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ABSTRACT

radii and a sef? of nodes in the plane, a nogee P is

Coverage has been one of the most fundamental yet chalcoveredby a disk D & D if p lies within the diskD (i.e.
lenging issues in wireless networks. Given a set of nodesand? € D). A subsetD’ C D of disks is said to be aisk

a set of disks of disparate radii, the problem Minimum Disk
Cover seeks a disk cover of all nodes with minimum cardi-
nality. We present the first polynomial time approximation

coverof P if each node irfP is covered by at least one disk
fromD’. The problenMinimum Disk Cover (MDC) seeks
a smallest disk coveP’ C D of P. We further consider a

scheme. We also consider a classical generalization whereflassical generalization where each disk is associatédanit

each input disk is associated with a positive cost, the prob-

lem Min-Cost Disk Cover seeks a disk cover of all nodes
with minimum total cost. We present a randomized algo-
rithm that can achieve an approximation ratio26¥log” )
with high probability, where: is the number of input disks.

Another line of this work is exploring the relations be-
tween disk cover and an important practical problem which
seeks a wireless covering schedule of maximum life sub-
ject to an energy budget function. We present two algo-
rithms: Ellipsoid Algorithm (EA) and Price-Directive Al-
gorithm (PDA), and prove that by applying our algorithmic
results on disk cover, the approximation ratios for EA and
PDA are2°(°¢” ") and(1 4 €) 2°0U°8" ) respectively.

Categories and Subject Descriptors

C.2.1 [Computer-Communication networks]: Network Ar-
chitecture and Design

General Terms
Algorithms, Design, Theory
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Wireless networks, disk cover, cost, budget, lifetime.

1. INTRODUCTION

In wireless networks, many challenges are intrinsicaly re
lated to the coverage issue. Moreover, most kinds of activ-

positive cost, the problemlin-Cost Disk Cover (MCDC)
seeks a minimum cost disk covBf C D of P.

The disk cover problem is a geometric set cover problem
where the given sets are defined by disks. It has been proved
to be NP-hard even with the restriction that all disks have
uniform radii [15]. For the disk cover problem with such a
restriction, tremendous work [3-5, 19] is done and it can ad-
mit a constant-approximation. However, we will investigyat
both the MDC and MCDC problems without such a restric-
tion, i.e,, all disks may have disparate radii in this work.

Another line of this work is exploring the intrinsic rela-
tionship between disk cover and an important practical prob
lem in wireless networks, called Maximum Life Wireless
Coverage (MLWC). Assume the wireless nodes collaborate
with each other to cover (or watch) all the targets, then a
wireless coveis defined as a subset of wireless nodes such
that each target (which can be devices, senstw} is cov-
ered by some wireless node(s). Assume each wireless node
u has an initial coverage power(u), then, for a wireless
cover denoted by, the coverage power consumption by the
wireless node: is defined as: when € C, pc(u) = p(u);
and whenu ¢ C, pc(u) = 0, this means that: has no
power consumption at this time. From both economic and
applicable concerns, we require a wireless network system
to sustain and provide the coverage service as long as possi-
ble. However, most wireless nodes are powered by batteries
and have a stringent energy budget. Thus, we need to design
a maximal lifetime wireless covering schedule subject & th
energy budget.

ities for a wireless system, such as sending/receiving data We formulate the challenging problem as follows, given a

tracking, event monitoring can not be realized without cov-
erage. Thus, coverage plays a critical role for wireless net
working performances.

As a classical coverage probledisk coverhas drawn a
lot of research interest independently. Formally, the fmab
can be defined as follows: given a §&bf disks of arbitrary

wireless network system consisting of a set of targets, and a
set of wireless nodes with disparate covering ranges, attarg
is coveredby a wireless node if and only if the target lies
within the covering range of the wireless node. For the pur-
pose of unified treatment, a coverage task is given impficitl



by a collectionC of wireless covers. A covering schedule

subject to an energy budget functibr RY is a set of pairs Table 1: Algorithmic results for disk cover
(Ciyz;) € R x Ry fori =1, k satisfying that Objective Min-Size Min-Cost
k Disk radii | uniform| arbitrary| uniform arbitrary
chi (w)z; <b(u),Yue V. Bestresultf 1+e none 4+e none
=1

HereC; € C is a wireless cover, ang; € R™ is the length
scheduled forC; with R™ denoting the set of all positive
real numbers. The life (or length) of this schedule is defined
to berZl x;. The problemMax-Life Wireless Coverage
(MLWC) seeks a covering schedule of maximum life sub-
ject to an energy budget functiore RY . the line.

Our Main Contributions: In this work, we will present For the problencontinuous disk covewith minimum car-
algorithm design with theoretical analysis for the probéem ity where the disk center locations may be chosen at

MDC, MCDC, and MLWC respectively: _any point in the plane, it admits a PTAS by using a grid-
1. For the problenM DC, we present the first polynomial shifting strategy [11, 12].

time approximation scheme (PTAS) based on a recent
breakthrough result [18]. 2.2 Min-Cost Disk Cover

2. For the problenMCDC, we propose a randomized
algorithm that can achieve an approximation ratio of
20Uog™ ) "with high probability, where: is the num-
ber of input disks antbg™ n is the smallest number of
iterated “logarithms” applied te to yield a constant.

3. For the problenMLWC, we present two algorithms:
Ellipsoid Algorithm (EA) and Price-Directive Algo-
rithm (PDA). Here PDA is adapted from the algorithm
in [8] for fractional packing problems. We prove that
by utilizing the algorithmic results for disk cover, the 2.3 Related Problemsand Useful Techniques
approximation ratio for EA and PDA ag&(°g" ) and
(1 + €) 2000g™ ") respectively.

The rest of the paper is organized as follows: In Section 2,
we perform a thorough literature review for disk cover and
related problems. In Section 3, we present the first PTAS for
the problem MDC. In Section 4, we propose a randomized
algorithm for the problem MCDC. In Section 5, we study
the problem MLWC, and present two algorithms: Ellipsoid
Algorithm (EA) and Price-Directive Algorithm (PDA). We
conclude our paper in Section 6.

not specified. Calinesaet al. [4] gave al02-approximation
algorithm. Narayanappa and Vojtechovsky [19] improved
the approximation ratio td2. Carmiet al. [5] gave a38-
approximation algorithm by solving a subproblem where the
nodes to be covered lie below a line and all disks lie above

For a classical generalization of minimum disk cover, which
is min-cost disk cove26] proposed4 + €)-approximation
algorithm for unit disk graph (UDG), which is the best result
so far. Note that, a lot of recent algorithmic results [2,64]
for min-weight dominating sétnply algorithms for min-cost
disk cover with the same approximation ratios.

