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ABSTRACT
Coverage has been one of the most fundamental yet chal-
lenging issues in wireless networks. Given a set of nodes and
a set of disks of disparate radii, the problem Minimum Disk
Cover seeks a disk cover of all nodes with minimum cardi-
nality. We present the first polynomial time approximation
scheme. We also consider a classical generalization where
each input disk is associated with a positive cost, the prob-
lem Min-Cost Disk Cover seeks a disk cover of all nodes
with minimum total cost. We present a randomized algo-
rithm that can achieve an approximation ratio of2O(log∗ n)

with high probability, wheren is the number of input disks.
Another line of this work is exploring the relations be-

tween disk cover and an important practical problem which
seeks a wireless covering schedule of maximum life sub-
ject to an energy budget function. We present two algo-
rithms: Ellipsoid Algorithm (EA) and Price-Directive Al-
gorithm (PDA), and prove that by applying our algorithmic
results on disk cover, the approximation ratios for EA and
PDA are2O(log∗ n) and(1 + ǫ) 2O(log∗ n) respectively.

Categories and Subject Descriptors
C.2.1 [Computer-Communication networks]: Network Ar-
chitecture and Design

General Terms
Algorithms, Design, Theory

Keywords
Wireless networks, disk cover, cost, budget, lifetime.

1. INTRODUCTION
In wireless networks, many challenges are intrinsically re-

lated to the coverage issue. Moreover, most kinds of activ-
ities for a wireless system, such as sending/receiving data,
tracking, event monitoring can not be realized without cov-
erage. Thus, coverage plays a critical role for wireless net-
working performances.

As a classical coverage problem,disk coverhas drawn a
lot of research interest independently. Formally, the problem
can be defined as follows: given a setD of disks of arbitrary

radii and a setP of nodes in the plane, a nodep ∈ P is
coveredby a diskD ∈ D if p lies within the diskD (i.e.,
p ∈ D). A subsetD′ ⊆ D of disks is said to be adisk
coverof P if each node inP is covered by at least one disk
fromD′. The problemMinimum Disk Cover (MDC) seeks
a smallest disk coverD′ ⊆ D of P . We further consider a
classical generalization where each disk is associated with a
positive cost, the problemMin-Cost Disk Cover (MCDC)
seeks a minimum cost disk coverD′ ⊆ D of P .

The disk cover problem is a geometric set cover problem
where the given sets are defined by disks. It has been proved
to be NP-hard even with the restriction that all disks have
uniform radii [15]. For the disk cover problem with such a
restriction, tremendous work [3–5,19] is done and it can ad-
mit a constant-approximation. However, we will investigate
both the MDC and MCDC problems without such a restric-
tion, i.e., all disks may have disparate radii in this work.

Another line of this work is exploring the intrinsic rela-
tionship between disk cover and an important practical prob-
lem in wireless networks, called Maximum Life Wireless
Coverage (MLWC). Assume the wireless nodes collaborate
with each other to cover (or watch) all the targets, then a
wireless coveris defined as a subset of wireless nodes such
that each target (which can be devices, sensorsetc.) is cov-
ered by some wireless node(s). Assume each wireless node
u has an initial coverage powerp (u), then, for a wireless
cover denoted byC, the coverage power consumption by the
wireless nodeu is defined as: whenu ∈ C, pC(u) = p(u);
and whenu /∈ C, pC(u) = 0, this means thatu has no
power consumption at this time. From both economic and
applicable concerns, we require a wireless network system
to sustain and provide the coverage service as long as possi-
ble. However, most wireless nodes are powered by batteries
and have a stringent energy budget. Thus, we need to design
a maximal lifetime wireless covering schedule subject to the
energy budget.

We formulate the challenging problem as follows, given a
wireless network system consisting of a set of targets, and a
set of wireless nodes with disparate covering ranges, a target
is coveredby a wireless node if and only if the target lies
within the covering range of the wireless node. For the pur-
pose of unified treatment, a coverage task is given implicitly
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by a collectionC of wireless covers. A covering schedule
subject to an energy budget functionb ∈ R

V
+ is a set of pairs

(Ci, xi) ∈ R× R+ for i = 1, · · · , k satisfying that

k
∑

i=1

pCi
(u)xi ≤ b (u) , ∀u ∈ V.

HereCi ∈ C is a wireless cover, andxi ∈ R
+ is the length

scheduled forCi with R
+ denoting the set of all positive

real numbers. The life (or length) of this schedule is defined
to be

∑k
i=1 xi. The problemMax-Life Wireless Coverage

(MLWC) seeks a covering schedule of maximum life sub-
ject to an energy budget functionb ∈ R

V
+ .

Our Main Contributions: In this work, we will present
algorithm design with theoretical analysis for the problems
MDC, MCDC, and MLWC respectively:

1. For the problemMDC, we present the first polynomial
time approximation scheme (PTAS) based on a recent
breakthrough result [18].

2. For the problemMCDC, we propose a randomized
algorithm that can achieve an approximation ratio of
2O(log∗ n), with high probability, wheren is the num-
ber of input disks andlog∗ n is the smallest number of
iterated “logarithms” applied ton to yield a constant.

3. For the problemMLWC, we present two algorithms:
Ellipsoid Algorithm (EA) and Price-Directive Algo-
rithm (PDA). Here PDA is adapted from the algorithm
in [8] for fractional packing problems. We prove that
by utilizing the algorithmic results for disk cover, the
approximation ratio for EA and PDA are2O(log∗ n) and
(1 + ǫ) 2O(log∗ n) respectively.

The rest of the paper is organized as follows: In Section 2,
we perform a thorough literature review for disk cover and
related problems. In Section 3, we present the first PTAS for
the problem MDC. In Section 4, we propose a randomized
algorithm for the problem MCDC. In Section 5, we study
the problem MLWC, and present two algorithms: Ellipsoid
Algorithm (EA) and Price-Directive Algorithm (PDA). We
conclude our paper in Section 6.

2. LITERATURE REVIEW
Since there are no existing work touching the maximum

life coverage problem, to the best of our knowledge, we will
only present literature reviews for disk cover. As we know,
disk cover is a classical geometricset coverproblem. It is
NP-hard [15] even for unit disks, while it admits a constant-
approximation. Note that the general set cover problem is
not approximable withinO(log n), wheren is the number
of sets [20].

