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ABSTRACT
Minimum-latency aggregation schedule (MLAS) in syn-
chronous multihop wireless networks seeks a shortest sched-
ule for data aggregation subject to the interference con-
straint. In this paper, we study MLAS under the protocol
interference model in which each node has a unit communi-
cation radius and an interference radius ρ ≥ 1. All known
aggregation schedules assumed ρ = 1, and the best-known
aggregation latency with ρ = 1 is 23R+∆−18 where R and
∆ are the radius and maximum degree of the communication
topology respectively. In this paper, we first construct three
aggregations schedules with ρ = 1 of latency 15R + ∆ − 4,

2R + O (log R) + ∆ and
(

1 + O
(

log R/ 3
√

R
))

R + ∆ re-

spectively. Then, we obtain two aggregation schedules with
ρ > 1 by expanding the first two aggregation schedules with
ρ = 1. Both aggregation schedules with ρ > 1 have la-
tency within constant factors of the minimum aggregation
latency.
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1. INTRODUCTION
Data aggregation in multihop wireless networks is a prim-

itive communication task in which a distinguished sink node
collects a packet from every other node and every interme-
diate node combines all received packets with its own packet
into a single packet of fixed-size according to some aggrega-
tion function such as logical and/or, maximum, or minimum.
A routing for an aggregation is a spanning inward arbores-
cence of the communication topology rooted at the sink of
the aggregation. Assume that all communications proceed
in synchronous time-slots and each node can transmit at
most one packet of a fixed size in each time-slot. A link
schedule of an spanning inward arborescence is an assign-
ment of time-slots to all links in this arborescence subject
to two constraints: (1) A node can only transmit after all
its children complete their transmissions to itself; and (2)
all links assigned in a common time-slot are interference-
free. Thus, an aggregation schedule specifies not only a span-
ning in-arborescence for routing but also a link schedule of
such spanning in-arborescence. The latency of an aggrega-
tion schedule is the number of time-slots during which at
least one transmission occurs. The problem of computing
an aggregation schedule with minimum latency in a mul-
tihop wireless network is referred to Minimum-Latency

Aggregation Schedule (MLAS).
In this paper, we study the problem MLAS under the

following model for wireless networks. All the networking
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nodes are located in a plane and are each equipped with an
omnidirectional antenna. Each node has a fixed transmis-
sion radius which is normalized to one and an interference
radius ρ ≥ 1. The communication range and the interference
range of a node v are the two disks centered at v of radius
one and ρ respectively (see Figure 1). Let V denote the set
of networking nodes, and G be the unit-disk graph (UDG)
on V . Then the communication topology of the network is

the digraph
−→
G obtained from G by replacing any edge uv

in G with two oppositely oriented links (u, v) and (v, u). A

pair of communication links (u1, v1) and (u2, v2) in
−→
G are

said to be conflict-free if the two line segments u1v2 and u2v1

are both longer than ρ. A subset of links in
−→
G scheduled

in a same time-slot are inteference-free if they are pairwise
conflict-free. Such interference model is referred to as the
protocol interference model [3] and is widely used because of
its generality and tractability.

1

r

v

Figure 1: The protocol interference model: each

node has a unit transmission radius and an inter-

ference radius ρ ≥ 1.

MLAS with ρ = 1 is NP-hard [1]. Let n be the number of
nodes, and the s be the sink node of the aggregation. The
radius of G with respect to s, denoted by R, is the maximum
(hop) distance between s and other node in G. Both R and
log n are two lower bounds on the minimum aggregation
latency regardless of ρ. For ρ = 1, two aggregation schedules
of latency at most (∆− 1)R and 23R + ∆− 18 respectively
have been developed in [1] and [4] respectively, where ∆
is the maximum degree of G. Note that ∆ contributes to
an multiplicative factor in the former aggregation schedule,
while contributes to additive factor in the latter aggregation
schedule. This paper makes the following contributions to
MLAS:

• For ρ = 1, we develop three approximation algo-
rithms which produce aggregations schedules of la-
tency at most 15R + ∆ − 4, 2R + ∆ + O (log R) and
(

1 + O
(

log R/ 3
√

R
))

R+∆ respectively. The first one

has the simplest implementation and may outperform
the other two when the radius R is small. For large ra-
dius R, the latter two speed up the aggregation sched-
ule by using the pipelining technique.

• For ρ > 1, we develop two approximation al-
gorithms which produce aggregations sched-
ules of latency at most βρ+1 (15R + ∆− 4) and
βρ+1 (2R + ∆ + O (log R)) respectively, where

βr =
π√
3
r2 +

(π

2
+ 1
)

r + 1.

We also prove that both algorithms have constant ap-
proximation ratios.

The key ingredients of the three approximation algorithms
with ρ = 1 are a special inward arborescence and two novel
connected dominating sets. The inward arborescence is asso-
ciated with a properly defined link labelling and node rank-
ing. It enables the application of the pipelining technique
for speeding up the aggregation schedule. In any aggre-
gation routing, the set of relaying nodes together with the
sink node s form a connected dominating set (CDS) of G.
For achieving shorter aggregation latency, the CDS should
have stronger structural properties such as graph radius and
maximum degree than small size only. The constructions
of these structures are presented in Section 3 and Section
4 respectively. The three approximation algorithms with
ρ = 1 are then described in Section 5. The two approxi-
mation algorithms with ρ > 1 exploits a generic expansion
technique which adapts a “well-separated” communication
schedule with ρ = 1 to a communication schedule with ρ > 1.
Such expansion technique is described in Section 6. We ex-
pect that these structures and the expansion technique can
be applied in the scheduling of other communications.