In summary, we list the algorithmic results for different
variants of the disk cover problem in Table 1.

In spite of disk cover, there are other related work for cov-
erage [1, 13, 23-25]. Yuet al. [25] studied deployment
patterns to achieve full coverage ahetonnectivity under
different ratios of the sensor communication range to the
sensing range for homogeneous wireless networks. &van
al. [23] analyzed the probability of the-coverage when the
sensing radius or the number of sensors changes while tak-
ing the boundary effect into account.

Recently, Mustafa and Ray [17, 18] proposed a PTAS for
the discrete geometric hitting set problem. Based on their
2 LITERATURE REVIEW techniques, Gibsoet al. [9, 10] gave a PTAS for the un-
weighted case, artf(°8” ") -approximation for the weighted
case of the problem minimum dominating set in disk inter-
section graph with arbitrary disk radii.

Since there are no existing work touching the maximum
life coverage problem, to the best of our knowledge, we will
only present literature reviews for disk cover. As we know,
disk cover is a classical geometset covemproblem. It is
NP-hard [15] even for unit disks, while it admits a constant- 3. PTASFORMINIMUM DISK COVER
approximation. Note that the general set cover problem is . .
not approximable withirO(log n), wheren is the number 3.1 Algorithm Design
of sets [20]. Our method will be based onfalevellocal searchmeta-

. . heuristic wherég: will control the approximation factor.
2.1 Minimum Disk Cover Given an input instance of MDC, let us first remove ev-

One main branch for disk cover that receives great re- ery disk properly contained in some other disk frémand
search interest is callediscrete unit disk coverand there obtain a new instance. For this new instance, we begin with
have been a series of work done for it [3-5, 19]. Specifi- the disk set\V" equal to the set of all disks, which is clearly
cally, Bronnimann and Goodrich [3] presented a determin- a disk cover of the input node sBt Let |B| denote the size
istic e-net based algorithm where the approximation ratio is of a disk setB, we replace any subs@ of A/ with size at



| Local Search Algorithm: |

Input: a disk setD, a node seP, a parametek;
N — D;
for any diskD €
for any diskD" € '\ {D}
if D’ properly containd)
N — N\ {D};
break;
for any disk subseB of AV with |B| < k
for any disk subsef8’ of D with |B'| < |B| —1
if ( WUB')\ BcoverP
N —WNUB)\B
return \V.

Table 2: Local Search Algorithm

mostk by a subset oD with size at most5| — 1, if the
disk set\ after replacement is still a disk cover Bf We
keep replacing until we can not further reduce the siz&'of
Finally, we output the disks iV. The details are shown in
Table 2.

3.2 Performance Analysis

In this section, we will show that the proposed algorithm
for the problem MDC is a PTAS.

First, it is easy to verify that the algorithm will terminate
after at mosiZfZ1 replacements which means that

it is a polynomial-time algorithm. Second, we can verify

the locality condition, for any disk), we denote byN¢ (D)
the set of neighbors ab. Similarly, for any subseD’ of
disks fromG, denote byN¢ (D) the set of all neighbors of
the disks inD’.

LEMMA 2. VB’ C Bwith|B'| < k, we haveéNq(B')| >
B

PrROOF Otherwise the proposed local search algorithm
can perform further replacement (by replacBigvith N (B')).
This leads to a contradiction]

We then show that the proposed algorithm can achieve
(1 + ¢)-approximation.

THEOREM 1. Ve > 0, the algorithm in Table 2 returns a
feasible solutior3 with |B] < (1 +¢€) - |R|.

PROOF Let us first introduce a result from [18], which is
obtained from a classical property on planar graph pantitio

LEMMA 3. ([18]) Let G = (R, B, E) be a planar bi-
partite graph on vertex se®® and 3, |R| > 2, such that for
every subseB’ C B of size at mosk, wherek is a large
enough numbefNg(B')| > |B'|. Then|B| < (1 +¢/Vk) -
|R|, wherec is a constant.

Lemma 2 and Lemma 3 together imply that: given any
parametet, by settingk = c?¢~2, we can achieve @ + ¢)-
approximation for the algorithm in Table 23

WhenRNB # 0, letZ = RNB, D =D\Z,R =
R\Z,B" = B\Z. LetP’ be the node set that are not covered

that the optimal solution for the new instance (obtained in by 7. Clearly, 3’ andR’ are disjoint; at the same tim&’
Subsection 3.1) where no disk is properly contained in any is an optimal solution for the instance of MDC with the disk

other disk inD, has the same cardinality as the optimal so-

set asD’ and node set aB’. If we can prove thaiB’| is

lution for the original instance. Thus, we only need to focus approximately equal teR’|, it is straightforward thatB| is
on this new instance and prove that the proposed algorithmapproximately equal tR|.

can achieve an approximation ratio bft ¢ for it. Specif-
ically, for this new instance of MDC, |ef8 be the solution
returned by the proposed algorithm, Tetbe an optimal so-
lution (R| > 2), we want to prove thai3| < (1 +¢) - |R].
Our arguments will rely on a concept fcality condition
for R andB.

LEmMMA 1. (Locality condition) There is @lanar bipar-
tite graphG = (R, B, E) on disk setsR and B. For any

nodep € P, there exists an edge connecting two disks both

coveringp, one disk fromR and the other frons.

Here, we say that an edge connects two diBkend B if
this edge connects the centergband B, we will keep this

convention from now on. The proof of Lemma 1 (construct

3.3 Establish the Locality Condition

We will construct a planar bipartite graph on the disk sets
R, B that satisfy the locality condition. Remember tiat
is the solution returned by the proposed algorithm shown in
Table 2, andR is an optimal solution|R| > 2).

3.3.1 Construct the planar graph

Similar to [10], we will use the dual of a weighted Voronoi
diagram as the planar graph.
Let us introduce a concept afeight functionw(p, D)

with two parameters: a poiptand a diskD:

w(p, D) = lp,dl| = rp

agraph orR, 55 that satisfy the locality condition) is delayed whererp is the radius ofD; and ||p, d|| is the Euclidean

to Section 3.3. We first explore the property of locality con-
dition and relate the size & to the size of3. Specifically,
we show that{B| < (1 +¢) - [R].

