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ABSTRACT
This paper studies maximum multicommodity flow and
maximum concurrent flow in multihop wireless networks
subject to both bandwidth and interference constraints. The
existing proof of the NP-hardness of both problems is too
contrived to be applicable to meaningful multihop wireless
networks. In addition, all known constant-approximation
algorithms for both problems restricted to various network
classes are super-exponential in running time. Some of them
are simply incorrect. In this paper, we first provide a rig-
orous proof of the NP-hardness of both problems even in
very simple settings. Then, we show that both problems
restricted to a broad family of multihop wireless networks
admit polynomial-time approximation scheme (PTAS). Af-
ter that, we develop a unified framework for the design and
analysis of polynomial approximation algorithms for both
problems. Following such framework, we obtain polyno-
mial constant-approximation algorithms for both problems
restricted to a broad network family. The approximation
ratios of these algorithms are also better than those known
in the literature.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication; F.2.0
[Theory of Computation]: Analysis of Algorithms and
Problem Complexity—General

General Terms
Algorithms, Theory

1. INTRODUCTION
In this paper, we study Maximum Multiflow (MMF)

and Maximum Concurrent Multiflow (MCMF) in
single-radio single-channel multihop wireless networks sub-
ject to both bandwidth and interference constraints. A
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single-radio single-channel multihop wireless network N is
specified, in its most general format, by a triple (D, G, b),
where D is a directed graph representing the communica-
tion topology of N , G is an undirected graph representing
the conflict graph of the (communication) links in D, and b is
the bandwidth function of the links in D. A set of links in D
are said to be conflict-free if they are not adjacent pairwise
in G. Consider a multihop wireless network N = (D, G, b)
with D = (V, A). We use I to denote the collection of sets
of conflict-free links in D. A (fractional) link schedule in N
is a set

S = {(Ij , λj) : 1 ≤ j ≤ k}

with Ij ∈ I, and λj ∈ R+ for each 1 ≤ j ≤ k. The value∑k

j=1 λj is referred to as the length (or latency) of S, and

|S| is called the size of S. Any link schedule S in N of length
at most one determines a link capacity function cS ∈ RA

+ of
D given by

cS (e) = b (e)
∑

1≤j≤k

λj |Ij ∩ {e}|

for each e ∈ A. Suppose that we are given with a set of
commodities in D. For any link schedule S in N of length
at most one, the maximum multiflow of these commodities
in D subject to the capacity function cS is referred to as
the maximum multiflow subject to S. Suppose in addition
that each commodity also has a demand associated with
it. For any link schedule S in G of length at most one,
the maximum concurrent multiflow of these commodities in
D subject to the capacity function cS is referred to as the
maximum concurrent multiflow subject to S.

Now, we give a clean definition of the two optimization
problems to be studied in this paper. Let N be a class of
multihop wireless networks.

• MMF restricted to N : Given a network N =
(D, G, b) ∈ N and a set of commodities in D, find
a link schedule S in N of length at most one such that
the maximum multiflow subject to S is maximized.

• MCMF restricted to N : Given a network N =
(D, G, b) ∈ N and a set of commodities with demands
in D, find a link schedule S in N of length at most one
such that the maximum concurrent multiflow subject
to S is maximized.

We will study both problems restricted to two network
classes termed by 802.11 class and PIM class, corresponding
to the 802.11 interference model and the protocol interfer-
ence model respectively. For both classes, an instance of a
network N is specified by a finite planar set V of nodes to-
gether with a communication radius function r ∈ RV

+ and
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an interference radius function ρ ∈ RV
+ . The communica-

tion (resp., interference) range of a node v ∈ V is the disk
centered at v of radius r (v) and ρ (v) respectively. The
communication topology of N is the digraph D = (V, A), in
which there is an link from u to v if and only if v is within
the communication range of u. If N belongs to the 802.11
class, two links in A are adjacent in the conflict graph G of
N if and only if at least one link has an endpoint lying in
the interference range of some endpoint of the other link. If
N belongs to the PIM class, two links in A are adjacent in
the conflict graph G of N if and only if the receiving end-
point of at least one link lies in the interference range of the
transmitting endpoint of the other link.

1.1 Prior Works
Both MMF and MCMF restricted to various classes of

multihop wireless networks have been studied in many re-
cent works. Kodialam and Nandagopal [13] [14] studied both
problems restricted to a network class in which the only in-
terference constraint is that node may not transmit and re-
ceive simultaneously. Jain et al. [10] presented methods for
computing upper and lower bounds on the maximum single-
flow, but they didn’t provide any polynomial algorithm for
computing an approximation solution. In the same paper,
the gave a very “unusual” proof for the NP-hardness of the
maximum single-flow even in single-hop wireless networks
under the protocol interference model. Even the authors
themselves commented after their proof that “the above
proof may come across as contrived since the wireless net-
work we constructed is unlikely to arise in practice”. Indeed,
their proof of the NP-hardness is too contrived to be appli-
cable to meaningful multihop wireless networks, and cannot
even imply the NP-hardness of finding a maximum multi-
flow in wireless networks with a constant number of channels
and a constant number of radios per node. We will discuss
on this in Appendix 1 for the fairness. Nevertheless, such
NP-hardness has been cited by many subsequent works for
granted.

Kumar et al. [15] studied multiflow restricted to three
classes of networks, different from the ones studied in this
paper, corresponding to the following three interference
models (in their term) respectively:

• Transmitter model with parameter ρ ≥ 1: two links
u1v1 and u2v2 are conflict-free if and only if ‖u1u2‖ >
ρ (r (u1) + r (u2)).

• Protocol model with parameter ρ ≥ 1: two links u1v1

and u2v2 are conflict-free if and only if ‖u1v2‖ >
ρ ‖u1v1‖ and ‖u2v1‖ > ρ ‖u2v2‖.

• Transmitter-receiver model: two links u1v1 and
u2v2 are conflict-free if and only if ‖u1u2‖ >
max {r (u1) , r (u2)} and ‖v1v2‖ > max {r (v1) , r (v2)}.

They developed constant-approximations by enforcing re-
strictive interference constraints on links to guarantee flow
schedulability. However, we found that a key step in their
algorithm for link scheduling (Section 3.2 in [15]) may have
super-exponential running time, and we will provide a de-
tailed explanation on this time complexity in Appendix 1
for the fairness.

Following the same approach (i.e. enforcing restrictive in-
terference constraints on links to guarantee schedulability
of the underlying flow), Alicherry et al. [1] and Wang et
al. [21] obtained constant-approximations in other network
classes of multihop wireless networks. Specifically, Alicherry
et al. [1] considered the general multi-channel multi-radio

multihop wireless network under 802.11 interference model
in which all nodes have uniform communication radii, nor-
malized to one, and uniform interference radius ρ ≥ 1. For
the single-channel single-radio configuration, they gave (in
Lemma 1 in [1]) an approximation bound of 4, 8 and 12 for
ρ = 1, 2, 2, 5 resp., and claimed that in general the approx-
imation bound is a constant growing with ρ. The bound
of 4 for ρ = 1 is wrong and should be 8 (such false claim
was also discovered by [3]). They also inherited the same
link scheduling algorithm (VI.B in [1]) from [15] as part of
their algorithm, which renders their algorithm to have super-
exponential running time in the worst case.