2.1 Minimum Disk Cover
One main branch for disk cover that receives great re-

search interest is calleddiscrete unit disk cover, and there
have been a series of work done for it [3–5, 19]. Specifi-
cally, Brönnimann and Goodrich [3] presented a determin-
istic ǫ-net based algorithm where the approximation ratio is

Table 1: Algorithmic results for disk cover

Objective Min-Size Min-Cost
Disk radii uniform arbitrary uniform arbitrary
Best result 1 + ǫ none 4 + ǫ none

not specified. Calinescuet al. [4] gave a102-approximation
algorithm. Narayanappa and Vojtechovsky [19] improved
the approximation ratio to72. Carmi et al. [5] gave a38-
approximation algorithm by solving a subproblem where the
nodes to be covered lie below a line and all disks lie above
the line.

For the problemcontinuous disk coverwith minimum car-
dinality, where the disk center locations may be chosen at
any point in the plane, it admits a PTAS by using a grid-
shifting strategy [11,12].

2.2 Min-Cost Disk Cover
For a classical generalization of minimum disk cover, which

is min-cost disk cover, [26] proposed(4 + ǫ)-approximation
algorithm for unit disk graph (UDG), which is the best result
so far. Note that, a lot of recent algorithmic results [2,6,7,14]
for min-weight dominating setimply algorithms for min-cost
disk cover with the same approximation ratios.

In summary, we list the algorithmic results for different
variants of the disk cover problem in Table 1.

2.3 Related Problems and Useful Techniques
In spite of disk cover, there are other related work for cov-

erage [1, 13, 23–25]. Yunet al. [25] studied deployment
patterns to achieve full coverage andk-connectivity under
different ratios of the sensor communication range to the
sensing range for homogeneous wireless networks. Wanet
al. [23] analyzed the probability of thek-coverage when the
sensing radius or the number of sensors changes while tak-
ing the boundary effect into account.

Recently, Mustafa and Ray [17, 18] proposed a PTAS for
the discrete geometric hitting set problem. Based on their
techniques, Gibsonet al. [9, 10] gave a PTAS for the un-
weighted case, and2O(log∗ n)-approximation for the weighted
case of the problem minimum dominating set in disk inter-
section graph with arbitrary disk radii.

3. PTAS FOR MINIMUM DISK COVER

3.1 Algorithm Design
Our method will be based on ak-level local searchmeta-

heuristic wherek will control the approximation factor.
Given an input instance of MDC, let us first remove ev-

ery disk properly contained in some other disk fromD, and
obtain a new instance. For this new instance, we begin with
the disk setN equal to the set of all disks, which is clearly
a disk cover of the input node setP . Let |B| denote the size
of a disk setB, we replace any subsetB of N with size at
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Local Search Algorithm:

Input: a disk setD, a node setP , a parameterk;
N ← D;
for any diskD ∈ N

for any diskD′ ∈ N \ {D}
if D′ properly containsD
N ← N \ {D};
break;

for any disk subsetB ofN with |B| ≤ k
for any disk subsetB′ of D with |B′| ≤ |B| − 1

if (N ∪ B′) \ B coverP
N ← (N ∪ B′) \ B

returnN .

Table 2: Local Search Algorithm

mostk by a subset ofD with size at most|B| − 1, if the
disk setN after replacement is still a disk cover ofP . We
keep replacing until we can not further reduce the size ofN .
Finally, we output the disks inN . The details are shown in
Table 2.

3.2 Performance Analysis
In this section, we will show that the proposed algorithm

for the problem MDC is a PTAS.
First, it is easy to verify that the algorithm will terminate

after at most
∑k

i=1

(

n
i

)

replacements which means that

it is a polynomial-time algorithm. Second, we can verify
that the optimal solution for the new instance (obtained in
Subsection 3.1) where no disk is properly contained in any
other disk inD, has the same cardinality as the optimal so-
lution for the original instance. Thus, we only need to focus
on this new instance and prove that the proposed algorithm
can achieve an approximation ratio of1 + ǫ for it. Specif-
ically, for this new instance of MDC, letB be the solution
returned by the proposed algorithm, letR be an optimal so-
lution (|R| ≥ 2), we want to prove that|B| ≤ (1 + ǫ) · |R|.
Our arguments will rely on a concept oflocality condition
forR andB.

LEMMA 1. (Locality condition) There is aplanar bipar-
tite graphG = (R,B, E) on disk setsR andB. For any
nodep ∈ P , there exists an edge connecting two disks both
coveringp, one disk fromR and the other fromB.

Here, we say that an edge connects two disksR andB if
this edge connects the centers ofR andB, we will keep this
convention from now on. The proof of Lemma 1 (construct
a graph onR,B that satisfy the locality condition) is delayed
to Section 3.3. We first explore the property of locality con-
dition and relate the size ofR to the size ofB. Specifically,
we show that:|B| ≤ (1 + ǫ) · |R|.

Let us first assumeR∩ B = ∅, later, we will consider the
general case thatR∩B 6= ∅. In the planar graphG satisfying

the locality condition, for any diskD, we denote byNG(D)
the set of neighbors ofD. Similarly, for any subsetD′ of
disks fromG, denote byNG(D′) the set of all neighbors of
the disks inD′.

LEMMA 2. ∀B′ ⊆ B with |B′| ≤ k, we have|NG(B′)| ≥
|B′|.

PROOF. Otherwise the proposed local search algorithm
can perform further replacement (by replacingB′ with NG(B′)).
This leads to a contradiction.

We then show that the proposed algorithm can achieve
(1 + ǫ)-approximation.

THEOREM 1. ∀ǫ > 0, the algorithm in Table 2 returns a
feasible solutionB with |B| ≤ (1 + ǫ) · |R|.

PROOF. Let us first introduce a result from [18], which is
obtained from a classical property on planar graph partition.

LEMMA 3. ( [18]) Let G = (R,B, E) be a planar bi-
partite graph on vertex setsR andB, |R| ≥ 2, such that for
every subsetB′ ⊆ B of size at mostk, wherek is a large
enough number,|NG(B′)| ≥ |B′|. Then|B| ≤ (1 + c/

√
k) ·

|R|, wherec is a constant.

Lemma 2 and Lemma 3 together imply that: given any
parameterǫ, by settingk = c2ǫ−2, we can achieve a(1+ ǫ)-
approximation for the algorithm in Table 2.

WhenR ∩ B 6= ∅, let I = R ∩ B, D′ = D \ I,R′ =
R\I,B′ = B\I. LetP ′ be the node set that are not covered
by I. Clearly,B′ andR′ are disjoint; at the same time,R′

is an optimal solution for the instance of MDC with the disk
set asD′ and node set asP ′. If we can prove that|B′| is
approximately equal to|R′|, it is straightforward that|B| is
approximately equal to|R|.