Let us first assum®& N B = 0, later, we will consider the
general case th&NB # (). In the planar grapbty satisfying

distance betweep and the centeti of disk D. Intuitively,

w(p, D) is the Euclidean distance froptto the boundary of

D. Figure 1 gives an illustration for the weight function.
For a diskD € R U B, we define acell (denoted as
cel | (D)) as the set of pointg in the plane such that



(b)

Figure 1: lllustration for weight function: (a) whenis not Figure 2: Degenerate quadruples: (a) the four correspgndin
in D, w(p, D) = ¢; (b) whenpisin D, w(p, D) = —£. cells for four disksD, D2, D3, D, share a common point
x andz lies outside of these four cells; (b) the four corre-

. . ) sponding cells for four disk®,, D», D3, D4 share a com-
w(p, D) < w(p, D),vD" € D. Then, the cells of all disks i qn point: andz lies inside of these four cells.
from D induce a decomposition of the plane, which is the

weighted Voronoi diagram. Based on the Voronoi diagram,

we can construct a planar bipartite graph, similar to [10]. LEMMA 5. There exists a planar bipartite graph con-
structed onR U B such that for each nodg € P, there
exists an edge connecting a red disk and a blue disk, both of
which coverp.

LEMMA 4. [10] By using the dual of a weighted Voronoi
diagram, we can construct a planar bipartite graph on disk
setD where an edge exists for any pair of disksand B if

cel | (R)andcel | (B) share a common point. ) o
PrROOF Consider the planar bipartite gra@gtconstructed

Note that, to construct the planar graph a precondition ex- on R U B (in Lemma 4), for a node, without loss of gen-
ists that no more than three cells share a common boundaryerality, assume € cel | (R) for some red disk? € R.
point in the weighted Voronoi diagram. If the precondition Then,R must covep. Otherwise, for any dislo’ € R U B,
does not hold, we can not construct a planar graph directly w(p, D') > w(p, R), by Claim 1,D’ does not covep, which
for the Voronoi diagram such that there is an edge connect-contradicts the fact tha® U 5 coverp.
ing every pair of disks when their corresponding cells share Let B denote a closest blue disk to that isw(p, B) <
a common point. In this case (four or more disks share aw(p, B’) : VB’ € B. Note thatB must covep. Otherwise,
common pointz in a weighted Voronoi diagram), we call by Claim 1, no other blue disks would coverthis would
any four among those disks aslagenerate quadrupland contradict the fact tha8 coverp. Based on the arithmetic
the pointz as adegenerate pointFigure 2 gives two differ- relation between (p, B) andw(p, R), we have two cases.
ent cases of degenerate quadruples for the weighted Voronoi Case (1) If w(p, B) = w(p, R), thenp € cel | (B) and
diagram. To the best of our knowledge, all methods for B coversp. Sincecel | (R) andcel | (B) share a common
constructing planar graphs based on (weighted) Voronei dia pointp, By Lemma 4, there exists an edge connecfinand
gram suffer such degenerate issue, we are the first to provideB in the planar grapliz, both of which cover the node
a effectivepatch(in Subsection 3.4). Case (2) w(p,B) > w(p, R). We will walk from p to
3.3.2 Verify the locality condition b (the cerjter of diskB3) along the straight line segmeﬁi.

During this walk, we may cross some red cells and blue cells,
We next prove that the planar graph constructe®an3 and at some point before reachihgre will entercel | (B)

satisfies the locality condition.e., for each node € P, the first time. Letz be the point at which we first enter
there is an edge in the planar graph, that connects a disk

R € R and a diskB € B, and both disks coves. The
proof will extensively use a property which is described as
follows:

CLAIM 1. Given a node and two disksk and B satis-
fyingw(p, R) < w(p, B), if B coversp, thenR coversp.

PrROOF. Note that for any poinp, and any diskD, if disk
D covers the poinp, thenw(p, D) < 0, else (O does not
coversp), w(p, D) > 0. If B coversp, thenw(p, R) <
w(p, B) < 0, which means thaR coversp as well. [

We will call the disks inR andB as red and blue disks
respectively. Then, the main lemma to establish the lgcalit

condition is as follows: Figure 3: lllustration for Case (2) in the proof of Lemma 5.



cel | (B). We must enter this cell from another cell, we as-
sume the cellisel | (D) and the center of disk is d. Note
that D € R U B may be either blue or red, amk! | (D)
shares a common pointwith cel | (B).

Next, we will argue thaf) coversp andD is red.

If D = R, we are done. Otherwise, we hale, d|| <
I, 2| + |, d|| = w(p, D) < ||p, x| +w(x, D) = [|p, z[| +
w(z, B) = w(p, B). Thus, by Claim 1,D coversp, more-
over, D is red, otherwiseB would not be the closest blue
disk top, which causes contradiction.

To sum up,cel | (B) andcel | (D) share a common
point, which implies that an edge betweBnand D exists
in the planar graph. MoreoveR is blue,D is red, and both
disks covep. This completes the proof.d

3.4 Patch for Degenerate I ssue

For a given set of nodéB, let us define théhresholdfor a
disk D asf(D) = min,ep{w(p, D) : w(p, D) > 0}. Note
that, (1)5(D) > 0 and (2) when we increase the radius
of disk D by a value smaller thaf¥(D), the set of nodes
covered byD remain the same. In other words, if a node
p € P is covered before this scaling operation, thers
covered byD after the operation, and vice versa. Thus, the
scaling will not affect the problem MDC instrinsically.

We then develop acaling procesgby scaling the disks in

Observe that due to the recursive nature of the scaling pro-
cess, we must prove that the process will terminate in a finite
number of iterations. We defineRatential Function as the
number of degenerate quadruples. Clearly, the initialieard
Z = O(n*). After one
iteration, at least one degenerate quadruple is removed by
scaling only one disk; at the same time, the scaling will not
introduce any new degenerate quadruple. Thus, the pdtentia
function will be decreased by at least one after each imrati
which means that the scaling process will terminate within
at mostO(n?) iterations. O

4. MIN-COST DISK COVER

nality of the setC is at most

4.1 Algorithm Design

Given an instance of the problem MCDC: a node Bet
and a disk seD that can covefP, we can formulate the
optimization problem as a Linear Programming (LP). For
any nodep € P, let D, C D denote the subset of disks
coveringp. Letzp € {0,1} for any diskD € D indicate
whether the diskD is selected in the solution or not, we
relax the requirement, such that, : D € D can be any
value in[0, 1], instead of only integers. We then consider the
following LP relaxation for the problem MCDC. We assume

degenerate quadruples) to eliminate degenerate quadruple the cost function foD isc : D — R*:

THEOREM 2. Given a node seP and a disk seD, we

can remove all degenerate quadruples by scaling disks such
that for each disk, the set of nodes covered will not be chéinge