Wang et al. [21] studied the multiflow restricted to either
the 802.11 class or the PIM class. For the 802.11 class, their
approximation bound is 120; for the subclass of the PIM
class in which the interference radius of each node is at least
c times its communication radius for some fixed constant c >
1, their approximation bound is 2

⌈
2π/ arcsin c−1

2c

⌉
. Once

again, their constant-approximation algorithms have super-
exponential running time in the worst case, as they used
the same link scheduling algorithm (Section 6.1 in [21]) as
in [1] and [15]. A serious mistake is that their latter result
for the subclass of the PIM class is wrong. The restrictive
interference constraints on links in their algorithm design
and analysis fails to guarantee the flow schedulability. We
will provide a counter-example in Appendix 1 to illustrate
such failure.

Buragohain et al. [3] targeted at better approximation
bounds for multiflows restricted to the subclass of the 802.11
class in which all nodes have uniform communication radii
and uniform interference radii. They introduced less restric-
tive interference constraints on the node level to guarantee
the flow schedulability, and were able to achieve an approx-
imation bound of 3, which is an improvement on the ap-
proximation bound obtained earlier by Alicherry et al. [1].
But unfortunately, the interference constraints introduced
by them are too less restrictive to guarantee the flow schedu-
lability, and we will once again provide a counter-example
for this failure in Appendix 1. Thus, their approximation
algorithm is also wrong, and their approximation bound of
3 is invalid. Furthermore, they didn’t provide any polyno-
mial algorithm for link scheduling. If the same algorithm
for link scheduling in [1] was adopted, then their algorithm
wouldn’t be polynomial either.

1.2 Our Contributions
The original purpose of this paper is to simply develop

better approximation algorithms for MMF and MCMF
restricted to either the 802.11 class or the PIM class. But
a thorough literature review put us in a very awkward and
uncommon situation. Almost all major prior results on the
same subject have some technical bugs or even mistakes.
It took us much effort to debug those bugs. For a purely
scientific and fair treatment, we include in Appendix 1 de-
tailed explanations on those bugs and mistakes identified in
the previous subsection. We were then pressed to conduct a
comprehensive study more than just better approximation
algorithms. The following results are reported in this paper.

• NP-hardness: We provide a rigorous proof of the NP-
hardness even restricted the subclass in which all nodes
have uniform (and fixed) communication radii and uni-
form (and fixed) interference radii.

• Approximation hardness: We show that for the 802.11
class and two subclasses of the PIM class, both maxi-
mization problems admit a polynomial approximation
scheme (PTAS). In other words, for any fixed ε > 0,
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there is a polynomial-time (depending on ε) (1 + ε)-
approximation algorithm for each of them. However,
these PTAS’s are of only theoretical interest and are
quite infeasible practically.

• Faster and better polynomial approximation algo-
rithms: We first develop a unified framework for both
design and analysis of polynomial approximation al-
gorithms. Following such general framework, we ob-
tain improved approximations in the following classes
of networks:

1. For the 802.11 class, we obtain a 23-
approximation algorithm. This is a significant
cut-down from the approximation bound of 120
derived by Wang et al. in [21].

2. For the subclass of the 802.11 class in which all
nodes have uniform communication radii, normal-
ized to one, and uniform interference radii ρ ≥ 1,
a 7-approximation is obtained regardless of ρ.

3. For the subclass of the PIM class in which the
interference radius of each node is at least c
times its communication radius, we obtain a
2
(⌈

π/ arcsin c−1
2c

⌉
− 1
)
-approximation algorithm.

At the end of this section, we introduce some standard
notations and terms used throughout this paper. The disk
centered at a node v of radius r is denoted by B (v, r). For
a finite planar point set V and a number r > 0, the r-disk
graph on V is a simple geometric graph on V in which there
is an edge between two nodes if and only if their distance
is at most r. In particular, a 1-disk graph is referred to
as unit-disk graph. Let Π be a finite subset. For any real
function f ∈ RΠ and any subset Π′ ⊆ Π, f (Π′) denotes∑

e∈Π′ f (e). For two functions f, g ∈ RΠ with g (e) 6= 0 for

each e ∈ Π, we use f/g to denote the function in RΠ defined
by (f/g) (e) = f (e) /g (e).

2. PRELIMINARIES
Let G = (V, E) be an undirected graph. A subset I of

V is an independent set (IS) of G if no two nodes in I are
adjacent. If I is an IS of G but no proper superset of I is
an IS of G, then I is called a maximal IS of G. Any node
ordering 〈v1, v2, · · · , vn〉 of V induces a maximal IS I in the
following first-fit manner: Initially, I = {v1}. For i = 2 up
to n, add vi to I if vi is not adjacent to any node in I . An
IS of the largest size is called a maximum IS. Let I be the
collection of all independent sets of G. The independence
number of G, denoted by α (G), is defined to be maxI∈I |I |.
For any d ∈ RV

+ , the (weighted) independence number of
(G, d), denoted by α (G, d), is defined to be maxI∈I d (I).
For any d ∈ RV

+ , a fractional coloring of (G, d) is a set of k
pairs (Ij , λj) with each Ij ∈ I and λj ∈ R+ for 1 ≤ j ≤ k
satisfying that for each v ∈ V ,

∑

1≤j≤k,v∈Ij ,

λj = d (v) .

The two values k and
∑k

j=1 λj are referred to as the number
and total weight of the coloring respectively. The fractional
chromatic number χf (G, d) of (G, d) is defined as the mini-
mum weight of all fractional colorings of (G, d). It’s obvious
that

χf (G, d) ≥
d (V )

α (G)
.

The independence polytope P of G is the convex hull of the
incidence vectors of independent sets in G. Equivalently,
it consists of all d ∈ RV

+ with χf (G, d) ≤ 1. A polytope
Q is said to be a µ-approximation of P for some µ > 1 if
Q ⊆ P ⊆ µQ.

Now, we describe several optimization problems. Let G
be a class of graphs.

• Maximum Independent Set (MIS) restricted to G:
Given any G ∈ G, find an IS I of G with |I | = α (G, d).

• Maximum Weighted Independent Set (MWIS)

restricted to G: Given any G ∈ G and d ∈ R
V (G)
+ , find

an IS I of G with d (I) = α (G, d).

• Minimum Fractional Weighted Coloring
(MFWC) restricted to G: Given any G ∈ G and

d ∈ R
V (G)
+ , find a fractional coloring of (G, d) with

total color weight equal to χf (G, d).

The next theorem follows from general theorems on sepa-
ration and optimization given by Grötschel et al. [6] in the
exact case and by Jansen [11] in the approximation case.

Theorem 2.1. For any class G of graphs,

1. there is a polynomial algorithm for MFWC restricted
to G if and only there is a polynomial algorithm for
MWIS restricted to G;

2. if there is a polynomial µ-approximation algorithm for
MWIS restricted to G, then there is a polynomial µ-
approximation algorithm for MFWC restricted to G.

