B2 < Bo and

:—22 ( - g—;) < 1. Here c is given by Lemma 2. We have

1Ry < Ry < Ry. Divide D by (44/22 )-tessellation. Let
I, denote the number of cells fully contained in ID. Here we
have I, = O (). For each cell fully contained in D, we

Inn

draw a disk with radius %, / l:l‘—: at the center of the cell. For
1 <i < I,, let E; be the event that there exist two nodes
X,Y € P, such that their midpoint is on the i-th disk and
distance is between R; and R2, and there is no other node
on the lune Lxy. Then,

Pr[p(Prn) > rn] > Prat least one E; occurs].

We have FE1,--- , Eg, are identical. Let o; denote the center
of the i-th disk, and u, v be two points such that their mid-
point is on the i-th disk and distance is between R; and Rs.
(See Fig. 7.) For any point w € Ly, we have

Figure 7: The lune is fully contained in the cell.

1 1
waoi||§wa§(u+v) + 0¢f§(u+v)
§§R+ly/m—nz1.885\/ln—n
2 2V nmw nm
<9,/
nmw

Obviously, u, v and L., are contained in the i-th cell. There-
fore, E1,-- -, Er, are independent. Then,

Pr [none of E; occurs] = (1 — Pr[Ey])™
_ e[.,L In(1—-Pr[E;])

< efln PT(EI).

If I, Pr (E1) — oo, we may have
Prip(Pn) >rn] — 1,

and Theorem 8(2) follows. In the following, we will prove
that I, Pr (E1) — oo.

We introduce several relevant events and derive their
probabilities. Let A denote the first disk. Assume V is
a point set and ¥ C V. Let h; (Y,V) denote a function
such that k1 (Y = {z1,22},V) =1 only if 1 (21 4 22) € A,
R: < ||lz1 — x2]] £ R2, and there is no other node of V in
the lune area Lg,4,; otherwise, hy (Y,V) = 0. Then, F; is
the event that there exist two nodes X,Y € P, such that
h1 ({X,Y},Pn) = 1. In the remaining of this subsection,
we use X1, X2, X3 and X4 to denote independent random
points with uniform distribution over D and independent of
Pn. Let F1 be the event that

e ({X1, X} { X1, Xo} UPn) = 1,
F5 be the event that

< hi ({X1, Xa}, { X1, Xo, X3} UPn) )_1
he ({ X, Xs}, { X1, Xo, X3} UP,) -

and F3 be the event that

ha ({ X1, Xo} , { X1, X2, X3, X4} U Py) -1
ha ({ X3, Xa} , { X1, X2, X3, X4} UPy) '

We claim that
n? n3 nt
Pr [El] Z EPF [Fl] — TPF [FQ] — §Pr [F3] (1)

We shall prove this claim by the Palm theory and Boole’s
inequalities. For clarity, we use X1, X4, X% and X to denote
elements of P,. For any {z1,z2,2z3} CV, let

h,2 ({xl, T2, .Tg} s V)

= h1 ({xl,xg} s V) . h1 ({.Tl, CIZ’3} , V)

+hi ({x2,21},V) - i ({22, 23}, V)

+hi ({3, 21}, V) - b1 ({23, 22}, V).

For any {x1,z2, 23,24} CV, let

hs ({z1,x2,x3,24},V)

= hi1 ({z1,22},V) - h1 ({x3,24},V)

+ h1 ({z1,23},V) - ha ({x2,24},V)

+ h1 ({z1, 24}, V) - b1 ({22,223}, V).

).
).
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Let F{ ({X1, X3}) be the event that
ha ({X1, X5}, Pn) =1,
F3 ({X1, X35, X5}) be the event that
ho ({X1, X3, X3}, Pn) =1,
and F3 ({X1, X3, X3, X4}) be the event that
hs ({X1, X5, X3, X4}, Pn) = 1.
According to the Palm theory (Theorem 7), we have

> P ({X1x3})]

{x{,x5}CPn

>

{X/ X/}CP,,

—E ha ({X1, X5}, Pn)

’;—!E[m ({X1, X2} { X1, X2} UPy)]

% Pr [F1];

>

{x{.x4,x5}CPn

Pr [ ({ X1, X3, X3})]