PrRoOOF We will iteratively remove degenerate quadru-
ples. During each iteration, we arbitrarily select a degene
ate quadruplé Dy, Dy, D3, D4), assume their correspond-
ing cells share a common point Note that simply increas-
ing the radius of only diskD; by any valuef for 0 < ¢ <
(B(D1) can result in the factz ¢ cel | (D2) (at the same
time,x ¢ cel |l (D3) andz ¢ cel | (D3)), thus, we can

min : Z c¢(D)-zp, st.:
DeD
ZDEDPIDZI’ VPGP (1)
xp >0, VD eD

After solving the LP relaxation, we obtain an optimal so-
lution {xp : D € D}, and then create a s& of disks as
follows: for each diskD, we add|2n - x| copies ofD to
Dy wheren is the cardinality ofD (note that for the special
case whenrp < % [2n - zp] = 0, we do not add any

remove such a degenerate quadruple easily. The challenge i%opy of D to Dy ); each copy oD inherits its original cost.
that, we have to guarantee that no new degenerate quadruplgq, the disk seD,, we observe two important facts (given

is introduced by this scaling operation.
We call a valuel as acritical valuefor D, if increasing
the radius ofD, by exactly/ will introduce a new degener-

in Lemma 6).
Next, we iteratively apply theniform sampling process
(in Table 4) to produce a successively sparse disk cover(aft

ate quadruple. We then upper-bound the number of critical yrgpapilistically removing some disks from the disk cover)

values for each disk as follows:

CLAIM 2. There are at mosb(n?) critical values for the
disk D; (The proof is available in the appendix).

Based on Claim 2, there exist at m@3tn?) critical values
for the diskD;. We can select a value that is not equal to
any of these critical values, and at the same time, is strictl
smaller than the threshofg D) for then diskD;. We then
increase the radius of digk, by exactly this value, clearly,

For the first iteration, we set the input disk coverfas and
the parametek; = n. For thei-th iteration, we set the input
disk cover asD; ;, and the parametdt; = log L;_1, to
obtain an output disk s€?; C D;_; which is a sparse disk
cover, fori = 2,3,--- ,t (t = log™n). Finally, we output
D,. The details are shown in Table 3 (also in Figure 4).

4.1.1 Uniform Sampling Process
Theuniform sampling process a probabilistic algorithm

we can guarantee that this scaling operation can eliminatethat takes an input disk covér of the node sef with a
a degenerate quadruple, and will not introduce any new de-parameter, and outputs aparsedisk coverD’ where the

generate quadruple, at the same time.

probability of each disk being selected is at m&$EL. In
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Figure 4: lllustration for Algorithm 3, the various shadeflect the sparsities of disk covers.

| LP-based Algorithm:

Input: a disk seD, a node seP, ¢: D — RT;
Solve the LP relaxation in Equation (1),
let{xp : D € D} be the output;
for each diskD € D
add|2n - xp | copies ofD with the same cost t®y;
t — log™ n;
fori=0tot—1
apply uniform sampling process (Table 4) By
let D, be the output;
v+ +;
delete the redundant disks fram;
return D;.

Table 3: LP-based Algorithm

| Uniform Sampling Process:

Input: D, P, a parameteL;
Construct the sequenee—< Dy, -+, D,, >;
fori=1tom
for each node € P covered byD,
if D, is forced because of
addD; toD’;
else add D; with probability 2% to D’;
1+ +;
returnD’.

Table 4: Uniform Sampling Process

Given a disk seD and a node s&P, we define arequiv-
alence clasdor P as a subset of all nodes frof that are
covered by the same set of disks frdmi.e., if two nodes
are in the same equivalence class, then one node is covered
by a disk fromD implies immediately that the other node
is also covered by the same disk. Then, all the equivalence
classes fof? induce a partition of. Note that, if a seD’ at
leastlog L-cover one node in an equivalence class, then they
at leastiog L-cover all nodes in that class. Thus, we can as-
sume we have one representative node (can be any node from
this class) from each class. We want to at léagtl.-cover
these representative nodes.

Let NV,, = D, and letC,, denote the set adquivalence
classesof nodes such that the nodes in each class is cov-
ered with multiplicity at mos2L. By Lemma 7,|C,,,| <
npmL* Ny = |N,,|. We compute a dislD,,, € N, that
covers the least number of representative nodes. By pigeon-
hole principle,D,,, covers at mos2¢’ L3 classes of’,,,. We
will recursively compute a sequence of disks for a new in-
stance fotV,,,_1 = N,,\{D.}, and append the sequence to
D,,. Inthe new instance faw,,,_1, we consider the classes
C,,—1 whose coverage multiplicity iV,,,_; is at most2L.

Let o be the reverse of this sequence:

o =<Di,- ,Dpn>.

Note that the method for constructing the sequenisesim-
ilar to smallest last orderingfl16].

Based on the sequenee for each diskD,;, we make an
instant decision on the addition &f, depending on whether
D is forced or not. Here we call a disk; € N; forced
if not including D; will result in a consequence that some

addition, each nodethat isL-covered byD is at leastog L-

covered byD’. Here we say a nodeis L-coveredf exactly

L disks fromD coverp. In such case, the nogds also said
to be covered with thenultiplicity L.

We first only consider the subspt of nodes that are cov-
ered byD with the multiplicity in [L, 2L] (each node from
P’ is covered by at leadt disks, and at mostL disks from
D), we will produce a subsé?’ C D of disks, such thapP’
will be at leastlog L-covered inD’. We repeat the process
for the nodes that are covered Bywith the multiplicity in
[2L,4L], [4L,8L] and so on, the output is a series of sparse
disk sets. We finally output the union of all output disks. We
will prove that the probability of a disk being selected can

still upper bounded by (‘”Og L) .

nodep € P’ can not be at leadvg L-covered. The details
are shown in Table 4.

4.2 Approximation Ratio
First, we introduce two facts for the disk sB§:

LEMMA 6. The following facts are true:
1. Each node is at leastn-covered byDy;

2. w(Dy) < 2n - A\*, where)* is the optimal objective
function value for the LP-relaxation in Equation (1).

PROOF The proof is available in the appendixd

Next, we will prove that the algorithm described in Table 4



has the uniform sampling property. We will make use of the
following lemma:

LEMMA 7. LetD andP be a set ofn disks and a set of
nodes respectively, and< L < m be an integer. There are
O(mL?) nodes ofP covered by distinct subsets Bf each
of size at mostL.

Based on Lemma 7, we can prove Theorem 3, which is a

variant of the result in [10, 22].

THEOREM 3. (Uniform Sampling Property) Given a node
setP and a disk seD, assumé> coverP, the uniform sam-
pling process (Table 4) produces a subBétc D, such that
for any nodep , if p is L-covered inD, thenp is at least
log L-covered inD’ andPr (D € D') < <loek,

PROOF The proofis available in the appendixd

By combining Theorem 3 with Lemma 6, we can obtain
the following main theorem easily.

THEOREM 4. Forthe problem MCDC, there exists aran-
domized algorithm that produces a disk co%gr and
¢(Dy) < 200" ) . = with high probability, where* de-
notes the cost of an optimal solution, aiog” n is the small-
est number of iterated “logarithms” applied to to yield a
constant.