Now, suppose that G is the class of conflict graphs
of networks in a class N of multihop wireless networks.
The problem MIS (resp., MWIS, MFWC) restricted
to G is referred to as Maximum Conflict-Free Links
(MCFL) (resp., Maximum Weighted Conflict-Free
Links (MWCFL), Minimum Fractional Weighted
Link Schedule (MFWLS)) restricted to N .

3. NP-HARDNESS
In this section, we will establish the following four hard-

ness results.

Theorem 3.1. Even restricted to the subclass of the
802.11 class or the PIM class in which all nodes have uni-
form (and fixed) communication radii and uniform (and
fixed) interference radii and the positions of all nodes are
available, all of the following problems are NP-hard: (1)
MWCFL, (2) MFWLS, (3) MMF, and (4) MCMF.

Our reductions make use of the NP-hardness of three op-
timization problems restricted to UDGs.

Lemma 3.2. Restricted to UDGs in which the positions
of all nodes are available, all of the following three problems
are NP-hard (1) MIS, (2) MWIS, and (3) MFWC.

The NP-hardness of the first problem in the above lemma
was proved in [20], which then implies the NP-hardness of
the second problem, which further implies the NP-hardness
of the third problem by Theorem 2.1. We first present a con-
struction of a (connected) multihop wireless network from a
connected UDG G = (V, E) and a fixed constant ρ ≥ 1.

Let L be the distance between the closest pair of nodes in

V that are not adjacent in G. Set ρ′ = L+2
3

and r′ = ρ′

ρ
.
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Then 1 < ρ′ < L. We first construct a set W of at most
ρ (|V | − 1) points such that the r′-disk graph on V ∪W is
connected. Compute an Euclidean minimum spanning tree
T of G. Since G is connected, all edges of T have length at
most one. Initially, W is empty. We subdivide each edge
uv in T with ‖uv‖ > r′ into d‖uv‖ /r′e segments of equal
length and adding those d‖uv‖ /r′e − 1 endpoints of these
segments other than u and v to W . Since ρ′ > 1, we have

⌈
‖uv‖

r′

⌉
− 1 ≤

⌈
1

r′

⌉
− 1 =

⌈
ρ

ρ′

⌉
− 1 ≤

⌊
ρ

ρ′

⌋
< ρ.

Thus, |W | ≤ ρ (|V | − 1). In addition, the r′-disk graph on
V ∪W is connected.

Now, we construct a copy V ′ of V as follows. Let l be the
distance between the closest pair of nodes in V ∪W and set

σ = min

{
r′,

L− 1

3
,

l

2

}
.

Then, 1+σ ≤ ρ′ < L−σ. For each v ∈ V , we make a copy v′

satisfying that v′ is straightly below v and ‖vv′‖ = σ. Then,
v′ /∈ V ∪W . Let V ′ denote the set of copies v′ constructed
in this way. Clearly, |V ′| = |V |.

Then, the multihop wireless network consists of all nodes
V ∪W ∪ V ′ in which each node has communication radius
r′ and interference radius ρ′ = ρ · r′. Let G′ be the r′-
disk graph on V ∪ W ∪ V ′. Then, G′ is connected, and
the communication topology D = (V, A) of the network is
the directed version of G′. All links in D have the same
link capacity normalized to one unit. Additional geometric
properties of the network are given in the next two claims.

Claim 3.3. Let u and v be any two distinct nodes in V .
If ‖uv‖ ≤ 1, then

max
{
‖uv‖ ,

∥∥u′v′
∥∥ ,
∥∥uv′

∥∥ ,
∥∥u′v

∥∥} ≤ ρ′;

otherwise,

min
{
‖uv‖ ,

∥∥u′v′
∥∥ ,
∥∥uv′

∥∥ ,
∥∥u′v

∥∥} > ρ′.

Claim 3.4. Let v be a node in V and x be any node in
V ∪W ∪ V ′. If ‖vx‖ ≤ r′, then ‖v′x‖ ≤ ρ′.

The above two claims can be easily verified and their
proofs are omitted due to the space limitation.

For each subset U of V , we denote

AU =
{(

v′, v
)

: v ∈ U
}

.

Claim 3.3 implies that U is an independent set of G if and
only if all links in AU are conflict-free under either 802.11
model or the protocol interference model. Claim 3.4 implies
that at any time when v′ is communicating with some node
other than v, then v must be idle under either 802.11 model
or protocol model. These two implications are essential to
the correctness of our following reductions.

Consider an arbitrary d ∈ RV
+ . By necessary scaling, we

assume that for each v ∈ V , either d (v) = 0 or d (v) ≥ 1
(where 1 represents the normalized unit link capacity). Such
scaling does not change the computational complexity. Let
d′ ∈ RA

+ be such that d′ (e) = d (v) for any e = (v′, v) ∈ AV

and d′ (e) = 0 for any other e ∈ A�AV . We make the
following three claims:

1. By treating d′ as the link-weight function of D, the
maximum weight of conflict-free links in D is α (G, d).

2. By treating d′ as the link-demands, the minimum
length of the fractional weighted schedule for (D, d′)
is χf (G, d).

3. By treating d′ as the commodity traffic demands,
the maximum concurrency of these demands in D is
1/χf (G, d).

These relations together with Lemma 3.2 (2) and (3) imply
the NP-hardness of the three problems in Theorem 3.1 ex-
cept the third one. The proofs of the first two relations are
easy and so are skipped. In the sequel, we give the proof of
the third one, which is more complicated because the routing
is involved. We denote by φ the maximum concurrency.

First we show that φ ≥ 1/χf (G, d). Consider a minimum
fractional coloring of (G, d) given by k pairs (Ij , λj) for each
1 ≤ j ≤ k. Then,

k∑

j=1

λj = χf (G, d) .

We construct the following routing and schedule for the com-
modities in AV . Each commodity in AV takes a single-hop
route. For each 1 ≤ j ≤ k, we schedule all the links in
AIj

for λj/χf (G, d) amount of time. Then, d (v) /χf (G, d)

units of commodity from v′ to v is transported in a unit
of time. Hence, the concurrency of such schedule is exactly
1/χf (G, d), and hence φ ≥ 1/χf (G, d).

Next, we show that φ ≤ 1/χf (G, d). The key observa-
tion is that we can convert any routing and schedule with
concurrency φ to a “canonical” one in which the traffic of
each commodity is transported directly in one hop from the
source to the sink without sacrificing the concurrency. In-
deed, suppose that a portion of traffic from some node v′ to
v is routed along a path p rather than the direct link v′v. By
Claim 3.4, v must be idle whenever v′ is transmitting. We
replace the path p by the direct link v′v.The same amount of
traffic carried along p would be routed along v′v but without
changing the time schedule. This new routing and schedule
does not affect any other traffic transported concurrently.
By repeatedly taking such switching operation, we obtain
a routing and schedule of the same concurrence φ in which
all commodities are transported along the direct link. Now,
we decompose the schedule into a set of pairs (Aj , λj) for
1 ≤ j ≤ k where a period of duration λj is dedicated to links
in Aj which concurrently. Then,

∑

1≤j≤k

λj = 1,

and each Aj is a set of conflict-free links. Let Ij denote the
set of receiving nodes of the links in Aj . Then, each Ij is an
independent set of G. In addition, for each v ∈ V we have

∑

v∈Ij ,1≤j≤k

λj =
∑

(v′,v)∈Aj ,1≤j≤k

λj = φ · d (v) ,

which implies that

∑

v∈Ij,1≤j≤k

λj

φ
= d (v) .