2. PRELIMINARIES
In this section, we first introduce some standard graph-

theoretic terms and notations adopted throughout this pa-
per. Let G = (V, E) be a connected graph. The subgraph
of G induced by a subset U of V is denoted by G [U ], and
the bipartite subgraph of G induced by two disjoint sub-
sets U and W of V is denoted by G [U, W ]. The maximum
(respectively, minimum) degree of G is denoted by ∆ (G)
(respectively, δ (G)). The inductivity of G is defined by

δ∗ (G) = max
U⊆V

δ (G [U ]) .

The graph distance between any two nodes u and v in G is
denoted by distG (u, v). The radius of G with respect to a
specific node v ∈ V is denoted by Rad (G, v). Now, fix a
node s ∈ V . The depth of a node v (with respect to s) is
distG (s, v). For each 0 ≤ i ≤ Rad (G, s), the set of nodes in
V of depth i is referred to as the i-th layer of G.

A subset U of V is an independent set of G if no two
nodes in U are adjacent. If U is a independent set of G
but no proper superset of U is a independent set of G, then
U is called a maximal independent set (MIS) of G. Any
node ordering v1, v2, · · · , vn of V induces an MIS U in the
following first-fit manner: Initially, U = {v1}. For i = 2 up
to n, add vi to U if vi is not adjacent to any node in U .
A subset U of V is a dominating set of G if each node not
in U is adjacent to some node in U . Clearly, every MIS of
G is also a dominating set of G. If U is a dominating set
of G and G [U ] is connected, then U is called a connected
dominating set (CDS) of G.

Consider an ordering 〈v1, v2, · · · , vn〉 of V . For each
1 < i ≤ n, let Vi denote the set of nodes vj with 1 ≤ j < i ad-
jacent to vi. The inductivity of the ordering 〈v1, v2, · · · , vn〉
is defined to be max1<i≤n |Vi|. A natural question is whether
a vertex ordering of the smallest inductivity can be com-
puted in polynomial time. The answer to this question
is positive. A special vertex ordering, known as smallest-
degree-last ordering [5], achieves the smallest inductivity. It
is produced iteratively as follows: Initialize H to G. For
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i = n down to 1, let vi be a vertex of the smallest degree in
H and delete vi from H . Then the ordering 〈v1, v2, · · · , vn〉
is a smallest-degree-last ordering. The following theorem
was proven in [5].

Theorem 2.1. The smallest-degree-last ordering
achieves the smallest inductivity δ∗ (G) among all ver-
tex orderings.

A vertex coloring of G is an assignment of colors to V
satisfying that adjacent vertices are assigned with distinct
colors. Given a vertex ordering 〈v1, v2, · · · , vn〉 of V , a color-
ing of V with colors represented by natural numbers can be
produced in the following first-fit manner: Assign the color
1 to v1. For i = 2 up to n, assign to vi with the smallest
color which is not used by any neighbor of vi which precedes
vi. Such coloring of V is referred to as the first-fit coloring
in the ordering 〈v1, v2, · · · , vn〉. It’s easy to see the num-
ber of colors used by the first-fit coloring in the ordering
〈v1, v2, · · · , vn〉 is no more than one plus the inductivity of
the ordering 〈v1, v2, · · · , vn〉. In particular, the first-fit col-
oring in smallest-degree-last ordering uses at most 1+δ∗ (G)
colors.

Let X and Y be two disjoint subsets of V . Y is a cover
of X if each node in X is adjacent to some node in Y , and
a minimal cover of X if Y is a cover of X but no proper
subset of Y is a cover of X. Any ordering y1, y2, · · · , ym of
Y induces a minimal cover W ⊆ Y of X by the following
sequential pruning method: Initially, W = Y . For each
i = m down to 1, if W \{yi} is a cover of X, remove yi from
W . Suppose that Y is a cover of X. A node x ∈ X is called
a private neighbor of a node y ∈ Y with respect to Y if y is
the only node in Y which is adjacent to x. Clearly, if Y is
a minimal cover of X, then each node in Y has at least one
private neighbor with respect to Y .

In the remaining of this section, we introduce a classic
geometric result on disk packing.

Theorem 2.2 (Groemer Inequality [2]). Suppose
that C is a compact convex set and U is a set of points with
mutual distances at least one. Then

|U ∩ C| ≤ area (C)√
3/2

+
peri (C)

2
+ 1,

where area (C) and peri (C) are the area and perimeter of
C respectively.

When the set C is a disk or a half-disk, we have the fol-
lowing packing bound.

Corollary 2.3. Suppose that C (respectively, C′) is a
disk (respectively, half-disk) of radius r, and U is a set of
points with mutual distances at least one. Then

|U ∩ C| ≤ 2π√
3
r2 + πr + 1,

∣

∣U ∩ C′∣
∣ ≤ π√

3
r2 +

(π

2
+ 1
)

r + 1.

3. CANONICAL INWARD
ARBORESCENCE

Let G = (V, E) be a connected undirected graph and s
be a distinguished node in V . In this section, we present

a spanning inward s-arborescence of
−→
G , which is associated

with a link labelling and node ranking. The arborescence
itself would be utilized later in aggregation routing, and the
associated link labelling and node ranking will be utilized
in the link scheduling. Such arborescence is referred to as a
canonical inward arborescence.