- E > ho ({X1, X5, X3}, Pn)
{x{.x4,x5}CP,
3
= 7B [h2 ({X1, X2, X}, {X1, X2, X3} UPy)]
3
= 3— Pr [FQ] = — PI‘ [FQ] (3)

and

>

(X} X0,X5, X} }CPn

>

{X],X4,X},X,}CPn

Pr[F3 ({X1, X3, X3, X4})]

=E hs ({X1, X3, X5, X4}, Pn)
’fl3
= ;E[hE' ({X17X27X37X4}7{X17X27X37X4} UP’”)]

4

n TL4
=37 Pr(R] = Pr(Fs]. (4)

Applying Boole’s inequalities and Eq. (2), (3), and (4), we

have
>

Pr[E1] >
{X1.X5}CPn
{X{,X5,X,}CPn

- >

{x1.x5.x5.x

Pr[F{ ({X{,X3})]
Pr [F3 ({X1, X5, X4})]
Pr [Fy ({ X1, X5, X4, X4 })]
1}CPa
= %QPr[Fl] - %SPr[Fﬂ* %Pr[Fﬂ'

Hence, our claim is true.
In the next, we derive the probabilities of Fi, F», and Fj.
Let S denote the set

{(36171’2)

1 (xl —1—1’2) S A
Ri'< o1 — 23| < Ro

32

We have
Pr [Fl]

= // Pr [F1 | X1 = xl,Xz = 1'2] dl‘ldl'g
S1

:// e_”|L°“1*’2|d$1dm2
S1
_nl 2
:// e n g [l=1-z|l dxidzs.
S1

Let z = 2122 and r = % ||Jc1 — x2]|. Then,

Bo ™ r 8mrdrdz

2
B0 """ omrdrdz

:4/ / e_%n d(7r7"2) dz
z€EA r:%

%
— _ ﬁO e—ﬁ—nwr . |A|

_Ry

B8 8
:%(nfﬁiéfnfﬁ%)lnn. (5)
n

Let S2 denote the set
xl-gxg’ Jcl-gx-z c A;
Ry <||z1 — z2|| < Ry;
Ry <||z1 — x3|| < Ry;
T1,T2 ¢ L‘Tlm?,;
T1,T3 ¢ L.I)l.x‘g

(x1, 2, 23)

Applying Lemma 2, if (1, x2,x3) € S2, we have

X1 = xl,XQ = X2,

Pr [FQ XS = 23

< 67"|Lw1w2ULx1w3|

< ein(ﬁilowuzlimzHZJFCRZHW*%”).
Therefore,
Pr [F2]
Pr =w1, X2 = z2,
S2 X3 =uz3
- dx1dzadxs
< /// e—n(ﬁ—lowllxl—m\\2+CR2||%_%”)
< o)
'dxldIdeg,
Let z1 = %, r = %Hxl—xQH, Z9 = zl—;m, and p =

|lz1 — z2||. Then,

Pr [F]

cof L,
z1€AJPr1 =

Lot
- 2nridridzidze

Ro 4
2 — 2%
< 16/ . Fo T
z1€EA 'rlle

[,0 mritcRa|lz1— 22\\)

Ry
2

2
Lomridridz



/ e—cnRallzi—z2ll g,
z9€A

< 16/
zZ1€EA :—1

2

/ 7cnR2p2ﬂ_pdlo
p=0
2

Ra
N R
n r=11 (cnRy)?

_B1 _ B2
= 72%620 n Po —n Bo )lnn.
c? (nR%) n3

4 2
—=-—N7TTr
e Po d (TI"I‘%) dz1

(6)

Let S3 denote the set

x1+x2 z3+ 4 ¢ A

R
Ry < ||3U1 — x| < Rz,
Ri < |lzz — z4| < Ry;
21,22 & Lagay;
T3, T4 ¢ Lxlxg

(x1, 22,23, 24)

Applying Lemma 2, if (z1, 2,3, z4) € S3, we have

X1 = xl,Xz = T2,

Pr {Fs X3 =23, X4 =24

< e—n|Lm1m2uL$3m4|

771(%7er1712\\2+CRZ||—mlgw2 — 23794 _;14 ||) .