This means that the set of k pairs (Ij , λj/φ) for 1 ≤ j ≤ k
is a fractional weighted coloring of (G, d). Thus,

χf (G, d) ≤
k∑

j=1

λj

φ
=

1

φ

k∑

j=1

λj =
1

φ
,

So, φ ≤ 1/χf (G, d).
Therefore, φ = 1/χf (G, d) and hence the third claimed

relation is true.
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Finally, we claim that by treating AV as the |V | com-
modities, the maximum multiflow of these commodities is
α (G). The proof of this claim is almost the same as the
proof of the third relation above by using the concept of
“canonical” routing and schedule. Therefore, the proof is
omitted. This relation together with Lemma 3.2(1) implies
the NP-hardness of the third problem in Theorem 3.1. This
completes the proof of Theorem 3.1.

We conclude this section by remarking that our reduction
can actually be used to show the NP-hardness of MWCFL
even restricted to {0, 1}-weight.

4. POLYNOMIAL-TIME
APPROXIMATION SCHEMES

While the NP-hardness established in the previous section
brought us negative news, the approximation hardness of the
same problems should bring us good news. We start with
the following general results on approximality.

Theorem 4.1. Suppose that N is a network class sat-
isfying that there is a polynomial (resp., a polynomial
µ-approximation) algorithm for MWCFL restricted to
N . Then, there is a polynomial (resp., a polynomial µ-
approximation) algorithm for each of all of following three
problem restricted to N : (1) MFWLS, (2) MMF, and (3)
MCMF.

Proof. For MFWLS restricted to N , the theorem is
implied by Theorem 2.1. So, we move on to the other
two problems. For simplicity of presentation, we treat a
polynomial algorithm which produces an optimal solution
as a polynomial 1-approximation algorithm. Let A be a µ-
approximation algorithm for MWCFL restricted toN . The
proof leverages an ellipsoid method for exponential-sized lin-
ear program (LP) with an (approximate) separation oracle.
Given an approximate separation oracle for the dual LP of
a primal LP, both the primal LP and the dual LP can be
solved with the ellipsoid method within the same approx-
imation factor as the approximate separation oracle. This
powerful technique was first used by Karmarkar and Karp
for the bin packing problem [12] and has been successfully
applied to produce approximation algorithms for a number
of other optimization problems (see, e.g., [4], [9], [11], [18].)

Let A be a µ-approximation algorithm for MWCFL re-
stricted to N . Consider a network N = (D, G, b) ∈ N .
Suppose that D = (V, A). We use I to denote the collection
of sets of conflict-free links in A. In addition, we are given
with k commodities with sj , tj being the source and sink,
respectively, for commodity j for 1 ≤ j ≤ k. Let Pj be the
set of (sj , tj)-paths in D = (V, A) for all 1 ≤ j ≤ k, and
define P to be the union of P1, · · · ,Pk. Also, let Pe be the
set of paths in P that use link e for all e ∈ A.

Now, we give the proof for MMF. The path-flow LP for-
mulation for MMF has a variable x (p) for the flow sent
along each path p ∈ P and a variable y (I) each indepen-
dent set I ∈ I:

(Pmmf ) max
∑

p∈P
x (p)

s.t.
∑

p∈Pe
x (p) ≤ b (e)

∑
e∈I y (I) , ∀e ∈ A∑

I∈I
y (I) ≤ 1

x, y ≥ 0

The dual to this LP associates a length l(e) for each link
e ∈ A and another variable ω:

(Dmmf ) min ω
s.t.

∑
e∈p l(e) ≥ 1, ∀p ∈ P∑
e∈I b (e) l(e) ≤ ω,∀I ∈ I

l, ω ≥ 0

The dual LP can be interpreted the as follows. Let distj(l)
be the length of the shortest (sj , tj)-path in D with respect
to length function l ∈ RA

+ for 1 ≤ j ≤ k. Also let

α(l) = min
1≤j≤k

distj(l),

D (l) = max
I∈I

∑

e∈I

b (e) l(e) = max
I∈I

l(I),

Then, α(l) is the minimum length of the shortest paths be-
tween all pairs of terminals of the commodities, and D (l)
is the maximum weight of conflict-free links in the conflict
graph of A in which each link e ∈ A has weight b (e) l(e).
Thus, (Dmmf ) is equivalent to finding a length function
l ∈ RA

+ such that D(l) is minimized subject to α(l) ≥ 1.
We run the ellipsoid algorithm on the dual LP using A as

the approximate separation oracle. More precisely, we use
binary search to find the smallest value of ω for which the
dual linear program is feasible. The separation oracle acts
as follows: First, we compute distj(l) for each 1 ≤ j ≤ k,
and then compute α(l). We consider two cases.

Case 1: α(l) < 1. Then l is not feasible. Let j be such
that α(l) = distj(l) and p be the shortest (sj , tj)-path with
respect to l. Then, the constraint corresponding to p is a
separating hyperplane.

Case 2: α(l) ≥ 1. We apply A to compute an I ∈ I with
respect to l. If

∑

e∈I

b (e) l(e) > ω,

then l is not feasible and the constraint corresponding to I is
a separating hyperplane; otherwise, we accept l as a feasible
solution and therefore the ellipsoid algorithm decides that
the LP is feasible.

Of course, since A is just an approximation algorithm, the
above conclusion might be incorrect, and the dual LP might
actually be infeasible. However, since the approximation
factor of A is at most µ, we know that in this case, l and µω
constitute a feasible solution of the dual LP. Therefore, if ω∗

is the minimum value of ω for which the algorithm decides
that the dual LP is feasible, then we know that the dual LP
is infeasible for ω∗ − ε (where ε depends on the precision of
the algorithm), and is feasible for µω∗. Therefore, the value
of the dual LP, and hence the value of the primal LP as well,
is between ω∗ and µω∗.

The above algorithm computes the approximate value of
the primal LP. In order to compute the actual solution, we
use the technique used in [4] [9]. The total number of sep-
arating hyperplanes found by the above separation oracle
while running the ellipsoid algorithm for ω∗ − ε is bounded
by a polynomial. These separation oracles are enough to
show that the value of the dual LP is at least ω∗. Therefore,
if we consider the set of primal variables that correspond
to these separating hyperplanes, we get a set of polynomial
many primal variables. By LP-duality, if we fix the values of
the other variables to 0, the resulting LP still has solution at
least ω∗. However, after fixing the values of other variables
to 0 we obtain a polynomial size LP, which we can solve
in polynomial time, and find the optimum solution. By the
above argument this optimum solution has value at least ω∗,
and thus is a µ-approximation.

The proof for MCMF uses the similar method. Due to
the space limitation, we omit the proof in this paper.