We begin with a key building block of the construction

algorithm. Two links (u1, v1) and (u2, v2) in
−→
G are said to

be conflicting if at least one of u1v2 and u2v1 is an edge in

G. A subset A of links in
−→
G is said to be conflict-free if

any pair of links in A are not conflicting. Suppose that X
and Y are two disjoint subsets of V and X is covered by Y .
A single-hop (X, Y )-aggregation schedule consists of a set

A of links in
−→
G and a labeling of the links in A by natural

numbers satisfying that (1) for each link a = (x, y) ∈ A,
x ∈ X and y ∈ Y ; (2) each node in X is the tail of exactly
one link in A; (3) all the links in A with the same label are
conflict-free. For each link (x, y) ∈ A, x is said to be a child
of y while y is said to be a parent of x. Table 1 outlines an
algorithm called iterative minimal covering (IMC). It takes
as input a pair (X, Y ) of disjoint subsets X and Y of V
satisfying that X is covered by Y and outputs a single-hop
(X, Y )-aggregation schedule.

IMC:
A← ∅, l ← 0, X ′ ← X, Y ′ ← Y ;
while X 6= ∅,

C ← a minimal cover of X ′ contained in Y ′;
for each y ∈ C,

x← a private neighbor of y in X ′,
A← A ∪ {(x, y)};
` (x, y)← l;
X ′ ← X ′ \ {x};
Y ′ ← C;

output A and `.

Table 1: Outline of the algorithm IMC.

Figure 2 is an illustration of the algorithm IMC. In this
example, X = {xi : 1 ≤ i ≤ 7} and Y = {yi : 1 ≤ i ≤ 5}.
Their adjacency is depicted in Figure 2 (a). In the first
iteration, y2, y3, y5 form the minimal cover, and x1, x4, x6 are
their private neighbors respectively (see Figure 2 (b)). So,
the three links (x1, y2) , (x4, y3) and (x6, y5) are added to A
and all receive the label one. After that we remove x1, x4, x6

(see Figure 2 (c)) and proceed to the second iteration. In the
second iteration, y2, y5 form the minimal cover, and x2, x5

are their private neighbors respectively (see Figure 2 (d)).
So, the two links (x2, y2) and (x5, y5) are added to A and
both receive the label two. After that we remove x2, x5 (see
Figure 2 (e)) and move on to the third iteration. In the third
iteration, the two links (x3, y2) and (x7, y5) are added to A
and both receive the label three (see Figure 2 (f)). This
is the last iteration as every node has been assigned as a
parent. Figure 2 (g) shows all the links in A together with
their labels.

Lemma 3.1. Let A and ` be the output by IMC. For each
link (x, y) ∈ A, ` (x, y) is no more than the number of chil-
dren of y, i.e.,

` (x, y) ≤
∣

∣

{

x′ ∈ X :
(

x′, y
)

∈ A
}
∣

∣ .

Proof. Suppose the algorithm runs in L iterations. For
each 1 ≤ l ≤ L, let Cl be the minimum cover C computed
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(g)

1 1

33

1

2 2

1 23 12 1 3

(a) (b)

(c) (d)

(e) (f)

x2 x7x5

y5y3y2

x3x2 x7x5

y5y2

x3 x7

y5y2

x3 x7

y5y2

x4x3x1 x2 x7x6x5

y5y3y2

x4x3x1 x2 x7x6x5

y4 y5y3y2y1

x4x3x1 x2 x7x6x5

y5y3y2

x3

Figure 2: An illusrtation of the algorithm IMC.

in the l-th iteration. Then,

C1 ⊇ C2 ⊇ · · · ⊇ CL.

Consider an arc a = (x, y) ∈ A. Let k be the largest index
such that y ∈ Ck. Then, ` (x, y) ≤ k and y has exactly
k children, each from one of the first k iterations. So, the
lemma follows.

CBFS:
R← radius of G w.r.t. s;
for each 0 ≤ i ≤ R, Vi ← {v ∈ V : distG (v, s) = i};
R← (V, ∅);
for each u ∈ VR, rank(u)← 0;
for each i = R down to one

J ← {rank (v) : v ∈ Vi−1}
for each j ∈ J

Vij ← {v ∈ Vi : rank (v) = j};
augment T by applying IMC on Vij and Vi−1;

for each u ∈ Vi−1,
if u has no child, rank(u)← 0;
else

r ← maximum rank of the children of u;
if only one child of u has rank r, rank(u)← r;
else rank(u)← r + 1;

output T and rank.

Table 2: Outline of the algorithm IMC.

Next, we apply the algorithm IMC to construct a canon-
ical inward s-arborescence T . Our algorithm CBFS is out-
lined in Table 2. Let R be the radius of G with respect to s.
For each 0 ≤ i ≤ R, let Vi be the set of nodes in V of depth
i. The construction is in the bottom-up manner. Initially,
T is empty and rank(v) = 0 for each node v in the bottom

layer. For each layer i from R down to one, we first compute
the links from layer Vi to Vi−1 and their associated labeling
by using the algorithm IMC. Specifically, let J be the set of
ranks of the nodes in Vi. For each j ∈ J , let Vij be the set
of nodes in Vi with rank j and apply the algorithm IMC on
(Vij , Vi−1) to augment T . After that, we compute the ranks
of all nodes in Vi−1 in a standard manner. For each node
u in Vi−1,we assign the ranks as follows. If u has no child,
rank (u) is set to zero. If u has at least one child, let r be
the maximum rank of its children. If u has only one child
of rank r, then rank (u) is set to r; otherwise rank (u) is
set to r + 1. Figure 3 is an example of the canonical inward
arborescence output by the algorithm CBFS.

2

21 1 21 1

1 2 1 21 2

1 1 1 11 1

1 2 2111

1 1 1 11 2

1 1 2 1 2

0

20

0012

100220

101220

1

1 0

3

0

00000

001100

01

Figure 3: A canonical inward arborescence and the

associated node ranking produced by the algorithm

CBFS.