3.3 Establish the Locality Condition
We will construct a planar bipartite graph on the disk sets
R,B that satisfy the locality condition. Remember thatB
is the solution returned by the proposed algorithm shown in
Table 2, andR is an optimal solution (|R| ≥ 2).

3.3.1 Construct the planar graph

Similar to [10], we will use the dual of a weighted Voronoi
diagram as the planar graph.

Let us introduce a concept ofweight functionω(p, D)
with two parameters: a pointp and a diskD:

ω(p, D) = ‖p, d‖ − rD

whererD is the radius ofD; and‖p, d‖ is the Euclidean
distance betweenp and the centerd of disk D. Intuitively,
ω(p, D) is the Euclidean distance fromp to the boundary of
D. Figure 1 gives an illustration for the weight function.

For a diskD ∈ R ∪ B, we define acell (denoted as
cell(D)) as the set of pointsp in the plane such that
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ℓ

pD

ℓ

pD

(a) (b)

Figure 1: Illustration for weight function: (a) whenp is not
in D, ω(p, D) = ℓ; (b) whenp is in D, ω(p, D) = −ℓ.

ω(p, D) ≤ ω(p, D′), ∀D′ ∈ D. Then, the cells of all disks
from D induce a decomposition of the plane, which is the
weighted Voronoi diagram. Based on the Voronoi diagram,
we can construct a planar bipartite graph, similar to [10].

LEMMA 4. [10] By using the dual of a weighted Voronoi
diagram, we can construct a planar bipartite graph on disk
setD where an edge exists for any pair of disksR andB if
cell(R) andcell(B) share a common point.

Note that, to construct the planar graph a precondition ex-
ists that no more than three cells share a common boundary
point in the weighted Voronoi diagram. If the precondition
does not hold, we can not construct a planar graph directly
for the Voronoi diagram such that there is an edge connect-
ing every pair of disks when their corresponding cells share
a common point. In this case (four or more disks share a
common pointx in a weighted Voronoi diagram), we call
any four among those disks as adegenerate quadruple, and
the pointx as adegenerate point. Figure 2 gives two differ-
ent cases of degenerate quadruples for the weighted Voronoi
diagram. To the best of our knowledge, all methods for
constructing planar graphs based on (weighted) Voronoi dia-
gram suffer such degenerate issue, we are the first to provide
a effectivepatch(in Subsection 3.4).

3.3.2 Verify the locality condition

We next prove that the planar graph constructed onR∪B
satisfies the locality condition,i.e., for each nodep ∈ P ,
there is an edge in the planar graph, that connects a disk
R ∈ R and a diskB ∈ B, and both disks coverp. The
proof will extensively use a property which is described as
follows:

CLAIM 1. Given a nodep and two disksR andB satis-
fyingω(p, R) ≤ ω(p, B), if B coversp, thenR coversp.

PROOF. Note that for any pointp, and any diskD, if disk
D covers the pointp, thenω(p, D) ≤ 0, else (D does not
coversp), ω(p, D) > 0. If B coversp, thenω(p, R) ≤
ω(p, B) ≤ 0, which means thatR coversp as well.

We will call the disks inR andB as red and blue disks
respectively. Then, the main lemma to establish the locality
condition is as follows:

x

D2

D1

D4

D3

x

D2 D3

D4

D1

(a) (b)

Figure 2: Degenerate quadruples: (a) the four corresponding
cells for four disksD1, D2, D3, D4 share a common point
x andx lies outside of these four cells; (b) the four corre-
sponding cells for four disksD1, D2, D3, D4 share a com-
mon pointx andx lies inside of these four cells.

LEMMA 5. There exists a planar bipartite graph con-
structed onR ∪ B such that for each nodep ∈ P , there
exists an edge connecting a red disk and a blue disk, both of
which coverp.

PROOF. Consider the planar bipartite graphG constructed
onR ∪ B (in Lemma 4), for a nodep, without loss of gen-
erality, assumep ∈ cell(R) for some red diskR ∈ R.
Then,R must coverp. Otherwise, for any diskD′ ∈ R∪B,
ω(p, D′) ≥ ω(p, R), by Claim 1,D′ does not coverp, which
contradicts the fact thatR∪ B coverp.

Let B denote a closest blue disk top, that isω(p, B) ≤
ω(p, B′) : ∀B′ ∈ B. Note thatB must coverp. Otherwise,
by Claim 1, no other blue disks would coverp; this would
contradict the fact thatB coverp. Based on the arithmetic
relation betweenω(p, B) andω(p, R), we have two cases.

Case (1) If ω(p, B) = ω(p, R), thenp ∈ cell(B) and
B coversp. Sincecell(R) andcell(B) share a common
pointp, By Lemma 4, there exists an edge connectingR and
B in the planar graphG, both of which cover the nodep.

Case (2) ω(p, B) > ω(p, R). We will walk from p to

b (the center of diskB) along the straight line segment
−→
pb.

During this walk, we may cross some red cells and blue cells,
and at some point before reachingb we will entercell(B)
the first time. Letx be the point at which we first enter

Disk

Disk

Disk

x
p

d

b

B

D

R

Figure 3: Illustration for Case (2) in the proof of Lemma 5.
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cell(B). We must enter this cell from another cell, we as-
sume the cell iscell(D) and the center of diskD isd. Note
thatD ∈ R ∪ B may be either blue or red, andcell(D)
shares a common pointx with cell(B).

Next, we will argue thatD coversp andD is red.
If D = R, we are done. Otherwise, we have‖p, d‖ <
‖p, x‖+ ‖x, d‖ ⇒ ω(p, D) < ‖p, x‖+ω(x, D) = ‖p, x‖+
ω(x, B) = ω(p, B). Thus, by Claim 1,D coversp, more-
over, D is red, otherwiseB would not be the closest blue
disk top, which causes contradiction.

To sum up,cell(B) and cell(D) share a common
point, which implies that an edge betweenB andD exists
in the planar graph. Moreover,B is blue,D is red, and both
disks coverp. This completes the proof.

3.4 Patch for Degenerate Issue
For a given set of nodesP , let us define thethresholdfor a

disk D asβ(D) = minp∈P{ω(p, D) : ω(p, D) > 0}. Note
that, (1)β(D) > 0 and (2) when we increase the radius
of disk D by a value smaller thanβ(D), the set of nodes
covered byD remain the same. In other words, if a node
p ∈ P is covered before this scaling operation, thenp is
covered byD after the operation, and vice versa. Thus, the
scaling will not affect the problem MDC instrinsically.

We then develop ascaling process(by scaling the disks in
degenerate quadruples) to eliminate degenerate quadruples.

THEOREM 2. Given a node setP and a disk setD, we
can remove all degenerate quadruples by scaling disks such
that for each disk, the set of nodes covered will not be changed.