The next theorem gives three network classes restricted
to which the problem MWCFL has a PTAS.

Theorem 4.2. The problem MWCFL has a PTAS when
restricted to any of the following three network classes:
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1. the 802.11 class;

2. the subclass of the PIM class in which the interference
radius of each node is at least c times its communica-
tion radius for some constant c > 1;

3. the subclass of the PIM class in which every k-hop
neighborhood in the conflict-graph contains at most
O (kc) conflict-free links for some constant c > 0.

The proof of the above theorem is omitted mainly for the
following reason. The PTAS for the first two classes is an
almost verbatim repetition of the PTAS for MIS restricted
to disk graphs proposed in [5] or a faster one proposed in
[19], both of which utilize the shifting strategy [7] [8] [16]
combined with dynamic programming. The PTAS for the
third class is also an almost verbatim repetition of the PTAS
for MIS restricted to disk graphs proposed in [17]. We also
would like to acknowledge that a PTAS for the unweighted
variant of MWCFL restricted to the 802.11 class was given
in [2] in the same vein.

From Theorem 4.1 and Theorem 4.2, we obtain the fol-
lowing corollary.

Corollary 4.3. Restricted to any of the three network
classes given in Theorem 4.2, all of the following three
problems have a PTAS: (1) MFWLS, (2) MMF, and (3)
MCMF.

To conclude this section, we remark that the PTAS’s pre-
sented in this section are of theoretical interest only, but
are practically quite infeasible. In the coming sections, we
will develop practically feasible constant-approximation al-
gorithms for those problems.

5. FRACTIONAL WEIGHTED
COLORING AND INDEPENDENCE
POLYTOPES

In this section, we temporally divert from multihop wire-
less networks to developing a general graph-theoretic algo-
rithm for fractional weighted coloring and constructing poly-
topes with linear explicit representations approximating the
independence polytope within guaranteed factors.

Let G = (V, E) be an undirected graph. Consider a ver-
tex ordering 〈v1, v2, · · · , vn〉 of V . For any U ⊆ V,the first-fit
MIS of U is the MIS of G [U ] selected in the first-fit manner
in the ordering 〈v1, v2, · · · , vn〉. Our algorithm, referred to
as First-Fit Fractional Weighted Coloring (F3WC),
takes as input a graph G = (V, E) together with an ordering
〈v1, v2, · · · , vn〉 of V and a node-demand (or weight) func-
tion d ∈ RV

+ . The description of this algorithm is given in
Table 1. The idea of this algorithm is simple. It runs in iter-
ations. In each iteration, a first-fit MIS of remaining nodes
with positive residue demand is selected, and then assign
to this MIS a color with a weight to “saturate” at least one
node. This ensures that at least one node gets its demand
satisfied and stops moving onto the subsequent iteration.
As a result, the number of iterations, or equivalently the
number of colors, is bounded by n, and the running time is
O
(
n2
)
. The next theorem gives a bound on the total color

weight of the output coloring.

Theorem 5.1. The coloring output by F
3
WC uses at

most n colors of total weight at most max1≤i≤n d (Vi), where
Vi consists of vi and all its neighbors in {v1, v2, · · · , vi−1}
for each 1 ≤ i ≤ n.

First-Fit Fractional Weighted Coloring (F3WC)

Input: a graph G = (V, E), d ∈ RV
+ ,

and an ordering 〈v1, v2, · · · , vn〉 of V
Output: a fractional weighted coloring Π of (G, d) .
Begin

Π← ∅;
U ← {v ∈ V : d (v) > 0} ;
while U 6= ∅ do

I ← the first-fit MIS of U ;
λ← minv∈I d (v);
add (I, λ) to Π;
for each v ∈ U ,

d (v)← d (v)− λ ;
if d (v) = 0, remove v from U ;

output Π;
End

Table 1: The first-fit algorithm for fractional
weighted coloring.

Proof. Suppose that the algorithm runs in k iterations.
For each 1 ≤ j ≤ k, let Uj be the subset U (of nodes with
residue demands) at the beginning of the j-th iteration, and
(Ij , λj) be the pairs of independent set and color weight
selected in the j-th iteration. Since at least one node gets
satisfied in each iteration, the k subsets U1, U2, · · · , Uk are
strictly decreasing. Hence, k ≤ |U1| ≤ n. Now, consider
an arbitrary node vi ∈ Uk. For each 1 ≤ j ≤ k, let Vi,j =
Vi∩Uj . Then, Ij ∩Vi,j 6= ∅ for each 1 ≤ j ≤ k by the first-fit
criteria for selection the MIS. Hence,

d (Vi) =
k∑

j=1

λj |Ij ∩ Vi,j | ≥
k∑

j=1

λj .

Thus, the theorem follows.

Theorem 5.1 has a profound application in approximating
the independence polytope, denoted by P , of G. Consider
an arbitrary ordering 〈v1, v2, · · · , vn〉 of V , and define Vi as
in Theorem 5.1. The inductive independence polytope of G
by the ordering 〈v1, v2, · · · , vn〉 is defined to be

Q =

{
d ∈ RV

+ : max
1≤i≤n

d (Vi) ≤ 1

}
,

and the inductive independence number of G by the ordering
〈v1, v2, · · · , vn〉 is defined to be the maximum size, denoted
by α∗, of any IS of G contained in some Vi for 1 ≤ i ≤ n.

Corollary 5.2. Q ⊆ P ⊆ α∗Q. In addition, the weight
of the coloring output by F

3
WC is at most α∗χf (G, d).

Proof. By Theorem 5.1, for any d ∈ Q, χf (G, d) ≤ 1
and hence d ∈ P. So, Q ⊆ P . To prove that P ⊆ α∗Q, it’s
sufficient to show that for any IS I of G, its incidence vector
belongs to α∗Q. Let d be the incidence vector of I . Then,
for each 1 ≤ i ≤ n, d (Vi) = |I ∩ Vi| ≤ α∗. Hence, d ∈ α∗Q.
Thus, P ⊆ α∗Q. Finally, consider an arbitrary d ∈ RV

+ .
Then,

d ∈ χf (G, d) P ⊆ α∗χf (G, d) Q.

By Theorem 5.1, the coloring of (G, d) output by F3WC
has weight at most α∗χf (G, d).

In the next, we present another approximate indepen-
dence polytope based on graph orientations. An orientation
of an undirected graph G is a digraph obtained from G by
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imposing an orientation on each edge of G. Suppose that
the digraph D = (V, A) is an orientation of G = (V, E).
For each u ∈ V , let N in (u) (resp., Nout (u)) denote the
set of in-neighbors (resp., out-neighbors) of u in D, and let
N in [u] (resp., Nout [u]) denote the union of N in (u) (resp.,
Nout (u)) and {u}. For any d ∈ RV

+ , a node u ∈ V is said

to be a surplus node of (D, d) if d
(
N in (u)

)
≥ d

(
Nout (u)

)
.