The arborescence T and the associated ranking have a
number of interesting properties. Clearly, each node has
rank no more than its parent in T . It’s also easy to prove
by induction in the bottom-up manner that for each node v,
rank (v) ≤ blog |Tv|c, where Tv is the subtree of T induced
by v and all its descendents. In particular, for each node
v, rank (v) ≤ blog |V |c. A link in the canonical BFS tree is
said be an express link if its two endpoints have the same
rank. By Lemma 3.1, all express links are labelled with one.

4. CONNECTED DOMINATING SETS
Let G = (V, E) be a connected UDG and s be the sink

node of aggregation. The problem of computing a minimum
CDS of G has been well-studied. While it is NP-hard, it
admits constant approximations. However, for our later ap-
plication in the aggregation scheduling, a CDS of small size
is not sufficient. In this section, we construct two CDS’s
with stronger properties. Both constructions follow a gen-
eral two-phased approach [6]. The first phase constructs
a dominating set, and the second phase selects additional
nodes, called connectors, which together with the domina-
tors induce a connected topology. The two algorithms have
the same first phase, which selects an MIS U induced by a
breadth-first-search (BFS) ordering with respect to s as the
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dominating set. By Corollary 2.3,

|U | ≤ 2π√
3
R2 + πR + 1,

In the next two subsections, we describe the selections of
connectors in the second phase.

4.1 The First Set of Connectors
Let H be the graph on U in which there is an edge between

two dominators if and only if they have a common neighbor.
Then, H is connected and Rad (H,s) ≤ R − 1. For each
0 ≤ i ≤ Rad (H,s), let Ui be the set of dominators of depth
i in H . Then, U0 = {s}. For each 0 ≤ i < Rad (H,s), let
Pi be the set of nodes adjacent to at least one node in Ui

and at least one node in Ui+1, and compute a minimal cover
Wi ⊆ Pi of Ui+1. Set

W =

Rad(H,s)−1
⋃

i=0

Wi.

Then, G [U, W ] is connected and U ∪W is a CDS of G. We
refer to all nodes in W as connectors and all nodes not in
U ∪W as dominatees.

Clearly, |W | ≤ |U | − 1 and hence

|U ∪W | ≤ 2 |U | − 1

≤ 2

(

2π√
3
R2 + πR + 1

)

− 1

=
4π√

3
R2 + 2πR + 1.

Furthermore,

Rad (G [U, W ] , s) = 2Rad (H,s) ≤ 2 (R− 1) .

The lemma below presents some additional properties of the
output CDS.

Lemma 4.1. The following statements are true.

1. For each 0 ≤ i < Rad (H,s), each connector in Wi is
adjacent to at most 4 dominators in Ui+1.

2. For each 1 ≤ i < Rad (H,s)− 1, each dominator in Ui

is adjacent to at most 11 connectors in Wi.

3. |W0| ≤ 12.

Proof. The first part of the lemma follows from the fact
that every node is adjacent to at most five independent
nodes. We prove the second part by contradiction. Assume
to the contrary that some dominator u ∈ Ui is adjacent to
k ≥ 12 nodes w1, w2, · · · , wk in Wi. By the minimality of
Wi, for each 1 ≤ j ≤ k there is a node vj ∈ Ui+1 such
that vj is adjacent to wj but not to any other node in Wi.
Let v0 be a dominator in Ui−1 which is adjacent to u in
H , and w0 be the node which is adjacent to both v0 and u.
Then, all these k+1 nodes v0, v1, · · · , vk are distinct, and so
are these k + 1 nodes w0, w1, · · · , wk. In addition, for each
0 ≤ j ≤ k, vj is the only node in {v0, v1, · · · , vk} which is
adjacent to wj . Among the k + 1 nodes v0, v1, · · · , vk, there
exist two, say vj1 and vj2 , satisfying that ∠vj1uvj2 ≤ 2π

13
.

Denote by B (x) the disk of unit radius centered at x. Since
the distance between vj1 and vj2 is greater than one, either
B (u) ∩ B (vj1) ⊆ B (vj2) or B (u) ∩ B (vj2) ⊆ B (vj1) (see
Lemma 4 in [7]). In the former case, wj1 ∈ B (vj2), and

hence vj2 is adjacent to wj1 , which is a contradiction. In
the latter case, wj2 ∈ B (vj1 ), and hence vj1 is adjacent to
wj2 , which is again a contradiction. Thus, the second part
of the lemma holds. By the same argument, we can show
that the third part of the lemma holds.

4.2 The Second Set of Connectors

In this section, we present another set W of connectors
such that G [U ∪W ] has shorter radius at the expense of
higher maximum degree and larger |W |. Fix a positive in-
teger parameter k. Let T be a BFS tree of G rooted at s.
For each node v rather than s, we denote the parent of v
in T by p (v). In general, the node which is i hops away
from v in the tree path from v to s is called the i-th an-
cestor of v and is denoted by pi (v). Since s is a dominator
and is an ancestor of every other node, each node has at
least one ancestor which is a dominator. Initialize W ′ to
be empty. For each dominator u, let i be the smallest pos-
itive integer such that pi (u) is a dominator, and add each
pj (u) with 1 ≤ j ≤ min {i− 1, k} to W ′. Next, we compute
the shortest-path tree T ′ from s to all other dominators in
G [U ∪W ′]. In other words, all the leaves of T ′ are domina-
tors. Let W be the subset of nodes in W ′ contained in T ′.
Then, U ∪W is still a CDS. We refer to all nodes in W as
connectors and all nodes not in U ∪W as dominatees.