<e
Therefore,
Pr [F3]
X1 =x1,X2 = x2
—_ P F K K
////;3 r|: 3 X3213,X4:I4
- dxidrodrsdry
<[ [ [ ] emrtrimmmrsen s
S3
- dxi1drodrsdry.
Let 21 = 522, 1 = gllan —aof|, 22 = 55, rp =

1 |lzs — xa|, and p = ||z1 — 22]|. Then,

Pr [F3]

Ra
z1EA z0€A :—1

& P
. (87rr1dr1dz ) (87T’r‘2d’r‘2d22)
< 4/
z1€AJr1=
R (& _ &)/ e—cnRzun—zzndzz)
2 2 z9€A
_nﬂ"f‘z 2
Bo 1d (777“1) dz1>
o0
/ e_C”R2p27rpdp)
p=0
) ( 472
(cnR2)?

2 R _B1 _Bz
mBo (1— —1) (n Bo —n 50)11171.
c2nt Ro

—n(ﬁ%WTf+cR2H21—Z2H)

4 2
— = —N7TTr
R Bo 127rdr1dz1>

R (R2 — Rl))

(7)
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Put Eq. (1), (5), (6) and (7) together. We have

7280 (1 R1)
8 c2? (nR%) 8¢2 Ro

_8 _B2
-|n Po—n Po )lnn

2 R B1 _ B2
Nﬁo (172(17—1)) (n Bo —n ’)lnn.
8 c2 R>

. 2
Since = (1 -

)<1and]n—Q( ”),Wehave
_ b1 _ B2
Pr[Ei] = <<n Bo —n [’O)Inn),

LB
I,Pr[E1]=Q(n %o | — oo.

and

This complete the proof of Theorem 8(2).

5. CONCLUSION

Greedy forward routing is a localized and memoryless ge-
ographic routing. However, it cannot guarantee the delivery
of a packet from its source to its destination if the trans-
mission of the nodes are not large enough. The smallest
transmission radius which ensures the successful delivery of
any packet is referred to as the critical transmission radius.
In this paper, we provides tight a.a.s. bounds on the critical
transmission radius when the networking nodes are repre-
sented by a Poisson point process.

As a future work, one may investigate a number of other
parameters related to GFR. These parameters include the
average of one-hop progress, the expected number of hops
between a source and destination, the ratio of the total
length of the path to the Euclidean distance between the
source and the destination. It is also interesting to study
the asymptotics of other localized geographic routings.
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APPENDI X

PROOF LEMMA 2. Note that |La s, U Lagbs| — |Lays, | =
|La2b2 \La1b1|~ If ro > r1, we have |La2b2 \La1b1| >
[Layby \ Lagb,|. Therefore, without loss of generality, we
may assume r1 > 1. For a lune L,,, the portion of
boundary of L. contributed by either 0B (u, ||u — v]||) or
OB (v, |lu — v||) are called the sides, and the intersection
points of two sides are called vertices. This lemma is proved
in the following two cases.

Case 1: Suppose the segment a2b2 intersects with at most
one side of Lg,p,. First, under this assumption, we claim
the minimum of |La,b, \ Lays, | occurs if az,bs are on the
boundary of L., and r1 = 12 = %R. This claim is based
on the following three observations: (1) If 1 and ry are
fixed, |Lagby \ Layb, | is minimal as ag, by are on 0Lq,p,. As
illustrated in Fig. 8(a), if Lq,b, is moved away from Lq s, ,
the area surrounded by arcs asbz2, azce and azce is always
outside of Lq,p,. (2) For any fixed 71, if az, bs are on Lq,p,,
|Lasbs \ Lays, | is minimal as ro = 1 R. As illustrated in Fig.
8(b), if |jaz — b2|| < |la5 — b5|| and lines azbz and azbs are
parallel, Layb, \ Layb, is contained in Loy \ Layp,. (3) If
az, by are on OLayb, and 72 = 2 R, |Layb, \ La,b, | is minimal

as ry = %R. Now, we assume a2, by are on the boundary
% S &
b,
o 3
b,
b
@ ®) (©

Figure 8: The minimum of |Lu,p, \ Lays,| as the line
azb2 intersect with one side of L, .

of Loy, and 71 = r2 = %R. For convenience, we assume
az is coincident with a vertex of Lq,p,, and bz is coincident
with b;. Let ¢ denote the vertex of La,p, far from a;. (See
Fig. 8(c).) Since the area surrounded by the arc azb2 and
segment a2b2 is equal to the area surrounded by the arc bacs
and segment baca, we have

1 /1.\?
|La2b2 \La1b1| = |Ka2b2(:2| = gﬂ' (§R) .