PROOF. We will iteratively remove degenerate quadru-
ples. During each iteration, we arbitrarily select a degener-
ate quadruple(D1, D2, D3, D4), assume their correspond-
ing cells share a common pointx. Note that simply increas-
ing the radius of only diskD1 by any valueℓ for 0 < ℓ <
β(D1) can result in the fact:x /∈ cell(D2) (at the same
time, x /∈ cell(D3) andx /∈ cell(D3)), thus, we can
remove such a degenerate quadruple easily. The challenge is
that, we have to guarantee that no new degenerate quadruple
is introduced by this scaling operation.

We call a valueℓ as acritical value for D1 if increasing
the radius ofD1 by exactlyℓ will introduce a new degener-
ate quadruple. We then upper-bound the number of critical
values for each disk as follows:

CLAIM 2. There are at mostO(n3) critical values for the
diskD1 (The proof is available in the appendix).

Based on Claim 2, there exist at mostO(n3) critical values
for the diskD1. We can select a value that is not equal to
any of these critical values, and at the same time, is strictly
smaller than the thresholdβ(D1) for then diskD1. We then
increase the radius of diskD1 by exactly this value, clearly,
we can guarantee that this scaling operation can eliminate
a degenerate quadruple, and will not introduce any new de-
generate quadruple, at the same time.

Observe that due to the recursive nature of the scaling pro-
cess, we must prove that the process will terminate in a finite
number of iterations. We define aPotential Function as the
number of degenerate quadruples. Clearly, the initial cardi-

nality of the setC is at most

(

n
4

)

= O(n4). After one

iteration, at least one degenerate quadruple is removed by
scaling only one disk; at the same time, the scaling will not
introduce any new degenerate quadruple. Thus, the potential
function will be decreased by at least one after each iteration,
which means that the scaling process will terminate within
at mostO(n4) iterations.

4. MIN-COST DISK COVER

4.1 Algorithm Design
Given an instance of the problem MCDC: a node setP

and a disk setD that can coverP , we can formulate the
optimization problem as a Linear Programming (LP). For
any nodep ∈ P , let Dp ⊆ D denote the subset of disks
coveringp. Let xD ∈ {0, 1} for any diskD ∈ D indicate
whether the diskD is selected in the solution or not, we
relax the requirement, such thatxD : D ∈ D can be any
value in[0, 1], instead of only integers. We then consider the
following LP relaxation for the problem MCDC. We assume
the cost function forD is c : D 7→ R

+:

min :
∑

D∈D

c(D) · xD, s.t. :

{

∑

D∈Dp
xD ≥ 1, ∀p ∈ P

xD ≥ 0, ∀D ∈ D
(1)

After solving the LP relaxation, we obtain an optimal so-
lution {xD : D ∈ D}, and then create a setD0 of disks as
follows: for each diskD, we add⌊2n · xD⌋ copies ofD to
D0 wheren is the cardinality ofD (note that for the special
case whenxD < 1

2n , ⌊2n · xD⌋ = 0, we do not add any
copy ofD toD0 ); each copy ofD inherits its original cost.
For the disk setD0, we observe two important facts (given
in Lemma 6).

Next, we iteratively apply theuniform sampling process
(in Table 4) to produce a successively sparse disk cover (after
probabilistically removing some disks from the disk cover).
For the first iteration, we set the input disk cover asD0, and
the parameterL1 = n. For thei-th iteration, we set the input
disk cover asDi−1, and the parameterLi = log Li−1, to
obtain an output disk setDi ⊆ Di−1 which is a sparse disk
cover, fori = 2, 3, · · · , t (t = log∗ n). Finally, we output
Dt. The details are shown in Table 3 (also in Figure 4).

4.1.1 Uniform Sampling Process

Theuniform sampling processis a probabilistic algorithm
that takes an input disk coverD of the node setP with a
parameterL, and outputs asparsedisk coverD′ where the
probability of each disk being selected is at mostc log L

L . In
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cover

Uniform Sampling Process

cover cover

D0

log n

D1

n 1

Dt

Figure 4: Illustration for Algorithm 3, the various shades reflect the sparsities of disk covers.

LP-based Algorithm:

Input: a disk setD, a node setP , c : D 7→ R
+;

Solve the LP relaxation in Equation (1),
let {xD : D ∈ D} be the output;
for each diskD ∈ D

add⌊2n · xD⌋ copies ofD with the same cost toD0;
t← log∗ n;
for i = 0 to t− 1

apply uniform sampling process (Table 4) onDi;
letDi+1 be the output;
i + +;

delete the redundant disks fromDt;
returnDt.

Table 3: LP-based Algorithm

Uniform Sampling Process:

Input: D, P , a parameterL;
Construct the sequenceσ ←< D1, · · · , Dm >;
for i = 1 to m

for each nodev ∈ P covered byDi

if Di is forced because ofv
addDi toD′;

else addDi with probability c log L
L toD′;

i + +;
returnD′.

Table 4: Uniform Sampling Process

addition, each nodep that isL-covered byD is at leastlog L-
covered byD′. Here we say a nodep is L-coveredif exactly
L disks fromD coverp. In such case, the nodep is also said
to be covered with themultiplicity L.

We first only consider the subsetP ′ of nodes that are cov-
ered byD with the multiplicity in [L, 2L] (each node from
P ′ is covered by at leastL disks, and at most2L disks from
D), we will produce a subsetD′ ⊆ D of disks, such thatP ′

will be at leastlog L-covered inD′. We repeat the process
for the nodes that are covered byD with the multiplicity in
[2L, 4L], [4L, 8L] and so on, the output is a series of sparse
disk sets. We finally output the union of all output disks. We
will prove that the probability of a disk being selected can

still upper bounded byO
(

c log L
L

)

.

Given a disk setD and a node setP , we define anequiv-
alence classfor P as a subset of all nodes fromP that are
covered by the same set of disks fromD, i.e., if two nodes
are in the same equivalence class, then one node is covered
by a disk fromD implies immediately that the other node
is also covered by the same disk. Then, all the equivalence
classes forP induce a partition ofP . Note that, if a setD′ at
leastlog L-cover one node in an equivalence class, then they
at leastlog L-cover all nodes in that class. Thus, we can as-
sume we have one representative node (can be any node from
this class) from each class. We want to at leastlog L-cover
these representative nodes.