Lemma 4.2. The following three inequalities are true:

|U ∪W | ≤ (k + 1)

(

2π√
3
R2 + πR

)

+ 1,

Rad (G [U ∪W ] , s) ≤ (1 + 1/k) R,

∆ (G [U ∪W ]) ≤ 2
√

3πk2 + 3πk + 3 + 4π/
√

3.

Proof. For each dominator rather than s, at most k con-
nectors are added to W ′. Thus,

∣

∣W ′∣
∣ ≤ k (|U | − 1) .

Hence,

|U ∪W | ≤
∣

∣U ∪W ′∣
∣

≤ |U |+ k (|U | − 1) = (k + 1) |U | − k

≤ (k + 1)

(

2π√
3
R2 + πR + 1

)

− k

= (k + 1)

(

2π√
3
R2 + πR

)

+ 1.

Now, we prove the second inequality in the lemma holds.
Let H be the subgraph of G induced by U∪W . It is sufficient
to show that for each dominator u,

distH (u, s) ≤
(

1 +
1

k

)

distG (u, s) .

We prove this inequality by induction on distG (u, s).
Clearly, if distG (u, s) ≤ k then

distH (u, s) = distG (u, s) .

So, we assume that distG (u, s) > k. Let i be the smallest
integer such that pi (u) is a dominator. We consider two
cases:
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Case 1: i ≤ k + 1. Then,

distG (u, s) = distG

(

pi (u) , s
)

+ i.

distH (u, s) ≤ distH

(

pi (u) , s
)

+ i.

By induction hypothesis,

distH (u, s) ≤ distH

(

pi (u) , s
)

+ i

≤
(

1 +
1

k

)

distG

(

pi (u) , s
)

+ i

<

(

1 +
1

k

)

(

distG

(

pi (u) , s
)

+ i
)

=

(

1 +
1

k

)

distG (u, s) .

Case 2: i > k+1. If pk (v) is adjacent to some dominator
at the same layer as pk+1 (v), then using the same argument
as in Case 1, we can show the inequality holds. So, we
assume that pk (v) is not adjacent to some dominator at the
same layer as pk+1 (v). Then, pk (v) must be adjacent to
some dominator v at the same layer as itself. Then,

distG (u, s) = distG (v, s) + k.

distH (u, s) ≤ distH (v, s) + k + 1.

By induction hypothesis,

distH (u, s) ≤ distH (v, s) + k + 1

≤
(

1 +
1

k

)

distG (v, s) + (k + 1)

=

(

1 +
1

k

)

(distG (v, s) + k)

=

(

1 +
1

k

)

distG (u, s) .

Finally, we prove the third inequality in the lemma. Each
connector v in W must have a descendent in T which is a
dominator, and we denote by q (v) the descendant dominator
of v which is closest to v. For each dominator v, we set q (v)
to v itself. Then, distG (v, q (v)) ≤ k. Consider a node
u ∈ U ∪W . Let N (u) denote the set of nodes in U ∪ W
adjacent to u, and let

S (u) = {q (v) : v ∈ N (u)} .

Then each dominator in S (u) is at most k + 1 hops away
from u in G. Now, let S1 (u), S2 (u) and S3 (u) be the set of
nodes in S (u) which are at most k−1, k and k+1 hops away
from u respectively. Notice that each node in N (u) must be
either at the same layer as u, or at the layer above u,or at
the layer below u. Thus, for each u′ in S1 (u) (respectively,
S2 (u) \ S1 (u), S3 (u) \ S2 (u)), the set

{

v ∈ N (u) : q (v) = u′}

consists of at most three (respectively, two, one) nodes. Con-
sequently,

|N (u)| ≤ 3 |S1 (u)|+ 2 |S2 (u) \ S1 (u)|+ |S3 (u) \ S2 (u)|
= |S1 (u)|+ |S2 (u)|+ |S3 (u)| .

By Corollary 2.3, we have

|N (u)| ≤
k+1
∑

i=k−1

(

2π√
3
i2 + πi + 1

)

= 2
√

3πk2 + 3πk + 3 +
4π√

3
.

Thus, the third inequality in the lemma holds.

5. AGGREGATION SCHEDULING WITH
ρ = 1

In this section, we present three aggregation scheduling
algorithms with ρ = 1. All of them utilize a connected dom-
inating set (CDS) for routing, which consisting of an MIS
U induced by a BFS ordering (with respect to s) of V and
a set W of connectors. The set W adopted by the first
two schedules is the first set of connectors, and the set W
adopted by the third schedule is the second set of connec-

tors with an integer parameter k = Θ
(

3
√

R/ log R
)

. The

three schedules all consist of two phases. The first phase is
a single-hop (V \ (U ∪W ) , U)-aggregation schedule, which
can be constructed by applying the algorithm IMC pre-
sented in Section 3. Thus, the latency of the first phase is
at most ∆ − 1. The second phase is an aggregation sched-
ule in the graph G [U ∪W ]. In the next, we describe the
aggregation schedules for the second phase.

5.1 Sequential Aggregation Scheduling
Our first algorithm is called Sequential Aggregation

Scheduling (SAS). Let W be the first set of connectors.
We first construct an inward s-arborescence T on U ∪ W
by specifying the parent p (v) for each node v other than s.
Let R′ = Rad (G [U, W ] , s). Then, R′ is an even number
no more than 2 (R− 1). For each 0 ≤ i ≤ R′, we denote
the set of nodes in the i-th layer of G [U, W ] by V ′

i . Note
that for even (respectively, odd) i, V ′

i consists of dominators
(respectively, connectors). For each 1 ≤ i ≤ R′, each node
v ∈ V ′

i sets its parent p (v) to be the node of the smallest
ID in V ′

i−1 which is adjacent to v. For each 1 ≤ i ≤ R′,
Ai denotes the set of links from the nodes in V ′

i to their
parents.