It’s easy to show that for any d ∈ RV
+ , (D, d) contains at

least one surplus node. For any d ∈ RV
+ , we construct an

ordering of V , depending on d, iteratively as follows. Ini-
tialize H to D. For i = n down to 1, let vi be a vertex of
the largest surplus in (H,d) and delete vi from H . Then
the ordering 〈v1, v2, · · · , vn〉 is called a largest surplus last
ordering of (D, d).

Lemma 5.3. The coloring of (G, d) output by F
3
WC in

the largest surplus last ordering of (D, d) uses at most n
colors with total weight at most 2 maxu∈V d

(
N in [u]

)
.

Proof. Suppose that 〈v1, v2, · · · , vn〉 is a the largest sur-
plus last ordering of (D, d). For each 1 ≤ i ≤ n, let V in

i

(resp., V out
i ) denote the set consisting of the in-neighbors

(resp., out-neighbors) of vi in {v1, v2, · · · , vi−1} in D, and
let

Vi = V in
i ∪ V out

i ∪ {vi} .

By the construction of the largest surplus last ordering, we
have d

(
V in

i

)
≥ d

(
V out

i

)
and hence

d (Vi) = d (vi) + d
(
V in

i

)
+ d

(
V out

i

)
≤ d (vi) + 2d

(
V in

i

)

≤ 2d
(
N in [vi]

)
≤ 2max

u∈V
d
(
N in [u]

)
.

By Theorem 5.1, the lemma follows.

The independence polytope of D is defined to be

Q′ =

{
d ∈ RV

+ : max
u∈V

d
(
N in [u]

)
≤ 1/2

}
.

It is also called as a directional independence polytope of G.
The local independence number of D is defined to be the
maximum size of any IS of G contained in some N in [u] for
some u ∈ V , and is denoted by β∗.

Corollary 5.4. Q′ ⊆ P ⊆ 2β∗Q′. In addition, the col-
oring of (G, d) output by F

3
WC in the largest surplus last

ordering of (D, d) has weight at most 2β∗χf (G, d).

The proof of the Corollary 5.4 is almost the same as that
of Corollary 5.2, and is thus omitted.

6. RESTRICTED MULTIFLOW
Consider a wireless network N = (D, G, b) and suppose

that D = (V, A). For each node v ∈ V , we use δin (v)
(resp., δout (v)) to denote the set of links in D entering (resp.,
leaving) v. Consider two distinct nodes s, t ∈ V . A vector
f ∈ RA

+ is called a flow from s to t, or simply a s− t flow, if
for each for each v ∈ V \ {s, t},

f
(
δout (v)

)
= f

(
δin (v)

)

This condition is called the flow conservation law : the
amount of flow entering a vertex v 6= s, t should be equal
to the amount of flow leaving v. The value of a flow f from
s to t is, by definition:

val (f) = f
(
δout (s)

)
− f

(
δin (s)

)
.

So the value is the net amount of flow leaving s, which is
also equal to the net amount of flow entering t.

Suppose that we are given with k commodities with si, ti

being the source and sink, respectively, for commodity i.
We use Fi to denote the set of si–ti flows. A k-flow is s
sequence of flows 〈f1, f2, · · · , fk〉 with fi ∈ Fi for each 1 ≤
i ≤ k. Let P be the independence polytope of G (also known
as the capacity region), and Q be a polytope contained in
P . A k-flow 〈f1, f2, · · · , fk〉 is said to be Q-restricted if(∑k

j=1 fj

)
/b ∈ Q. The maximum Q-restricted multiflow is

defined by the following LP:

(MMFQ) max
∑k

j=1 val (fj)
s.t. fj ∈ Fj ,∀1 ≤ j ≤ k(∑k

j=1 fj

)
/b ∈ Q

Similarly, the maximum concurrent Q-restricted multiflow
with demands d (j) for 1 ≤ j ≤ k is defined by the following
LP:

(MCMFQ) max φ
s.t. fj ∈ Fj ,∀1 ≤ j ≤ k

val (fj) ≥ φd (j) ,∀1 ≤ j ≤ k(∑k

j=1 fj

)
/b ∈ Q

Of course, the two LPs may not be optimal as Q is a subset of
P . However, if Q is a µ-approximation of P for some µ ≥ 1,
i.e., Q ⊆ P ⊆ µQ, then both of them are µ-approximations
of the respective optimum. Furthermore, if Q has an explicit
polynomial representation, both LPs are of polynomial size
and can be solved in polynomial time. But we still cannot
claim a polynomial-time µ-approximate solution yet, even
if Q is a µ-approximation of P and has an explicit poly-
nomial representation. We have to make sure that a frac-
tional schedule of length at most one for the k-flows output
by the two LPs can be found in polynomial time. If in
addition there is a polynomial algorithm which produces a
fractional schedule of length at most one for (G, d) for any
d ∈ Q, then we can safely make the claim. Indeed, the µ-
approximation algorithm runs in two steps: We first solve
the Q-restricted LP to obtain a k-flow 〈f1, f2, · · · , fk〉, and
then compute a fractional link schedule of length at most

one for
(
G,
(∑k

j=1 fj

)
/b
)
.

Now, the picture is clear. Both design and analysis
of a polynomial-time µ-approximation algorithm for either
MMF or MCMF boil down to find a polytope Q satisfying
the three conditions: (1) Q is a µ-approximation of P , (2) Q
has an explicit polynomial representation, and (3) there is a
polynomial algorithm which produces a fractional schedule
of length at most one for (G, d) for any d ∈ Q. The inductive
independence polytopes and directional independence poly-
topes in Section 5 are perfect candidates for such Q. Based
on the above discussions and the theory developed in Section
5, we have reached the following two master theorems.

Theorem 6.1. Suppose that N is network class satisfy-
ing that there is a polynomial algorithm to find for any net-
work in N an ordering of the communication links by which
the inductive independence number of the conflict graph is
at most µ. Then, when restricted to N , both MMF and
MCMF have a polynomial µ-approximation algorithm.

Theorem 6.2. Suppose that N is a network class sat-
isfying that there is a polynomial algorithm to find for any
network in N an orientation of conflict graph whose local in-
dependence number in the conflict graph is at most µ. Then,
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when restricted to N , both MMF and MCMF have a poly-
nomial 2µ-approximation algorithm.

In the remaining of this section, we focus on the 802.11
class and the PIM class. For any network in the 802.11 class,
we consider the following two orderings of the communica-
tion links:

• Interference radius decreasing ordering: Define the in-
ference radius of a link to be larger one of the inter-
ference radii of its endpoints, and sort all links in de-
scending order of the interference radius.

• Lexicographic ordering: Sort all links in the lexico-
graphic order of their right endpoints.

These two orderings have the following two properties.

Lemma 6.3. For any network in the 802.11 class, the in-
ductive independence number of the conflict graph by the in-
terference radius decreasing ordering is at most 23.

Lemma 6.4. For any network in the subclass of the
802.11 class in which all nodes have uniform communica-
tion radii and uniform interference radii, the inductive in-
dependence number of the conflict graph by the lexicographic
ordering is at most 7.

The proofs of the above two lemmas are purely geometric
and yet quite involved, and so are relegated to Appendix
2 and Appendix 3 respectively. So, for the 802.1 class, we
have the following results.