The proof of Theorem 4 is similar to Sectiénl in [10].

5. MAX-LIFE WIRELESS COVERAGE

The problemMLWC can be formulated as the following
linear program (LP):

max » oo
st Yoecrepe (u) <b(u),VueV;
o > 0,VC € C.

This LP hagV'| constraints (excluding the trivial constraints
xc > 0,YC € C), and consequently there always exists an
optimal solution using at most wireless covers. However,
since the number of variablég| is prohibitively large (ex-

(@)

ponential in the number of nodes), standard LP solvers are

not practical for solving this packing LP.

51 Min-Cost Wireless Cover

We first introduce a related problem. Given a price func-
tiony € RY, the cost of a wireless covér with respect to
(w.rt) y is defined as .~ v (u) p (u). Note that ify - p
is an all-one vectory(u) - p(u) = 1 for every nodeu), the
cost ofC' w.r.tto y is exactly|C|. For any wireless coverage
task, given implicitly by a collectio@ of wireless covers and
a price functiony € RY, the problemMin-Cost Wireless
Cover (MCC) seeks a wireless covér € C of minimum
cost.

By mapping each wireless node to a disk with its covering

range as the disk radius, we can reduce the problem MCC
to the problems MCDC and MDC (when each wireless node

has the same cost). Thus, we have the following lemma:

LEMMA 8. For the problem MCC, we have:

1. There is &2°(°g” »)_approximation algorithm.

2. Whenp - y is an all-one vector, there is afl + ¢€)-
approximation algorithm.

Next, we show that these two probleM$ WC andM CC
are intrinsically related to each other. We refer to the LP in
equation (2) as the primal LP. The dual to this primal LP
associates a priggu) for each node:, € V:

min Y oy b(u)y (u)
sit. Y ey po(u)y(u) >1,¥C eC
y(u) >0,YueV

®3)

The above LP is referred to as dual LP, and the minimization
problem defined by this dual LP is referred to as the dual of
MLWC, which can be interpreted as follows. For any price
functiony € RY, let

aly)=min Y po(u)y(u),
ueV
)= by ).

ueV

Then, a(y) is the cost of a min-cost wireless cover ¢h
w.r.ty, andg (y) is the total energy cost.r.t. y. Thus, the
dual of MLWC is equivalent to finding a price functiane

RY such thatd(y) is minimized subject tav(y) > 1. Let
opt be the life of a max-life covering schedule. Then, we
have the following relation

B(y)

LEMMA 9. Foranyy € RY, a(y) < ot - In addition,

there exists some € RY such that (y)

B(y)
opt *

PROOF We begins with the first part. The first part holds
trivially if a(y) = 0. So, we assume that(y) > 0. Let
y' = —L<. Then,y’ is a feasible solution of the dual LP.

a(y)”
Hence Y

@

(y)
Y)

opt < B (y') =

Q

Therefore,a (y) < %. Next, we prove the second part.
Suppose is an optimal solution to dual LP. Then(y) = 1
for otherwise, we can scalg down strictly to get a better
solution, which causes contradiction. Thugt = G (y).

For suchy, we haven (y) = % .

Further relations betwedd LWC andM CC will be ex-
plored subsequently.



5.2 Ellipsoid Algorithm C € C, usingy as the price function. 1€ has power cost

Theellipsoid methods an ingenious approach for decid- €SS than one, then we know tha 5 (L), andC gives us

ing whether a given non-degenerate convex set is empty (a@ S€Parating hyperplane. df has power cost at least one,

convex set im-dimensional space is said to be non-degeneratf!€n We accepy € S (L). Of course, sinced is just an
if it is either empty or has a volume at leasfor somev > 0 approximation algorithm, the above conclusion might be in-
which depends only on). correct, andS (L) might actually be empty. However, since

The idea of the ellipsoid method is very roughly the fol- 1€ @pproximation factor ofi is at mosty, we know that

lowing. Consider a non-degenerate convexetve would N this casey -y € S (- L). Therefore, ifL” is the min-

like to test whetherS is empty or not. We start with an el- imum value ofZ for which the algorithm decideS (L) is
lipsoid which is guaranteed to contash At each iteration, ~ NONempty, then we know that(L” —¢) is empty (where

we check whether the center of the current ellipsoid isin  dePends on the precision of the algorithm), &hQ.L.") is

or not. If yes, we can conclude théiis nonempty and stop. ~ "ONempty. Theref_ore, the_value of the dual LP, and hence,
Otherwise, we take a hyperplane through the center such thaf€ value of the primal LP, is betwedrt andyuL”.

S is contained in one of the two half-ellipsoids separated by 1€ above algorithm computes the approximate value of
this hyperplane. We take the smallest ellipsoid completely the primal LP. Next, we describe how to compute the actual

containing this half-ellipsoid, whose volume is subswihti  @PProximate solution. Now, let’ denote the subset of wire-
smaller than the volume of the previous ellipsoid. We ierat €SS COVersig corresponding to the separating hyper-planes

on this new ellipsoid. In the worst case, we need to iterate foUNd by the above separation oracle while running the el-

until the volume of the bounding ellipsoid gets belowin -

lipsoid algorithm onS (L* — ¢). Then,C’ is of polynomial
which case we can conclude thfats empty. It turns outthat ~ cardinality. Consider the restricted dual LP:

only a polynomial number of iterations are required in the min Y,y 0 (w)y (u)
case of linear programming. The algorithm does not require st S ueope (w)y(u) > 1,0 €’
an explicit description of the linear program. All that is re y(u)>0,YueV

quired is a polynomial timseparating oraclewhich checks
whether a point lies it or not, and returns a separating hy-
perplane in the latter case.

Its value is also at leadt*. So, we solve the following re-
stricted primal LP of polynomial size, which is the dual of
the restricted dual LP:

We will leverage the ellipsoid method for exponential- max ) ocer TC
sized linear program (LP) with an (approximate) separation sit. Y ceerrepe (u) <b(u),VueV
oracle to prove the following general theorem. te >0,VC e’

THEOREM 5. Suppose that/ is a network class satisfy- ~ The optimal solution of this restricted LP has value at least
ing that there is a polynomial (respectively, a polynomial ~ L*, whichis au-approximation to the original primal LP]
approximation) algorithm foM CC for a wireless coverage
task restricted to\V. Then, there is a polynomial (respec-
tively, a polynomial:i-approximation) algorithm foMLWC
for the same coverage task restricted\o

PROOF. Let A be au-approximation algorithm foM CC 1. Thereis ar®(oe” ") approximation algorithm for MLWC.
for a wireless coverage task restricted\o(For simplicity
of presentation, we treat a polynomial algorithm which pro-
duces an optimal solution as a polynomiahpproximation
algorithm). Consider a netwoik = (V, A;c) € N. We use