Our aggregation schedule proceeds in R′ rounds, with the
(R′ + 1− i)-th round devoted to the links in Ai for each 1 ≤
i ≤ R′. Specifically, we sort all links in Ai in the increasing
order of heads (i.e., receiving nodes) and break the ties with
the increasing ordering of tails (i.e., transmitting nodes).
Such ordering is referred to as ID-lexicographic ordering of
Ai. The conflict graph of Ai, denoted by CG (Ai), is an
undirected graph on Ai in which there is an edge between
each pair of conflicting links in Ai. We compute a first-fit
coloring of CG (Ai) in the ID-lexicographic ordering. Then,
each link in Ai with color j is scheduled in the j-th time-slot
of the (R′ + 2− i)-th round.

The next theorem gives an upper bound on the latency of
the aggregation schedule produced SAS.

Theorem 5.1. Algorithm SAS produces an aggregation
schedule with latency at most 15R− 3.

We prove this theorem in the remaining of this subsec-
tion. For each 1 ≤ i ≤ R′, we denote by δ∗i the inductivity
of the ID-lexicographic ordering in the graph CG (Ai) and
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denote by ∆∗
i the maximum number of tails of the links in

Ai adjacent in G to the head of some link in Ai.

Lemma 5.2. For each 1 ≤ i ≤ 2R′, δ∗i ≤ ∆∗
i − 1.

Proof. Suppose that (u, p (u)) and (v, p (v)) are two con-
flicting links in Ai and (u, p (u)) precedes (v, p (v)) in the
ID-lexicographic ordering. We claim that u is adjacent to
p (v). This holds trivially if p (u) = p (v). So, we assume
that p (u) 6= p (v). Then, p (u) has smaller ID than p (v).
By the choice of parent, v is not adjacent to p (u). There-
fore, u must be adjacent to p (v). So, our claim holds, from
which the lemma follows immediately.

The above lemma implies that the (R′ + 2− k)-th round
takes at most ∆∗

i time-slots. By Lemma 4.1, for any 1 ≤
i ≤ R′,

∆∗
i ≤







4 if i is even;
11 if i is odd and i > 1;
12 if i = 1.

Thus, the total latency is at most

R′

∑

k=1

∆∗
i ≤ (11 + 4) · R

′

2
+ 12

≤ 15 (R− 1) + 12

= 15R− 3.

Thus, Theorem 5.1 holds.
Theorem 5.1 implies that the latency of the entire aggre-

gation schedule is at most 15R + ∆− 4.

5.2 Pipelined Aggregation Scheduling
Our second algorithm is called Piplelined Aggregation

Scheduling (PAS). Let W be the first set of connectors.
We first apply the algorithm CBFS on the graph G [U, W ]
to construct an inward s-arborescence T on U ∪W together
with a link labelling and a node ranking. The links in T are
then scheduled as follows. Let R′ = Rad (G [U, W ] , s), and
r = rank (s). For each 0 ≤ i ≤ R′ and 0 ≤ j ≤ r, set

tij =
(

R′ − i
)

+ 44j.

Each link (v, p (v)) in T is scheduled in the the time-slot
tij + 4 (l − 1), where i is the depth of v in T , j is rank of v,
and l is the label of the link (v, p (v)).

Theorem 5.3. The algorithm PAS produces an aggrega-
tion schedule of latency at most t0,r.

Proof. We first show that if u has the same depth as v
but has a smaller rank than v, then u transmits earlier than
v. Suppose that i is the depth of u and v, and j and j′ are
the ranks of u and v respectively. Then, i ≥ 1 and j < j′.
Let l be the label of (u, p (u)). We claim that l ≤ 11. This
is true if i > 1. If i = 1, then l ≤ |W0| − 1 ≤ 11 by Lemma
4.1. Thus, the claim is true. Hence,

ti,j + 3 (l − 1) ≤ ti,j + 40 < ti,j+1 ≤ ti,j′ ,

which means u transmits earlier than v.
Now, we show that if u and v transmit in the same time-

slot, then the two links (u, p (u)) and (v, p (v)) are indepen-
dent. Let i and i′ be the depths of u and v respectively.
Then either i = i′ or |i− i′| ≥ 4. In the former case, u
and v must have the same rank by the previous claim and

hence the two links are independent. So we assume that
latter case. Since all dominators transmit in even time-slots
and all connectors transmit in odd time-slots, either both
of them are dominators or both of them are connectors. If
they are both dominators, then the do not share a com-
mon neighbor in G as their depths differ by more than two,
and consequently the two links are independent. If they are
both connectors, then p (u) and p (v) do not share a common
neighbor as their depths also differ by |i− i′| ≥ 4 > 2, and
hence the two links are independent as well.

Next, we show that if u is a node rather than s and v
is a child of u, then u transmits later than v. Let i be the
depth of u, and j and j′ be the ranks of u and v respectively.
Then, j ≥ j′. If j = j′, then the label of the link (v, u) is
one, and hence v transmits at the time slot ti+1,j < ti,j . If
j > j′, then v transmits no later than the time-slot

ti+1,j′ + 40 ≤ ti+1,j−1 + 40 < ti+1,j < ti,j .