Let Nm = D, and letCm denote the set ofequivalence
classesof nodes such that the nodes in each class is cov-
ered with multiplicity at most2L. By Lemma 7,|Cm| ≤
c′nmL2, nm = |Nm|. We compute a diskDm ∈ Nm that
covers the least number of representative nodes. By pigeon-
hole principle,Dm covers at most2c′L3 classes ofCm. We
will recursively compute a sequence of disks for a new in-
stance forNm−1 = Nm\{Dm}, and append the sequence to
Dm. In the new instance forNm−1, we consider the classes
Cm−1 whose coverage multiplicity inNm−1 is at most2L.
Let σ be the reverse of this sequence:

σ =< D1, · · · , Dm > .

Note that the method for constructing the sequenceσ is sim-
ilar to smallest last ordering[16].

Based on the sequenceσ, for each diskDj , we make an
instant decision on the addition ofD′, depending on whether
Dj is forced or not. Here we call a diskDj ∈ Nj forced
if not includingDj will result in a consequence that some
nodep ∈ P ′ can not be at leastlog L-covered. The details
are shown in Table 4.

4.2 Approximation Ratio
First, we introduce two facts for the disk setD0:

LEMMA 6. The following facts are true:

1. Each nodep is at leastn-covered byD0;

2. w(D0) ≤ 2n · λ∗, whereλ∗ is the optimal objective
function value for the LP-relaxation in Equation (1).

PROOF. The proof is available in the appendix.

Next, we will prove that the algorithm described in Table 4
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has the uniform sampling property. We will make use of the
following lemma:

LEMMA 7. LetD andP be a set ofm disks and a set of
nodes respectively, and1 ≤ L ≤ m be an integer. There are
O(mL2) nodes ofP covered by distinct subsets ofD, each
of size at mostL.

Based on Lemma 7, we can prove Theorem 3, which is a
variant of the result in [10,22].

THEOREM 3. (Uniform Sampling Property) Given a node
setP and a disk setD, assumeD coverP , the uniform sam-
pling process (Table 4) produces a subsetD′ ⊂ D, such that
for any nodep , if p is L-covered inD, thenp is at least
log L-covered inD′ andPr (D ∈ D′) ≤ c log L

L .

PROOF. The proof is available in the appendix.

By combining Theorem 3 with Lemma 6, we can obtain
the following main theorem easily.

THEOREM 4. For the problem MCDC, there exists a ran-
domized algorithm that produces a disk coverDt, and
c(Dt) ≤ 2O(log∗ n) · c∗, with high probability, wherec∗ de-
notes the cost of an optimal solution, andlog∗ n is the small-
est number of iterated “logarithms” applied ton to yield a
constant.

The proof of Theorem 4 is similar to Section3.1 in [10].

5. MAX-LIFE WIRELESS COVERAGE
The problemMLWC can be formulated as the following

linear program (LP):

max
∑

C∈C xC

s.t.
∑

C∈C xCpC (u) ≤ b (u) , ∀u ∈ V ;
xC ≥ 0, ∀C ∈ C.

(2)

This LP has|V | constraints (excluding the trivial constraints
xC ≥ 0, ∀C ∈ C), and consequently there always exists an
optimal solution using at mostn wireless covers. However,
since the number of variables|C| is prohibitively large (ex-
ponential in the number of nodes), standard LP solvers are
not practical for solving this packing LP.

5.1 Min-Cost Wireless Cover
We first introduce a related problem. Given a price func-

tion y ∈ R
V
+ , the cost of a wireless coverC with respect to

(w.r.t.) y is defined as
∑

u∈C y (u) p (u). Note that ify · p
is an all-one vector (y(u) · p(u) = 1 for every nodeu), the
cost ofC w.r.t.to y is exactly|C|. For any wireless coverage
task, given implicitly by a collectionC of wireless covers and
a price functiony ∈ R

V
+ , the problemMin-Cost Wireless

Cover (MCC) seeks a wireless coverC ∈ C of minimum
cost.

By mapping each wireless node to a disk with its covering
range as the disk radius, we can reduce the problem MCC
to the problems MCDC and MDC (when each wireless node
has the same cost). Thus, we have the following lemma:

LEMMA 8. For the problem MCC, we have:

1. There is a2O(log∗ n)-approximation algorithm.

2. Whenp · y is an all-one vector, there is an(1 + ǫ)-
approximation algorithm.

Next, we show that these two problemsMLWC andMCC
are intrinsically related to each other. We refer to the LP in
equation (2) as the primal LP. The dual to this primal LP
associates a pricey(u) for each nodeu ∈ V :

min
∑

u∈V b (u) y (u)
s.t.

∑

u∈V pC (u) y (u) ≥ 1, ∀C ∈ C
y (u) ≥ 0, ∀u ∈ V

(3)

The above LP is referred to as dual LP, and the minimization
problem defined by this dual LP is referred to as the dual of
MLWC, which can be interpreted as follows. For any price
functiony ∈ R

V
+, let

α (y) = min
C∈C

∑

u∈V

pC (u) y (u) ,

β (y) =
∑

u∈V

b (u) y (u) .

Then, α(y) is the cost of a min-cost wireless cover inC
w.r.t.y, andβ (y) is the total energy costw.r.t. y. Thus, the
dual ofMLWC is equivalent to finding a price functiony ∈
R

V
+ such thatβ(y) is minimized subject toα(y) ≥ 1. Let

opt be the life of a max-life covering schedule. Then, we
have the following relation

LEMMA 9. For anyy ∈ R
V
+, α (y) ≤ β(y)

opt . In addition,

there exists somey ∈ R
V
+ such thatα (y) = β(y)

opt .

PROOF. We begins with the first part. The first part holds
trivially if α (y) = 0. So, we assume thatα (y) > 0. Let
y′ = y

α(y) . Then,y′ is a feasible solution of the dual LP.
Hence

opt ≤ β (y′) =
β (y)

α (y)
.

Therefore,α (y) ≤ β(y)
opt . Next, we prove the second part.

Supposey is an optimal solution to dual LP. Then,α (y) = 1
for otherwise, we can scaley down strictly to get a better
solution, which causes contradiction. Thus,opt = β (y) .

For suchy, we haveα (y) = β(y)
opt .

Further relations betweenMLWC andMCC will be ex-
plored subsequently.
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5.2 Ellipsoid Algorithm
Theellipsoid methodis an ingenious approach for decid-

ing whether a given non-degenerate convex set is empty (a
convex set inn-dimensional space is said to be non-degenerate
if it is either empty or has a volume at leastν for someν > 0
which depends only onn).