C to denote the colle.ctior_1 of wirgless covers for a Coverage  \ye remark that the approximation algorithms presented in
task. We run the ellipsoid algorithm on the dual LP uUsing his section are of theoretical interest only. They chamact
the algorithmA as the approximate separation oracle. More ;¢ the approximation hardness of the optimization proslem
precisely, letS (L) denote the set of € RY satisfying that studied in this section. However, the ellipsoid method with
Z b(u)y (u) < L the qpproximation sepgration oracle_s is practically q'pite
- feasible [21]. In Section 5.3, we will develop practically

Theorem 5 immediately implies the following algorithmic
results orMLWC:

2. Thereis arl + ¢)-approximation algorithm for MLWC,
whenp - y is an all-one vector,.

ueV . . . .
feasible approximation algorithms.
> pe (u)y (u) > 1,vC eC. o .
ueC 5.3 Price-Directive Algorithm
We use binary search to find the smallest valuelofor In this section, we present an iterative algorithm called
which S (L) is nonempty. The separation oracle acts as fol- Price-Directive Algorithm (PDA) for a given wireless cov-
lows: First, it checks the inequalify’ . b (u) y (u) < L. erage task, which is adapted from the algorithm in [8] for

Next, it runs the algorithm4 to compute a wireless cover fractional packing problems.



The basic idea is that by setting the prices of the nodes | Price-Directive Algorithm (PDA):

with low residue energy relatively higher, the nodes with lo C—0:;VueV,z(u) «—0;¢« 0;
residue energy are protected from getting drained of energy Vu € V,y (u) «— ﬁ; B — n;
quickly while the nodes with high residue energy are en- repeat
forced to contribute more energy. The algorithm utilizes a compute arC € C using.A on (D, y) ;
p-approximation algorithrod for MCC for the same cover- t — minyey b (v) /pc (v);
age task (ifu. = 1, the algorithmA is optimal). A constant if C € Cthenze «— xo +t,
parametee € (0, 1) is also part of the input, and the output elseC — CU{C}, z¢c — t;
solution h_as an approximation bOl_md of at m@st- ) p. VueV,z(u) — z(u) + tpbc(u);
The algorithm maintains the following variables: (v)
¢ — maxyev z (u);
e C: the set of chosen wireless covers; VueV,yu) —y(u) (1 4 6tpbc(1(;;));
e 2 for eachC € C: the duration of”; B2 uevby(u);
. until 0 < ¢ < £=1n 2
e z € RY: the energy consumption percentage vector R
defined by return {(C,z¢/¢) : C € C}.
2 () = > cec Topo (“),vu eV, Table 5: Price-Directive Algorithm
b (u)
e ¢ = max,cy 2 (u): the maximum energy consump- The rest of this section is devoted to the proof of the Theo-
tion percentage; rem 6. We first introduce the following algebraic inequality
e yc RK: the price vector; LEMMA 10.Ve > 0and0 <t <1,t <log,,, (1 +et).

e 3. the total energy cost_, .y, b (u) y (u).

LetCo, z0, ¢0, yo andSy be the initial values of, z, ¢, y
and respectively. For each> 1, letC;, z;, ¢;, y; andj3;
be the values of, z, ¢, y and 3 respectively at the end of
the j-th iteration. In addition, for each > 1, let

Initially, C is empty and the pricg (u) of each node: is
the reverse of its energy budgetu). Accordingly, bothz
and¢ are initialized to zero, and is initialized ton accord-
ingly. Each iteration first computes a wireless cogee C 7 = maxy; (u) b (u).
using an algorithmA together with the current price vector u€V
y. A nodev is said to be dottleneckf b (v) /pc (v) is the We first claim that
smallest among all nodes. Letbe the bottleneck node and
sett = b(v) /pc (v). The durationec of C' is increased by ¢j < log1ye 7).

¢, and bothz and¢ are updated accordingly. After that, the  |ndeed, for eachi > 1 and each: € V, by Lemma 10,
price vectory is reset properly and the variab¥das updated B

accordingly. The stopping rule is that< ¢ < 1££1n 2. zj (u) = zj—1 (u) < logyy. (14 (25 (v) — zj-1(u)))
Finally, eachz¢ for C € C is scaled down by a factor af _ yi (u)
to obtain a feasible solution. The outline of the algorittsm i = 9814 yi—1 (u)’

described in Table 5.
which impliesz; (u) < log, ;. 24 = log, . (y; (u)b ().
Hence, the claim holds.
The next theorem gives both the running time and approx-

imation ratio of the algorithnPDA. Now, let K = n ’7(14—(61;1:?()113-?)—6-‘ and we prove that the

number of iterations is at mog#t. Assume to the contrary
THEOREM 6. The algorithmPDA producesaril +¢) u-  that the number of iterations is greater tHanThen, at least
approximation in at most [%W iterations. one nodev appears as a bottleneck node in at le&gh
iterations among the firsk' iterations. For such node,
) ) S o y (v) is increased by a factor df + ¢ at the end of each
Theorem 6 immediately implies the approximation bounds jteration wherv is a bottleneck node. Therefore,
of PDA (described in Table 5).
. . . Kk _ (L)
1. There is an(1 + ¢) - 200°e" ")_approximation algo- yr (V) >y (v) (14+¢)""" = i
rithm for MLWC. )
) ) which implies
2. There is a PTAS for MLWC, whep - y is an all-one
vector. T > yr (V)b (v) > (1+ s)K/” .
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Hence,
¢K < 1Ogl+a TK _ 1
Infx = In 7k ln(l—l-s)—logi“ﬁ
1
T In(l+e)-nn
- 1
In (1 + E) — I—(llr;%
(14+e)In(1+e)—e
1
S Inn
In(1+e¢)— (fo)lnn
(AFe)In(ite)—c
- 1
In (1 + E) (149 llrli18+5)75
1+e
= —

By the stopping rule, the number of iterations is at mi@st
which is a contradiction.

From now on, we assume that the number of iterations is

k. It's easy to prove by induction ohthat by the end of the
j-th iteration forl < j < k, for each node: € V,

Zcecj zepe (u)

o) NVu e V.

zj (u) =

In other wordsz; (u) is indeed the energy consumption per-

centage of: by the end of the-th iteration. Therefore, the

scaling by a factop,, in the scaling phase results in a feasi-

ble solution.