In either case, v transmits earlier than u.
Finally, we show that all nodes transmit before the time-

slot t0,r. Let v be a node last to transmit. Then v ∈ W0.
Let j be the rank of v,and l be the label of (v, p (v)). If
j = r, then v is the only child of s with the rank r, and
hence l = 1. So, v transmits in the time-slot t1,r < t0,r. If
j < r, then l ≤ |W0| ≤ 12 by Lemma 4.1 and consequently

t1j + 4 (l − 1) ≤ t1,r−1 + 44 = t1,r < t0,r.

Therefore, in either case the transmission by v ends before
the time-slot t0,r.

In the next, we show that

t0,r = 2R + O (log R) .

Since

|U ∪W | ≤ 4π√
3
R2 + 2πR + 1,

we have

r ≤ log |U ∪W | = O (log R) .

As R′ ≤ 2 (R− 1), we have

t0,r = R′ + 44r ≤ 2 (R− 1) + 44r = 2R + O (log R) .

Theorem 5.3 implies that the latency of the entire aggre-
gation schedule is at most 2R + ∆ + O (log R).

5.3 Enhanced Pipelined
Aggregation Scheduling

Our third algorithm is called Enhanced Pipelined

Aggregation Scheduling (E-PAS). Let W be the sec-
ond set of connectors with an integer parameter k =

Θ
(

3
√

R/ log R
)

. We first apply the algorithm CBFS on

the graph G [U ∪W ] to construct an inward s-arborescence
T on U ∪W together with a link labelling and a node rank-
ing. The links in T are then scheduled as follows. Let
R′ = Rad (G [U ∪W ] , s), r = rank (s), L be the maximum
value of the labels of the links in T . For each 0 ≤ i ≤ R′

and 0 ≤ j ≤ r, set

tij =
(

R′ − i
)

+ 3Lj.

Each link (v, p (v)) in T is scheduled in the the time-slot
tij + 3 (l − 1), where i is the depth of v in T , j is rank of v,
and l is the label of the link (v, p (v)).
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Theorem 5.4. The algorithm E-PAS produces an aggre-
gation schedule of latency at most t0,r.

Proof. We first show that if u has the same depth as v
but has a smaller rank than v, then u transmits earlier than
v. Suppose that i is the depth of u and v, and j and j′ are
the ranks of u and v respectively. Then, i ≥ 1 and j < j′.
Hence, u transmits no later than the time-slot

ti,j + 3 (L− 1) < ti,j+1 ≤ ti,j′ ,

which means u earlier than v.
Now, we show that if u and v transmit in the same time-

slot, then the two links (u, p (u)) and (v, p (v)) are indepen-
dent. Let i and i′ be the depths of u and v respectively.
Then either i = i′ or |i− i′| ≥ 3. In the former case, u and
v must have the same rank by the previous claim and hence
the two links are independent. So we assume that latter
case, the two links are independent.

Next, we show that if u is a node rather than s and v is a
child of u, then u transmits later than v. Let i be the depth
of u, an j and j′ be the ranks of u and v respectively. Then,
j ≥ j′. If j = j′, then the label of the link (v, u) is one, and
hence v transmits at the time slot ti+1,j < ti,j . If j > j′,
then v transmits no later than the time-slot

ti+1,j′ + 3 (L− 1) ≤ ti+1,j−1 + 3 (L− 1) < ti+1,j < ti,j .

In either case, v transmits earlier than u.
Finally, we show that all nodes transmit before the time-

slot t0,r. Let v be a node last to transmit. Let j be the rank
of v. If j < r, then v transmits no later than the time-slot

t1j + 3 (L− 1) < t1,j+1 ≤ t1,r < t0,r.

Now, we assume j = r. Then v is the only child of s with
the rank r, and hence the label of v is one. So, v transmits
in the time-slot t1,r < t0,r. Therefore, in either case the
transmission by v ends before the time-slot t0,r.

In the next, we show that

t0,r =

(

1 + Θ

(

log R
3
√

R

))

R.

By Lemma 4.2,

R′ ≤ (1 + 1/k) R =

(

1 + Θ

(

log R
3
√

R

))

R,

and

|U ∪W |

≤ (k + 1)

(

2π√
3
R2 + πR

)

+ 1

= Θ

(

3
√

R

log R

)(

2π√
3
R2 + πR

)

+ 1

= Θ

(

R7/3

log R

)

.

Thus

r ≤ log |U ∪W | = O (log R) .

By Lemma 3.1 and Lemma 4.2,

L ≤ ∆ (G [U ∪W ])

≤ 2
√

3πk2 + 3πk + 3 + 4π/
√

3

= Θ

(

3
√

R2

log2 R

)

.

So, we have

t0,r = R′ + 3Lr

≤
(

1 + Θ

(

log R
3
√

R

))

R + 3 ·Θ
(

3
√

R2

log2 R

)

·O (log R)

=

(

1 + Θ

(

log R
3
√

R

))

R + O

(

3
√

R2

log R

)

=

(

1 + Θ

(

log R
3
√

R

))

R.

Theorem 5.4 implies that the latency of the entire aggre-

gation schedule is at most
(

1 + O
(

log R
3
√

R

))

R + ∆.