The idea of the ellipsoid method is very roughly the fol-
lowing. Consider a non-degenerate convex setS. We would
like to test whetherS is empty or not. We start with an el-
lipsoid which is guaranteed to containS. At each iteration,
we check whether the center of the current ellipsoid is inS
or not. If yes, we can conclude thatS is nonempty and stop.
Otherwise, we take a hyperplane through the center such that
S is contained in one of the two half-ellipsoids separated by
this hyperplane. We take the smallest ellipsoid completely
containing this half-ellipsoid, whose volume is substantially
smaller than the volume of the previous ellipsoid. We iterate
on this new ellipsoid. In the worst case, we need to iterate
until the volume of the bounding ellipsoid gets belowν, in
which case we can conclude thatS is empty. It turns out that
only a polynomial number of iterations are required in the
case of linear programming. The algorithm does not require
an explicit description of the linear program. All that is re-
quired is a polynomial timeseparating oracle, which checks
whether a point lies inS or not, and returns a separating hy-
perplane in the latter case.

We will leverage the ellipsoid method for exponential-
sized linear program (LP) with an (approximate) separation
oracle to prove the following general theorem.

THEOREM 5. Suppose thatN is a network class satisfy-
ing that there is a polynomial (respectively, a polynomialµ-
approximation) algorithm forMCC for a wireless coverage
task restricted toN . Then, there is a polynomial (respec-
tively, a polynomialµ-approximation) algorithm forMLWC
for the same coverage task restricted toN .

PROOF. LetA be aµ-approximation algorithm forMCC
for a wireless coverage task restricted toN (For simplicity
of presentation, we treat a polynomial algorithm which pro-
duces an optimal solution as a polynomial1-approximation
algorithm). Consider a networkD = (V, A; c) ∈ N . We use
C to denote the collection of wireless covers for a coverage
task. We run the ellipsoid algorithm on the dual LP using
the algorithmA as the approximate separation oracle. More
precisely, letS (L) denote the set ofy ∈ R

V
+ satisfying that

∑

u∈V

b (u) y (u) ≤ L,

∑

u∈C

pC (u) y (u) ≥ 1, ∀C ∈ C.

We use binary search to find the smallest value ofL for
whichS (L) is nonempty. The separation oracle acts as fol-
lows: First, it checks the inequality

∑

u∈V b (u) y (u) ≤ L.
Next, it runs the algorithmA to compute a wireless cover

C ∈ C, usingy as the price function. IfC has power cost
less than one, then we know thaty /∈ S (L), andC gives us
a separating hyperplane. IfC has power cost at least one,
then we accepty ∈ S (L). Of course, sinceA is just an
approximation algorithm, the above conclusion might be in-
correct, andS (L) might actually be empty. However, since
the approximation factor ofA is at mostµ, we know that
in this case,µ · y ∈ S (µ · L). Therefore, ifL∗ is the min-
imum value ofL for which the algorithm decidesS (L) is
nonempty, then we know thatS (L∗ − ε) is empty (whereε
depends on the precision of the algorithm), andS (µL∗) is
nonempty. Therefore, the value of the dual LP, and hence,
the value of the primal LP, is betweenL∗ andµL∗.

The above algorithm computes the approximate value of
the primal LP. Next, we describe how to compute the actual
approximate solution. Now, letC′ denote the subset of wire-
less covers inC corresponding to the separating hyper-planes
found by the above separation oracle while running the el-
lipsoid algorithm onS (L∗ − ε). Then,C′ is of polynomial
cardinality. Consider the restricted dual LP:

min
∑

u∈V b (u) y (u)
s.t.

∑

u∈C pC (u) y (u) ≥ 1, ∀C ∈ C′
y (u) ≥ 0, ∀u ∈ V

Its value is also at leastL∗. So, we solve the following re-
stricted primal LP of polynomial size, which is the dual of
the restricted dual LP:

max
∑

C∈C′ xC

s.t.
∑

C∈C′ xCpC (u) ≤ b (u) , ∀u ∈ V
tC ≥ 0, ∀C ∈ C′

The optimal solution of this restricted LP has value at least
L∗, which is aµ-approximation to the original primal LP.

Theorem 5 immediately implies the following algorithmic
results onMLWC:

1. There is an2O(log∗ n)-approximation algorithm for MLWC.

2. There is an(1 + ǫ)-approximation algorithm for MLWC,
whenp · y is an all-one vector,.

We remark that the approximation algorithms presented in
this section are of theoretical interest only. They character-
ize the approximation hardness of the optimization problems
studied in this section. However, the ellipsoid method with
the approximation separation oracles is practically quitein-
feasible [21]. In Section 5.3, we will develop practically
feasible approximation algorithms.

5.3 Price-Directive Algorithm
In this section, we present an iterative algorithm called

Price-Directive Algorithm (PDA) for a given wireless cov-
erage task, which is adapted from the algorithm in [8] for
fractional packing problems.
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The basic idea is that by setting the prices of the nodes
with low residue energy relatively higher, the nodes with low
residue energy are protected from getting drained of energy
quickly while the nodes with high residue energy are en-
forced to contribute more energy. The algorithm utilizes a
µ-approximation algorithmA for MCC for the same cover-
age task (ifµ = 1, the algorithmA is optimal). A constant
parameterε ∈ (0, 1) is also part of the input, and the output
solution has an approximation bound of at most(1 + ε)µ.
The algorithm maintains the following variables:

• C: the set of chosen wireless covers;

• xC for eachC ∈ C: the duration ofC;

• z ∈ R
V
+ : the energy consumption percentage vector

defined by

z (u) =

∑

C∈C xCpC (u)

b (u)
, ∀u ∈ V ;

• φ = maxu∈V z (u): the maximum energy consump-
tion percentage;

• y ∈ R
V
+ : the price vector;

• β: the total energy cost
∑

u∈V b (u) y (u).

Initially, C is empty and the pricey (u) of each nodeu is
the reverse of its energy budgetb (u). Accordingly, bothz
andφ are initialized to zero, andβ is initialized ton accord-
ingly. Each iteration first computes a wireless coverC ∈ C
using an algorithmA together with the current price vector
y. A nodev is said to be abottleneckif b (v) /pC (v) is the
smallest among all nodes. Letv be the bottleneck node and
sett = b (v) /pC (v). The durationxC of C is increased by
t, and bothz andφ are updated accordingly. After that, the
price vectory is reset properly and the variableβ is updated
accordingly. The stopping rule is that0 < φ ≤ 1+ε

ε ln β
n .

Finally, eachxC for C ∈ C is scaled down by a factor ofφ
to obtain a feasible solution. The outline of the algorithm is
described in Table 5.

The next theorem gives both the running time and approx-
imation ratio of the algorithmPDA.

THEOREM 6. The algorithmPDA produces an(1 + ε)µ-

approximation in at mostn
⌈

(1+ε) ln n
(1+ε) ln(1+ε)−ε

⌉

iterations.