Next, we show that the approximation bound of the output

solution is(1 + ¢). For eachl < j < k, lett; be the value
of ¢t computed in the-th iteration. Then, by the end of the
j-th iteration forl < j < k, we have

IR

CeCj

So, the life of the output solution is

_ ZCGCk ro 25:1 tj
Z r Pk ok

CeCy

Let opt be the life of an optimal solution. We claim that for
eachl < j <k,

57 ﬁ] 1 pt

Indeed, letC; be the wireless cover computed in theh
iteration. By Lemma 9,

ch

ueV

ﬁj—l_

w)yi—1 (u) < p

Thus,
8= b(u)y, (w
ueV
(u)
_gb ) -1 ( )<1+ et; b())
—Z u)yj—1 (u) + et; <ch u)yj—1(u ))
ueV ueV
:5341 + et <ZPC yj 1( ))
ueV
Bi-1

< Bi— etj- ,
_ﬁ] 1+ J Mopt

from which the claim follows. Therefore,

th—optzﬁjﬁﬁj ! _0—pt1 %_Optln@’
j—1 0

e En n
So,
k
D1ty . 1 1116—7;c ; € ’ opt
== > _——"y ———opt = ————,
o En o _aul—l-ap I+e)p

where the second inequality follows from the stopping rule.

6. CONCLUSION

Many challenging issues in wireless networks are intrin-
sically related to coverage. In this work, we have presented
several approximation algorithms for three mutually rediat
coverage problems: MDC, MCDC, MLWC. For the prob-
lem MDC, we are the first to achieve a PTAS when disks
have arbitrary radii. For the problem MLWC, this is the first
time in the literature that the problem of maximizing lifeg
wireless coverage was formulated, and the approximation al
gorithmic results was obtained.

7. REFERENCES

[1] ABRAMS, Z., GOEL, A., AND PLOTKIN, S. Set k-cover algorithms
for energy efficient monitoring in wireless sensor netwotks
Proceedings of the 3rd international symposium on Inforomat
processing in sensor networkg004), ACM, pp. 424-432.

[2] AMBUHL, C., ERLEBACH, T., MIHAL AK , M., AND NUNKESSER
M. Constant-Factor Approximation for Minimum-Weight
(Connected) Dominating Sets in Unit Disk Graphscture Notes in
Computer Science 4110006), 3.

[3] BR”ONNIMANN, H., AND GOODRICH, M. Almost optimal set
covers in finite VC-dimensiorDiscrete and Computational
Geometry 141 (1995), 463-479.

[4] CALINESCU, G., MANDOIU, |., WAN, P.,AND ZELIKOVSKY, A.
Selecting forwarding neighbors in wireless ad hoc netwdviabile
Networks and Applications, 2 (2004), 101-111.

[5] CARMI, P., KaTz, M., AND LEV-TOV, N. Covering points by unit
disks of fixed locationAlgorithms and Computatio(2007),
644—655.

[6] DAI, D.,AND Yu, C. A5 + e-approximation algorithm for
minimum weighted dominating set in unit disk grafieoretical
Computer Science 418-10 (2009), 756—765.

[7]1 ERLEBACH, T.,AND MIHALAK, M. A (4+ ¢)-Approximation for
the Minimum-Weight Dominating Set Problem in Unit Disk Ghap
Approximation and Online Algorithm®&010), 135-146.



[8] GARG, N., AND K@ARTICLEHOU2009COVERAGE,
TITLE=COVERAGE IN WIRELESS SENSOR NETWORKS
AUTHOR=HoOU, J.C.AND YAU, D.K.Y. AND MA, C.Y.T.AND
YANG, Y. AND ZHANG, H. AND Hou, I.H. AND RAO, N.S.V.AND
SHANKAR, M., JOURNAL=GUIDE TO WIRELESSSENSOR
NETWORKS, PAGES=47—-79,YEAR=2009,PUBLISHER=SPRINGER
ONEMANN, J. Faster and Simpler Algorithms for Multicommodity
Flow and Other Fractional Packing Probler8$AM Journal on
Computing 372007), 630.

[9] GiBSON, M., AND PIRWANI, |. Algorithms for Dominating Set in
Disk Graphs: Breaking the logn Barrigklgorithms—ESA 2010
243-254.

[10] GiBsON, M., AND PIRWANI, |. Approximation algorithms for
dominating set in disk graph&rxiv preprint arXiv:1004.3320
(2010).

[11] GoNzALEZz, T. Covering a set of points in multidimensional space*
1. Information processing letters 4@ (1991), 181-188.

[12] HocHBAUM, D.,AND MAASS, W. Approximation schemes for
covering and packing problems in image processing and VLSI.
Journal of the ACM (JACM) 321 (1985), 130-136.

[13] Hou, J., Yau, D., MA, C., YANG, Y., ZHANG, H., Hou, |., RAO,
N., AND SHANKAR, M. Coverage in wireless sensor networks.
Guide to Wireless Sensor Netwoi2909), 47-79.

[14] HUANG, Y., GAO, X., ZHANG, Z., AND Wu, W. A better
constant-factor approximation for weighted dominatingirseinit
disk graph.J. Comb. Optim 13822008), 6905.

[15] JoHNSsON, D. The NP-completeness column: an ongoing guide.
Journal of algorithms 133 (1992), 502-524.

[16] MATULA, D.,AND BECK, L. Smallest-last ordering and clustering
and graph coloring algorithmdournal of the ACM (JACM) 3B
(1983), 427.

[17] MuUSTAFA, N., AND RAY, S. Improved results on geometric hitting
set problems. www. mpi-inf. mpg. de/” sauraBapers/Hitting-Sets.
pdf (2009).

[18] MuUSTAFA, N., AND RAY, S. PTAS for geometric hitting set
problems via local search. Proceedings of the 25th annual
symposium on Computational geomg2909), ACM, pp. 17-22.

[19] NARAYANAPPA, S.,AND VOJTECHOVSKY, P. An improved
approximation factor for the unit disk covering problemFroc.
Can. Conf. on Comp. Geo(B006), Citeseer.

[20] RAz, R.,AND SAFRA, S. A sub-constant error-probability
low-degree test, and a sub-constant error-probability PCP
characterization of NP. IRroceedings of the twenty-ninth annual
ACM symposium on Theory of computii®97), ACM,
pp. 475-484.

[21] ScHRIJVER, A. Combinatorial optimization: polyhedra and
efficiency Springer Verlag, 2003.

[22] VARADARAJAN, K. Weighted geometric set cover via quasi-uniform
sampling. InProceedings of the 42nd ACM symposium on Theory of

computing(2010), ACM, pp. 641-648.

[23] WAN, P.,AND Y1, C. Coverage by randomly deployed wireless
sensor networks|EEE Transactions on Information Theory, vol. 52,
pp. 2658-26692006).

[24] WANG, J.,AND ZHONG, N. Efficient point coverage in wireless
sensor networkslournal of Combinatorial Optimization 1B
(2006), 291-304.