Theorem 6.5. Restricted to the 802.11 class, both MMF

and MCMF have a polynomial 23-approximation algorithm.

Theorem 6.6. Restricted to the subclass of the 802.11
class in which all nodes have uniform communication radii
and uniform interference radii, both MMF and MCMF

have a polynomial 7-approximation algorithm.

For any network in the PIM class, we consider the follow-
ing orientation of its conflict graph. For any pair of con-
flicting links a1 = u1v1 and a2 = u2v2, if v1 is within the
interference range of u2 and v2 is within the interference
range of u1, take an arbitrary orientation; otherwise, if v1

is within the interference range of u2, take the orientation
from a2 to a1; otherwise, take the orientation from a1 to a2.
Then, the orientation of the conflict graph has the following
important property: for any in-neighbor a′ = u′v′ of a = uv,
v is within the interference range of u′. This property leads
to the following theorem.

Lemma 6.7. For any network in the subclass of the PIM
class in which the interference radius of each node is at least
c times its communication radius for some c > 1, the local
independence number of the above orientation of its conflict
graph is at most

⌈
π/ arcsin c−1

2c

⌉
− 1.

The proof of this lemma is given in Appendix 4. We re-
mark that the bound in the above lemma is at most half of
the bound

⌈
2π/ arcsin c−1

2c

⌉
derived in [21]. So, for the PIM

class we have the following result.

Theorem 6.8. Restricted to the subclass of the PIM class
in which the interference radius of each node is at least c
times its communication radius for some c > 1, both MMF

and MCMF have a polynomial 2
(⌈

π/ arcsin c−1
2c

⌉
− 1
)
-

approximation algorithm.

7. CONCLUSION
In this paper, we have conducted comprehensive stud-

ies on both MMF and MCMF restricted to either the
802.11 class or the PIM class. Not only have we provided
the full characterization of their NP-hardness and approxi-
mation hardness, we have also developed polynomial algo-
rithms with better approximation bounds. In addition, the
two relevant problems MWCFL and MFWLS restricted
to either the 802.11 class or the PIM class have also been
studied. While the 802.11 class and the PIM class are the
two classes of multihop wireless networks focused on in this
paper, most of our results are given for an arbitrary network
class. In particular, we have developed a unified framework
for both the design and the analysis of polynomial approxi-
mation algorithms.
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Appendix 1: Debugging
Proof of NP-hardness in [10]: Theorem 1 in [10] claimed
the NP-hardness of MMF restricted to the PIM class using
a reduction from MIS in general graphs. Let G = (V, E) be
an arbitrary graph. Jain et al. [10] constructed a wireless
network N = (D, G, b) as follows. D consists of only two
nodes s and t. For each v ∈ V , they added to D a link ev

from s to t and set b (ev) = 1. In the conflict graph G′,
two links eu and ev conflict with each other if and only if u
and v are adjacent in G. Then, the maximum s-t flow in N
is α (G). They argued that such network N “may arise, for
instance, if nodes s and r are each equipped with multiple ra-
dios set either to the same channel or to separate channels”,
but later on admitted that“the above proof may come across
as contrived since the wireless network we constructed is un-
likely to arise in practice”. Such proof is indeed contrived
as all wireless networks in their paper were assumed implic-
itly to be single-channel and single-radio. Multi-channel and
multi-radio appeared nowhere else in their paper except this
proof. Even with multi-channel and multi-radio wireless net-
works, their reduction is incomplete as they do not provide
any mapping from the links to the channels and radios. A
more important truth is that their reduction does not work
for wireless networks with constant number of channels and
constant number of radios per node.

Link scheduling in [15] [1] [21]: Let G be the interfer-
ence graph, A be the set of its communication links, and
d ∈ RA

+ be the cumulative flow. All the three papers [15]
[1] [21] computed a schedule of (G, d) as follows. They first
chose an integer w such that for all e ∈ A, w · d (e) is inte-
gral. Let us assume that d is rational such that such integer
w exists. They set d′ = w · d and run the conventional first-
fit coloring on (G, d′) in some ordering of A: each e ∈ A is
assigned with the first d′ (e) available colors which have not
been used by any link preceding and conflicting with e. Fi-
nally, such first-fit schedule of (G, d) is scaled down to obtain
a schedule of (G, d). This algorithm is not polynomial as it
has super-exponential worst-case running time. Indeed, con-
sider a rational d ∈ RA

+ satisfying that for each e ∈ A, each
d (e) is a positive reduced fraction whose denominator is a
distinct (sufficiently large) prime number p (e). The least
common denominator of all d (e) for e ∈ A is

∏
e∈A p (e),

which is a lower bound on w. So, for each e ∈ A, d′ (e)
is super-exponential. Thus, when run on (G, d′), the con-
ventional first-fit coloring in any ordering would take super-
exponential running time.

Flow schedulability in [21]: Consider a network in the
PIM subclass. Let A be the set of its communication links.
For each link e = uv, define Iin (e) to be set of links e′ = u′v′

in A satisfying that v is within the interference range of u′.
For each cumulative flow (or demand) d ∈ RA

+, Wang et
al. [21] introduced the following constraint to guarantee the
schedulability of d (i.e., d belongs to the capacity region):

max
e∈A


d (e) +

∑

e′∈Iin(e)

d
(
e′
)

 ≤ 1.

But such constraint cannot guarantee the schedulability of d,
even restricted to the subclass of the PIM class in which all

nodes have unit communication radius and a uniform inter-
ference radius equal to some constant ρ ≥ 1. We construct
a counter-example below. Consider a set U of 10 nodes u0

through u9 on a circle C (see Figure 1) in the counterclock-
wise order satisfying that for each 0 ≤ i ≤ 4, ‖u2iu2i+1‖ = 1
and ‖u2i−1u2i‖ = ρ (u−1 is treated as u9 in the cyclic or-
der). The rest nodes V \ U are located on the fives minor
arcs between u2i−1 and u2i for 0 ≤ i ≤ 4 respectively such
that the unit-disk graph on V is connected. Let ei be the
link u2iu2i+1 for 0 ≤ i ≤ 4. Consider the demand ∈ RA

+

given by d (ei) = 1/2 for each 0 ≤ i ≤ 4 and d (e) = 0 for all
other links e ∈ A. It’s easy to verify that

max
e∈A


d (e) +

∑

e′∈Iin(e)

d
(
e′
)

 = 1.

We claim that the shortest schedule for d has length 1.25.
Indeed, let G′ be the conflict graph of the five links ei for 0 ≤
i ≤ 4. Then, the shortest schedule for d is equivalent to the
minimal fractional coloring of (G′, d′) in which d′ (ei) = 1/2
for each 0 ≤ i ≤ 4. Since G′ is a 5-cycle, its independence
number is two, and hence χf (G′, d′) ≥ 2.5/2 = 1.25. On the
other hand, the fractional coloring which assigns a weight of
1/4 to each of the 5 maximum independent sets has weight
5/4 = 1.25. Hence χf (G′, d′) = 1.25.
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Figure 1: A counter-example to the flow schedula-
bility in [21] and [3].