Theorem 6 immediately implies the approximation bounds
of PDA (described in Table 5).

1. There is an(1 + ε) · 2O(log∗ n)-approximation algo-
rithm for MLWC.

2. There is a PTAS for MLWC, whenp · y is an all-one
vector.

Price-Directive Algorithm (PDA):

C ← ∅; ∀u ∈ V, z (u)← 0; φ← 0;
∀u ∈ V, y (u)← 1

b(u) ; β ← n;

repeat
compute anC ∈ C usingA on (D, y) ;
t← minv∈V b (v) /pC (v);
if C ∈ C thenxC ← xC + t,

elseC ← C ∪ {C}, xC ← t;
∀u ∈ V , z (u)← z (u) + tpC(u)

b(u) ;
φ← maxu∈V z (u) ;

∀u ∈ V , y (u)← y (u)
(

1 + εtpC(u)
b(u)

)

;

β ←∑

u∈V b (u) y (u) ;

until 0 < φ ≤ 1+ε
ε ln β

n ;
return {(C, xC/φ) : C ∈ C}.

Table 5: Price-Directive Algorithm

The rest of this section is devoted to the proof of the Theo-
rem 6. We first introduce the following algebraic inequality.

LEMMA 10. ∀ε > 0 and0 ≤ t ≤ 1, t ≤ log1+ε (1 + εt).

Let C0, z0, φ0, y0 andβ0 be the initial values ofC, z, φ, y
andβ respectively. For eachj ≥ 1, let Cj , zj, φj , yj andβj

be the values ofC, z, φ, y andβ respectively at the end of
thej-th iteration. In addition, for eachj ≥ 1, let

τj = max
u∈V

yj (u) b (u) .

We first claim that

φj ≤ log1+ε τj .

Indeed, for eachj ≥ 1 and eachu ∈ V , by Lemma 10,

zj (u)− zj−1 (u) ≤ log1+ε (1 + ε (zj (u)− zj−1 (u)))

= log1+ε

yj (u)

yj−1 (u)
,

which implieszj (u) ≤ log1+ε
yj(u)
y0(u) = log1+ε (yj (u) b (u)) .

Hence, the claim holds.

Now, letK = n
⌈

(1+ε) ln n
(1+ε) ln(1+ε)−ε

⌉

and we prove that the

number of iterations is at mostK. Assume to the contrary
that the number of iterations is greater thanK. Then, at least
one nodev appears as a bottleneck node in at leastK/n
iterations among the firstK iterations. For such nodev,
y (v) is increased by a factor of1 + ε at the end of each
iteration whenv is a bottleneck node. Therefore,

yK (v) ≥ y0 (v) (1 + ε)
K/n

=
(1 + ε)K/n

b (v)
,

which implies

τK ≥ yk (v) b (v) ≥ (1 + ε)K/n .
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Hence,

φK

ln βK

n

≤ log1+ε τK

ln τK

n

=
1

ln (1 + ε)− lnn
log1+ε τK

≤ 1

ln (1 + ε)− ln n
K
n

=
1

ln (1 + ε)− lnn

⌈ (1+ε) ln n

(1+ε) ln(1+ε)−ε⌉

≤ 1

ln (1 + ε)− ln n
(1+ε) ln n

(1+ε) ln(1+ε)−ε

=
1

ln (1 + ε)− (1+ε) ln(1+ε)−ε
1+ε

=
1 + ε

ε
.

By the stopping rule, the number of iterations is at mostK,
which is a contradiction.

From now on, we assume that the number of iterations is
k. It’s easy to prove by induction onj that by the end of the
j-th iteration for1 ≤ j ≤ k, for each nodeu ∈ V ,

zj (u) =

∑

C∈Cj
xCpC (u)

b (u)
, ∀u ∈ V.

In other words,zj (u) is indeed the energy consumption per-
centage ofu by the end of thej-th iteration. Therefore, the
scaling by a factorφk in the scaling phase results in a feasi-
ble solution.

Next, we show that the approximation bound of the output
solution is(1 + ε). For each1 ≤ j ≤ k, let tj be the value
of t computed in thej-th iteration. Then, by the end of the
j-th iteration for1 ≤ j ≤ k, we have

∑

C∈Cj

xC =

j
∑

i=1

ti.

So, the life of the output solution is

∑

C∈Ck

xC

φk
=

∑

C∈Ck
xC

φk
=

∑k
j=1 tj

φk
.

Let opt be the life of an optimal solution. We claim that for
each1 ≤ j ≤ k,

tj ≥
1

εµ

βj − βj−1

βj−1
opt.

Indeed, letCj be the wireless cover computed in thej-th
iteration. By Lemma 9,

∑

u∈V

pCj
(u) yj−1 (u) ≤ µ

βj−1

opt
.

Thus,

βj =
∑

u∈V

b (u) yj (u)

=
∑

u∈V

b (u) yj−1 (u)

(

1 + εtj
pCj

(u)

b (u)

)

=
∑

u∈V

b (u) yj−1 (u) + εtj

(

∑

u∈V

pCj
(u) yj−1 (u)

)

= βj−1 + εtj

(

∑

u∈V

pCj
(u) yj−1 (u)

)

≤ βj−1 + εtj · µ
βj−1

opt
,

from which the claim follows. Therefore,

k
∑

j=1

tj ≥
opt

εµ

k
∑

j=1

βj − βj−1

βj−1
≥ opt

εµ
ln

βk

β0
=

opt

εµ
ln

βk

n
,

So,
∑k

j=1 tj

φk
≥ 1

εµ

ln βk

n

φk
opt ≥ 1

εµ

ε

1 + ε
opt =

opt

(1 + ε)µ
,

where the second inequality follows from the stopping rule.

6. CONCLUSION
Many challenging issues in wireless networks are intrin-

sically related to coverage. In this work, we have presented
several approximation algorithms for three mutually related
coverage problems: MDC, MCDC, MLWC. For the prob-
lem MDC, we are the first to achieve a PTAS when disks
have arbitrary radii. For the problem MLWC, this is the first
time in the literature that the problem of maximizing lifetime
wireless coverage was formulated, and the approximation al-
gorithmic results was obtained.
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APPENDIX
Proof of Claim 2

Assume after increasing the radius ofD1 by ℓ, a new de-
generate quadruple(D5, D6, D7, D8) is introduced. There

exists at most one point that can be shared by four weighted
Voronoi cells. This means that some pointx becomes a
new degenerate point after the scalingD1. Then, there must
exist at most one disk (assumed to beD8) such thatp /∈
cell(D8) before scalingD1; butp ∈ cell(D8) after this
scaling operation.