6. AGGREGATION SCHEDULING WITH
ρ > 1

In this section, we introduce a generic approach to extend-
ing a “well-separated” communication schedule with ρ = 1
to an aggregation schedule with ρ > 1 whose latency is in-
creased by a Θ

(

ρ2
)

factor. A communication schedule with
ρ = 1 is said to be well-separated if at each time-slot of
the schedule, either all transmitting nodes have mutual dis-
tances greater than one or all receiving nodes have mutual
distances greater than one. Clearly, the first two algorithms
in the previous section both produce a well-separated ag-
gregation schedules produced by SAS and PAS are well-
separated, while the aggregation schedule produced by E-

PAS is not.
Fix ρ > 1. Suppose that A is a set of links in

−→
G . A link

schedule of A is a partition of A into subsets of links which
are mutually conflict-free, and its latency is the number of
subsets in the partition. The conflict graph of A is an undi-
rected graph on A in which there is an edge between links in
A if and only if these two links are not conflict-free. Then a
link schedule for A is equivalent to a proper vertex coloring
of its conflict graph of A, with the latency corresponding to
the number of colors. Let δ∗ (A) denote the inductivity of
the conflict graph of A. Then, the first-fit coloring in the
smallest-degree-last ordering of the conflict graph of A uses
at most 1 + δ∗ (A) colors. Let

βr =
π√
3
r2 +

(π

2
+ 1
)

r + 1.

The next lemma gives an upper bound on δ∗ (A).

Lemma 6.1. Suppose that A is a set of links in
−→
G whose

tails (respectively, heads) have mutual distances greater than
one. Then, δ∗ (A) ≤ βρ+1 − 1.

Proof. By symmetry, we assume that the tails of the
links in A have mutual distances greater than one. Consider
and arbitrary subset A′ of A. Let a be the link whose tail,
denoted by u, is the rightmost one among all the tails of
the links in A′. Then, all the tails of the links in A′ which
have conflict with a must lie in a half-disk of radius ρ + 1
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centered at u. By Corollary 2.3, the number of these tails
is at most βρ+1 − 1, where the −1 term is due to that the
tail of a is also in the half-disk. Hence, the minimum degree
of the conflict graph of A′ is at most βρ+1 − 1. Thus, the
lemma holds.

Lemma 6.1 implies that if A is a set of links in
−→
G whose

tails (respectively, heads) have mutual distances greater
than one, the first-fit coloring in the smallest-degree-last or-
dering of the conflict graph of A gives a link schedule of
latency at most βρ+1.

Now, consider a well-separated communication schedule
with ρ = 1 given by

A = {Ak : 1 ≤ k ≤ `}
where Ak is the set of links in the k-th time-slot for each
1 ≤ k ≤ `. We construct a communication schedule Aρ for
ρ > 1 as follows. The schedule is partitioned into ` rounds.
For each 1 ≤ k ≤ `, the k-th round is a link schedule of Ak

corresponding to the first-fit coloring of the conflict graph of
Ak in the smallest-degree-last ordering. The schedule Aρ is
referred to as the ρ-expansion of A. Since each round in Aρ

takes at most βρ+1 time-slots, the latency of Aρ is at most
βρ+1`. In summary, we have the following general theorem.

Theorem 6.2. For any ρ > 1, the ρ-expansion of a com-
munication schedule with ρ = 1 and latency equal to ` has
latency at most βρ+1`.

Theorem 6.2 immediately implies the following corollary.

Corollary 6.3. For any ρ > 1, the ρ-expansion of
the aggregation schedule produced by SAS (respectively,
PAS) has latency at most βρ+1 (15R + ∆− 4) (respectively,
βρ+1 (2R + ∆ + O (log R))).

An interesting observation is that for ρ > 1, Θ (∆) is a
lower bound on the minimum aggregation latency. Let ∆ρ

denote the maximum number of nodes within the interfer-
ence range of a node. In other words, ∆ρ is the maximum
degree of the ρ-disk graph of the networking nodes. Clearly,
∆ρ ≥ ∆1 = ∆. For each d > 0,denote

αρ =
2π√

3

(

ρ

ρ− 1

)2

+ π

(

ρ

ρ− 1

)

+ 1.

We have the following bound on the minimum aggregation
latency.

Lemma 6.4. For any ρ > 1, the minimum aggregation
latency is at least ∆ρ/αρ.

Proof. Let u be a node with maximum degree in the
ρ-disk graph. Let C be the ρ-disk centered at u. Then, C
contains ∆ρ +1 nodes. If s is not in C, then all these ∆ρ +1
nodes in C have to transmit; otherwise, exactly ∆ρ nodes
in C have to transmit. In either case, at least ∆ρ nodes
in C have to transmit. Since all nodes transmitting in the
same time-slot must be apart from each other by a distance
greater than ρ− 1, at most αρ nodes in C can transmit in a
time-slot by Corollary 2.3. Hence, the ∆ρ transmissions by
the nodes in C takes at least ∆ρ/αρ time-slots.

By Lemma 6.4, the minimum aggregation latency with
ρ > 1 is at least ∆ρ/αρ. Since R is also a lower on the
minimum latency regardless of ρ, the ρ-expansions of the
aggregation schedules produced by SAS and PAS respec-
tively are both constant approximations.

7. CONCLUSION
In this paper, we have developed three aggregation

scheduling algorithms with ρ = 1, SAS, PAS, and E-

PAS. All of them produce shorter aggregations schedules
than those proposed in the past. Among those three, SAS

has the simplest implementation and it may outperform the
other two when the radius R is small. For large radius R,
both PAS and E-PAS speed up the aggregation schedule
by using the pipelining technique. Novel structures like the
two connected dominating sets and the canonical inward ar-
borescences used by these three algorithms are of indepen-
dent interest and are expected to have applications in other
communication scheduling. We also introduced a generic
expansion technique which adapts a well-separated commu-
nication schedule with ρ = 1 to a communication schedule
with with ρ > 1. With such expansion technique, we ob-
tained two aggregation schedules with ρ > 1 whose latencies
are within constant factors of the minimum latency. We also
expect that this expansion technique can be applied for the
scheduling of other communications.
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