Flow schedulability in [3]: Consider a network in the
subclass of the 802.11 class in which all nodes have unit com-
munication radius and a uniform interference radius equal
to some constant ρ ≥ 1. Let V be the networking nodes
and A be the set of its communication links. Sort V in the
lexicographic order. For each v ∈ V , let Γv denote the set
consisting of v itself and all nodes preceding v in the lexico-
graphic order and lying in the interference range of v, and
Av denote the set of links in A with both endpoints in Γv.
For each cumulative flow d ∈ RA

+, τv denotes the total flow
through the links in A incident to v for any v ∈ V , and
Buragohain et al. [3] introduced the following constraint to
guarantee the schedulability of d:

max
v∈V

(∑

u∈Γv

τu −
∑

e∈Av

d (e)

)
≤ 1.

Again this constraint fails to guarantee the schedulability of
d. Indeed, consider the same instance of nodes given in the
previous paragraph. It’s also easy to verify that

max
v∈V

(∑

u∈Γv

τu −
∑

e∈Av

d (e)

)
= 1.
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But under the 802.11 interference model, the shortest sched-
ule for d is also 1.25 using the same argument as above.

Appendix 2: Proof of Lemma 6.3
For each node v, we write ρv for ρ (v), Bv for the disk of
radius ρv centered at v, and Γ (v) for the set of nodes w
satisfying that ρw ≥ ρv and v ∈ Bw . Consider an arbitrary
link e and let I be a set of conflict-free links in which each
link conflict with e and has interference radii at least that
of e. We will prove that |I | ≤ 23, from which Lemma 6.3
follows. If e ∈ I , then |I | = 1. So we assume that e /∈ I
in the sequel. As any pair of links in I have no common
endpoint and the directions of the links have no impact on
the interference, we will ignore the directions of the links in
I and call the links in I as edges for simplicity. Let u and v
be the two endpoints of e with ρu ≥ ρv. We partition I into
four subsets I1, I2, I3 and I4 as follows. I1 consists of edges
in I with at least one endpoint in Γ (u), I2 consists of edges
in I \I1 with at least one endpoint in Bu, I3 consists of edges
in I \ (I1 ∪ I2) with at least one endpoint in Γ (v), and I4

consists of rest edges in I . We define the representatives of
the edges in I . The representative of each edge in I1 (resp.,
I3) is one of its endpoints belonging to Γ (u) (resp., Γ (v)),
the representative of each edge in I2∪I4 is its endpoint with
larger interference radius.

Lemma 8.1. The following statements are true:

1. Suppose that w1 and w2 are representatives of two edges
in I1 ∪ I2. Then, ŵ1uw2 > 2 arcsin 1

4
.

2. Suppose that w1 and w2 are representatives of two edges
in I3 ∪ I4. Then, ŵ1vw2 > 2 arcsin 1

4
.

3. Suppose that w is the representative of an edge in I3∪I4.
Then ûvw > 30o.

The proof of the above lemma is lengthy, and is omitted
due to the limitation on space. By Lemma 8.1(1),

|I1 ∪ I2| ≤

⌈
2π

2 arcsin 1
4

⌉
− 1 = 12.

By Lemma 8.1(2) and (3),

|I3 ∪ I4| ≤

⌈
2π − π

3

2 arcsin 1
4

⌉
= 11.

Therefore, |I | = |I1 ∪ I2|+ |I3 ∪ I4| ≤ 23.

Appendix 3: Proof of Lemma 6.4
By proper scaling, we assume the communication of each
node is one and the interference of each node is ρ ≥ 1.
For each node v, we use Bv to denote the disk of radius ρ
centered at v. Consider an arbitrary link e and let I be a set
of conflict-free links in which each link conflict with e and
its endpoints both lie to the left side of the right endpoint
of e. We will prove that |I | ≤ 7, from which Lemma 6.4
follows. If e ∈ I,then |I | = 1. So we assume that e /∈ I
in the sequel. As any pair of links in I have no common
endpoint and the directions of the links have no impact on
the interference, we will ignore the directions of the links in
I and call the links in I as edges for simplicity. Let u and v
be the two endpoints of e with u be the right endpoint of e.
For each edge in I , we pick one of its endpoints belonging
to Bu ∪ Bv as its representative. We partition I into two
subsets I1 and I2 as follows. Let I1 be the set of edges in
I whose representative lie in Bu. As the representatives of

the edges in I1 all lie in a half disk of Bu and have pairwise
distances greater than the radius ρ of Bu, we have |I1| ≤ 3.
As the representatives of the edges in I2 all lie in the“moon”
Bv \Bu and have pairwise distances greater than ρ, we have
|I \ I1| ≤ 4. Therefore, |I | ≤ |I1|+ |I \ I1| ≤ 7.

Appendix 4: Proof of Lemma 6.7
The following geometric lemma is key to the proof for
Lemma 6.7.

Lemma 8.2. Consider a triangle 4puv with ‖pu‖ = ρ
and ‖pv‖ = 1 (see Figure 8.2). Let q be a point on the
same side of pu satisfying that ‖uq‖ = ‖uv‖ and ‖pq‖ = ρ.
Then,

q̂uv ≥ 2 arcsin
ρ− 1

2ρ
.

r

p

q

1
r

u v

Figure 2: Figure for Lemma 8.2.

The proof of the above lemma is also lengthy and is omit-
ted due to the limitation on space. Now we proceed to prove
Lemma 6.7. For each node v, we write ρv for ρ (v), Let
e1 = u1v1 be an arbitrary link, and I be a set of conflict-free
links in which each link is either e1 itself or an in-neighbor
of e1 in the orientation of the conflict graph. We will prove
that |I | ≤

⌈
π/ arcsin c−1

2c

⌉
− 1, from which Lemma 6.7 fol-

lows. If e ∈ I then |I | = 1. So we assume that e /∈ I in the
sequel. Consider any pair of links e2 = u2v2 and e3 = u3v3

in I . Then, ‖u2v3‖ > ρu2
. We claim that

v̂2v1v3 > 2 arcsin
c− 1

2c
.

By symmetry, we assume that v2 is farther away from v1

than v3. Then, u2 lies in the intersection of B (v1, ρu2
) and

B (v2, ru2
). Let p be the intersection point of ∂B (v1, ρv1

)
and ∂B (v2, ru2

) which lies on the different side of v1v2 from
v3, and q be the point on the same side of v1p satisfying that
‖v1q‖ = ‖v1v2‖ and ‖pq‖ = ρu2

. By Lemma 8.2,

v̂2v1q ≥ 2 arcsin
ρu2
− ru2

2ρu2

≥ 2 arcsin
c− 1

2c
.

For any point w in the sector v2v1q (centered at v1 with
radius ‖v1v2‖),

‖u2w‖ ≤ ‖pw‖ ≤ max {‖pv1‖ , ‖pv2‖ , ‖pq‖} = ρu2
.

Thus, v3 cannot be in the sector v2v1q and consequently,

v̂2v1v3 > v̂2v1q ≥ 2 arcsin
c− 1

2c
.

Therefore, the claim holds. Hence,

|I | ≤

⌈
π

arcsin c−1
2c

⌉
− 1.

So, the lemma follows.

94