Note that, in the scaling operation, we increase only the
radius of diskD1, the Voronoi cells of other disks can only
shrink, while the only cell that may grow iscell(D1),
thusD8 = D1, and at the same time,p must already lie
at the boundary point ofcell(D5),cell(D6),cell(D7)
before the scaling operation. We can calculate a critical
valueℓ, such that after scalingD1, (D1, D5, D6, D7) will

become a degenerate quadruple. There are at most

(

n
3

)

=

O(n3) such triples(D5, D6, D7) with whichD1 can form a
new degenerate quadruple, thus there are at mostO(n3) such
critical values.

Proof of Lemma 6

To verify the first fact, consider any nodep, for any disk
D ∈ Dp, if xD ≥ 1

2 , we add⌊2n · xD⌋ ≥ n copies ofD
to D0, thenp is at leastn-covered. Otherwise, we definen
disjoint subsets of disks, thei-th (1 ≤ i ≤ n) subsetDi

p

contains every diskD ∈ Dp satisfying i−1
2n ≤ xD < i

2n .
SincexD < 1

2 for each diskD ∈ Dp, thesen subsets form a
partition ofDp. Let x1, x2, · · · , xn denote the cardinalities
of the n subsets respectively. We have

∑

1≤i≤n xi · i
2n >

∑

D∈Dp
xD ≥ 1, this means that

∑

1≤i≤n i ·xi > 2n. Since
∑

1≤i≤n xi ≤ n, we have
∑

1≤i≤n(i − 1) · xi > n, thus
∑

D∈Dp
⌊2n · xD⌋ ≥

∑

1≤i≤n(i− 1) · xi > n. This implies
thatD0 at leastn-coverp.

To verify the second fact, observe thatw(D0) =
∑

D∈D⌊2n·
xD⌋ <

∑

D∈D 2n · xD = 2n ·∑D∈D xD = 2n · λ∗ .

Proof of Lemma 7

Given a disk setD, let us define acritical radius for a node
p as:

γ(p) = min
D∈D
{ω(p, D) : ω(p, D) > 0}.

Here the weight functionω is defined in Section 3.3.1. Given
a disk setD and a node setP , we map any nodep ∈ P to
a disk Qp with the radius strictly smaller than the critical
radius forp. Clearly, for any diskD ∈ D, whenp /∈ D, then
Qp does not intersectD; whenp ∈ D, thenQp intersectsD.

We then introduce a similar result by Gibsonet al. [10]:

LEMMA 11. LetD be a set ofm disks, and1 ≤ L ≤ m
be an integer. LetQ be a set of disks (possibly infinite).
There areO(mL2) disks ofQ that intersect distinct subsets
ofD, each of size at mostL.

Let Q be the set of all the mapped disks for the nodes in
P , based on Lemma 11, there areO(mL2) disks ofQ that
intersect distinct subsets ofD, each of size at mostL. Cor-
respondingly, there areO(mL2) nodes ofP that are covered
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by distinct subsets ofD with size at mostL. This finishes
the proof.

Proof of Theorem 3

By the proposed algorithm in Table 4, the outputD′ at least
log L cover every nodep if p is L-covered inD. We next
show thatPr (D ∈ D′) ≤ c log L

L . If a diskD is not forced,
clearly,Pr (D ∈ D′) = log L

L ≤ c log L
L . We are only left to

upper bound the probability that a disk is forced.
For each diskDj in the sequenceσ, If the disk Dj is

forced for nodep, then all the disksDj′ (with j′ ≥ j) that
coverp are also forced, and the number of such disks is at
mostlog L − 1 (since otherwiseDj will not be forced). At
the same time, some diskDi (i ≤ j) must befirst forcedfor
nodep. Here a disk is first forced for nodep if it appears as
the first one among all forced disks for nodep according to
the orderσ. We have the following inequality:

Pr (Dj is forced for nodep)

≤ log L · Pr (Di (i ≤ j) is first forced for nodep)

We next compute the probability of a diskDi being first
forced for nodep. LetDp,i be the set of all disks in{Dk :
k ≤ i} that cover the nodep, andn1 be the number of disks
in Dp,i that is finally selected, then the following three facts
hold:
(1) Di coversp,
(2) |Dp,i| ≥ L− log L ≥ L

2 ,
(3) n1 ≤ log L.

Clearly,Pr (Di is first forced for nodep) is at most the prob-
ability that fact(3) holds when both facts(1), (2) are true,
which means less thanlog L disks are finally selected for
Dp,i while each disk fromDp,i is selected with probability
at leastc log L

L . This can be reduced to a coin toss problem:
in a sequence of at leastL

2 coin tosses, each coin turns up
head with probability of at leastc·log L

L , less thanlog L coins
turn up heads. Based on Chernoff bound, the probability is
at most 1

e
c log L

16

. Thus

Pr (Di is first forced for nodep) ≤ 1

e
c log L

16

Since there are at most2c′L2 classes ofCj covered with
multiplicity in [L, 2L] and covered byDj, Dj can be forced
for any one of the at most2c′L3 representative nodes. To
sum up, we have the following inequalities:

Pr (Dj is forced)

≤ 2c′L3 · Pr (Dj is forced for nodep)

≤ 2c′L3 · log L · Pr (Di(i ≤ j) is first forced for nodep)

≤ 2c′L3 · log L · 1

e
c log L

16

By setting appropriate values for the constantsc andc′, we
can ensure that the probability of a given disk being selected
is at mostc log L

L in the proposed algorithm (in Table 4). This
finishes the proof.

Proof of Lemma 8

Given an instance of remember a wireless cover is defined
as a subset of wireless nodes such that each target is covered
by some wireless node(s). By mapping each nodeu to a disk
Du with y (u) pC (u) as the cost of diskDu, and each target
by a node to be covered, we can reduce the problem MCC to
MCDC immediately, which imply the algorithmic results for
MCC listed in Lemma 8. In addition, whenp ·y is an all-one
vector, the cost of a wireless coverC w.r.t.to y is exactly|C|,
i.e. the number of wireless nodes, this corresponds exactly
to the problem MDC.

Proof of Lemma 10

Let

f (t) = (1 + ε)
z − (1 + εz) .

Clearly f (0) = f (1) = 0. Since(1 + ε)t is convex and
1 + εt is linear, f (t) is also convex. Therefore, for any
t ∈ [0, 1],

f (t) ≤ max {f (0) , f (1)} = 0,

which implies that

(1 + ε)
t ≤ 1 + εt.

Taking the logarithm with base1 + ε, the lemma follows.