Therefore, in this case, for any r1 and r2, we have

i (37)
EﬁaRQ@R)

|La2b2 \ Lays, |

Y]

> " _Rl|z1 — 2|
24+/3

4V3
~ 0.075R ||z1 — 22|| -

Case 2: Suppose the segment a2bz intersects with both
sides of La,p,. Let x (respectively, y) denote the intersection
point of the line azbe with L4, 5, near to az (respectively,
b2). Without loss of generality, we assume y is closer to a1b1
thanz. Let 0 < 0’ < 7 /2 denote the angle between rays biai
and baas. (If @' = 0, it means bia; and baas are parallel.)
Let ¢1 denote the vertex of Lq,p, contained in Lg,p,, and c2
denote the vertex of Lq,p, near to c¢1, and H denote the re-
gion of the half lune of Lg,, divided by a2b2 and containing
c2. In the remaining discussion, we only focus on the area of
H\ Lq,b,. Assume by is on the boundary of La,s,. (If b2 is
not on OLq,s,, we may shift L,,p, along the line azb2 until
by is on OLq,p,. During shifting, |H \ La,s, | has the same
value.) Let a5 denote the point such that lines aib; and
asbe are parallel, the segment aybs crosses over Lg,p,, and
la5 — b2|| = r1. Let e denote the perpendicular projection of
z1 onto the line a5bz, h denote the perpendicular projection
of bz onto the line a1b1, 25 denote the the intersection point
of the segment asbs and circle 9B (be, |22 — b2||), 25 denote
the midpoint of a5 and b2, and d denote the intersection
point of the ray bacy and dLq,p,. (See Fig. 9.)

G

Figure 9: The intersection of two lunes.

First, we consider the lower bound of the area of
[Laybs \ Layb, |- Let 6 denote the angle of Zasbad, a denote
the angle of Zbia1bz. Since Zciai1bi = /3, we have

Zciarbs = Zeiarby — Zbzaiby
T
=——aq.

3

Since |la1 — c1|| = |la1 — bz2||, we have

1
Zalbzcl = 5 (71' — chalbg)

Il
N =
—

3

|
—
Wl

|

Q
~
~—

Since lines a5b2 and az2bs are parallel, we have
Zaibsc1 = ZLasbad + Za,gbgag + Zaibaas
= Lagbad + Zasbras + Lbraibs



=0+0 +a.
Therefore,

0= a—©0.

T 1
3 2

Since Zagbaco = 3/m, we have

T _,_1 /
ZCQde—s 0—2a+0.

Since ||c1 — b2|| < |le2 — ba|| and r2 < 71, [Lagby \ Layb, | 18
not less than the area of the sector £c2bad. Therefore,

1 1
[Lasta \ Lasis| > |£esbad) = 2o <5a " e/) ®

In the next, we are going to show that without loss of
generality, we may assume by is on the boundary Lg,,. This
is can be verified by shifting argument as follows:

If b2 is not on the boundary of La,s,, we may shift Lq,p,
along the line a2b2 but don’t let a2 and b2 cross the boundary
of La,b,. During shifting, |H \ La,s,| has the same value.
So we only need to find out the maximum of ||z; — z2||. The
maximum of ||z1 — z2|| occurs either as ag is shifted to z
or as be is shifted to y. We claim that the maximum of
||z1 — z2|| occurs as by is at y, i.e. bz is on dL4,p,. Let p be
the perpendicular point from z; to the line a2b2. Since 0 <
0" < /2, wehave ||p — x|| > ||p — yl|. Besides, if b2 is shifted
t0 9, |22 — asl| > [p — az|. Since |21 — z|* = [l — pIf® +
|22 — p||* and ||z1 — p|| is constant during shifting, |21 — za||
is maximal if and only if |22 — p|| is maximal. Let a’, 2’, and
b’ respectively denote the location of a2, z2, and ba as b is
at y; and a”, 2", and b” respectively denote the location of
a2, z2, and b2 as ag is at x. According to the position of
y, p, and 2", there are six variations. Let [u,v,w] denote
the relative position of y, p, and z” if we record them in the
direction from z to y.