[25] YuN, Z., Bal, X., XUAN, D., LAI, T.,AND JIA, W. Optimal
Deployment Patterns for Full Coverage and k-Connectivity<(6)
Wireless Sensor NetworkEEEE/ACM TRANSACTIONS ON
NETWORKING 183 (2010).

[26] Zou, F., WANG, Y., XU, X., LI, X., Du, H., WaN, P.,AND Wu,
W. New approximations for minimum-weighted dominatingssatd
minimum-weighted connected dominating sets on unit dislplys.
Theoretical Computer Scien¢2009).

APPENDI X
Proof of Claim 2

Assume after increasing the radius Of by ¢, a new de-
generate quadrupleDs, Dg, D7, Dg) is introduced. There

11

exists at most one point that can be shared by four weighted
Voronoi cells. This means that some pointbecomes a
new degenerate point after the scaling. Then, there must
exist at most one disk (assumed to bg) such thatp ¢

cel | (Dsg) before scalingDy; butp € cel | (Dg) after this
scaling operation.

Note that, in the scaling operation, we increase only the
radius of diskD,, the Voronoi cells of other disks can only
shrink, while the only cell that may grow isel | (D),
thus Dg = D1, and at the same time, must already lie
at the boundary pointafel | (Ds),cel | (Dg),cel | (D7)
before the scaling operation. We can calculate a critical
value /¢, such that after scaling:, (D1, D5, Dg, D7) will

become a degenerate quadruple. There are atéw@st) =

O(n?) such tripleg D5, D¢, D7) with which D; can form a
new degenerate quadruple, thus there are at @pst) such
critical values.

Proof of Lemma 6

To verify the first fact, consider any nogge for any disk
D € Dy, if zp > %, we add|2n - 2p| > n copies ofD
to Dy, thenp is at leasth-covered. Otherwise, we defime
disjoint subsets of disks, theth (1 < i < n) subsetD;',
contains every diskD € D, satisfying% < zp < ﬁ
Sincexp < % for each diskD € D,, thesen subsets form a
partition of D,. Letxy,zo, - ,z, denote the cardinalities
of then subsets respectively. We haye, ., z; - 5~ >
> pep, p = 1, thismeansthat;, _,_, i-x; > 2n. Since
Doi<icnTi < n, we haved . (i —1)-x; > n,thus
Yopep,[2n-@p] =30 i<, (1 —1) - @; > n. This implies
thatD, at least-coverp.

To verify the second fact, observe thatDy) = 3 o [2n-

Tp] <D pep2n-xp =2n-Y pepTp =20 A*.
Proof of Lemma 7

Given a disk seD, let us define @ritical radius for a node
p as:

v(p) = gleig{w(p,D) w(p, D) > 0}.

Here the weight functiow is defined in Section 3.3.1. Given

a disk setD and a node s&P, we map any nodg € P to

a disk @, with the radius strictly smaller than the critical

radius forp. Clearly, for any diskD € D, whenp ¢ D, then

@, does notintersedd; whenp € D, then@,, intersects.
We then introduce a similar result by Gibsetal.[10]:

LEMMA 11. LetD be a set ofn disks, andl < L <m
be an integer. Le©Q be a set of disks (possibly infinite).
There areO(mL?) disks ofQ that intersect distinct subsets
of D, each of size at modt.

Let @ be the set of all the mapped disks for the nodes in
P, based on Lemma 11, there a¢m L?) disks of Q that
intersect distinct subsets ©f, each of size at modt. Cor-
respondingly, there a@(mL?) nodes ofP that are covered
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by distinct subsets db with size at most.. This finishes
the proof.

Proof of Theorem 3

By the proposed algorithm in Table 4, the outfitat least
log L cover every node if p is L-covered inD. We next
show thatPr (D € D') < <L |f a disk D is not forced,
clearly,Pr (D € D') = 2L < cleaL \We are only left to
upper bound the probability that a disk is forced.

For each diskD; in the sequence, If the disk D; is
forced for nodep, then all the disk;, (with j° > j) that
coverp are also forced, and the number of such disks is at
mostlog L — 1 (since otherwise); will not be forced). At
the same time, some didR; (i < j) must befirst forcedfor
nodep. Here a disk is first forced for nodeif it appears as
the first one among all forced disks for nogl@ccording to
the orderr. We have the following inequality:

Pr (D; is forced for node)
<logL-Pr(D; (i < j)is first forced for node)

We next compute the probability of a digk; being first
forced for nodep. Let D, ; be the set of all disks iiDy, :

k < i} that cover the nodg, andn, be the number of disks
in D,, ; that is finally selected, then the following three facts
hold:

(1) D, coversp,

(2) Dyl > L—logL > &,

(3) n1 <logL.

Clearly,Pr (D; is first forced for node) is at most the prob-
ability that fact(3) holds when both factél), (2) are true,
which means less thalag L disks are finally selected for
D,,; while each disk fronD, ; is selected with probability
at IeastCI‘)TgL. This can be reduced to a coin toss problem:
in a sequence of at Iea%t coin tosses, each coin turns up
head with probability of at Ieaﬁliﬁ, less thariog L coins
turn up heads. Based on Chernoff bound, the probability is
at most—zL—. Thus

clog L
e 16
I 1
Pr (D; is first forced for node) < —~
e~ 16

Since there are at mogt’/L? classes of”; covered with
multiplicity in [L, 2L] and covered by, D, can be forced
for any one of the at mostc’ L3 representative nodes. To
sum up, we have the following inequalities:

Pr (D, is forced
< 2¢L? - Pr (D; is forced for node)
<2c'L? -log L - Pr (D;(i < j) is first forced for node)

<2dL3 logL -

clog L
e~ 16

By setting appropriate values for the constaraadc’, we
can ensure that the probability of a given disk being setecte
is at most “’Lg L in the proposed algorithm (in Table 4). This
finishes the proof.

Proof of Lemma 8

Given an instance of remember a wireless cover is defined
as a subset of wireless nodes such that each target is covered
by some wireless node(s). By mapping each nottea disk

D,, with y (u) pc (u) as the cost of dislD,,, and each target

by a node to be covered, we can reduce the problem MCC to
MCDC immediately, which imply the algorithmic results for
MCC listed in Lemma 8. In addition, when y is an all-one
vector, the cost of a wireless cov@mw.r.ttoy is exactly|C|,

i.e. the number of wireless nodes, this corresponds exactly
to the problem MDC.

Proof of Lemma 10
Let
F)=0Q+¢)°—(1+e2).

Clearly £ (0) = f(1) = 0. Since(1+¢)" is convex and
1 + et is linear, f (t) is also convex. Therefore, for any
te[0,1],

f(t) <max{f (0),f (1)}

which implies that

0,

(14¢e)' <1+et

Taking the logarithm with bask+ ¢, the lemma follows.