o o o o
d 7 b a 7 b
° o o ° o o
X y p X y p
L — ] ]
a’ z’ b’ a’ z’ b
@ (b)
o o o o
a z b’ a z b’
° o o ° o o
X y p X py
o o o ]
a P b a 7 b
© (d)
)
o o
a 7 b a z b’
° o o ° o o
X py X py
o o
o o
b bt M a pt b

Figure 10: Shift a lune along its waist.

(i) [y, p, 2"]: (See Fig. 10(a).) Then,
12" =l = [I=" = &'l +[|b" =l
12" = pll = [|=" = a"|| = la" = p|.

Since |2/ — || = [|2" — a||, we have |12 — pll > I|2"  pl.
(ii)[y, 2", p]: (See Fig. 10(b).) Then,

2" = ol =[]z = ¥'|| + ]|t = o],
" _ 7
2" = ol =llp =yl = |ly = ="|-

Since [|b" —p|| = |lp — yll, we have |[2" — p|| > ||z" — pl|.
(iil) [2”,y,p]: (See Fig. 10(c).) Then,

2" =l = [|z" = ¥'|| +[|" = ]
=" —y||+ lly — pll,
" = ol = Iz = yl| + lly = pIl.

Since ||2" — y|| > [[2" — yl|, we have |[2" —p|| > [|z" — pl|.
(iv) [p,y,2"]: (See Fig. 10(d).) Then,

[ = ol = [ = ¥'[| = [[o" = ||
=l =v'|| = lly -l

" " " "
127 =2l = [|=" = a"|| = fla" — pl|
" "
= [l2" = a"| = llz — pIl.
Since ||z — V|| = ||z" — a”|| and ||y — p|| < ||z — p||, we have

12— pll > 12" — pl|.
(v) [p,2",y]: (See Fig. 10(e).) Since the same equations
used in (iv) still works, we have ||z — p|| > ||z” — p||.
(vi) [2”,p,y]: (See Fig. 10(f).) Then,
! / / /
[ = pll = [ =[] = [[p" —p]|
=" = ul| = lly = »ll,
1" 1
12" =2l =" = yll = lly = »II.
Since ||z — y|| > ||z — yl|, we have ||z’ — p|| > ||z — pl|.
Therefore, we may assume b2 is on the boundary Lq,s, -
Now, we consider the distance between e and z5. Let t
denote the distance between b2 and the line a1b1, and

denote the angle of Za1b1b2. Here £ < 3 < 5. If ro =11,
we have

25— el = 2 = ] ana
|22 — €| = l|h—b1] = tcot B < %t.
If r1 = |le1 — b2, let 25" denote the position of 25. Since 25’
and 24 are to the different side of e,
22" = e]| =[]z = 22"|| = [|22 —e]|

1
5 (lla = bal| = llex = ball) = |25 — €]

1
= 5 (e = ball = flex = b2f) = [lh — bl
1
< 5o = ball = 1k = b
1 1 1
= — S — < = S < —t.
2tcscﬁ tcotﬁ_thseﬁ_\/gt

Since 71 is the largest value for r2 and ||c1 — bz2|| is the small-
est possible value for 71, we have

ell [l = el) < Zt. @)

’ "
|22 — ef| < max (|| -



Thus,

l[z1 — 22|l

IN

v = ell + le = 4] + 125 — ]
1+V3
<
RVE]
From Eq. (8) and (9), we have

t—i—?"ge/.

1 1
|L“2b2 \La1b1| > 57'5 <§Oé +0/

1

T2 1 247 1 1
- — > —
(Tl)r2t+2r29 _16Rt 1
V3 R<1+\/§t)
T 16 (1+/3) V3
o V3 R<1+\/§
~ 16 (1+3) V3

3

V3 Rz

. 1 1
rasina + 57"30/ = Zr% (—

-
T
—_
(V]

> 1
=1
_!
T 1

t+ 7’20/)

~ 16 (1+V3)
~ 0.039R H21 — 22” .
Thus, the proof is complete. [
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