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Abstract—Shortest link scheduling (SLS) in multihop wireless
networks under physical interference model is notoriously hard to
resolve and been studied only recently by a few works. Most of the
obtained approximation bounds grow linearly with the number of
links, and many are only valid with single-hop wireless networks,
and some claimed approximation bounds are even false. This
paper conducts a rigorous algorithmic study of SLS with power
control under the physical interference model. We develop a
polynomial 𝑂 (𝛽 ln𝛼)-approximation algorithm for SLS, where
𝛼 is the independence number and 𝛽 is the power diversity.

Keywords-Shortest link schedule, link scheduling, maximum
independent set of links, physical interference model, power
control.

I. INTRODUCTION

Link scheduling is a fundamental problem in multihop
wireless networks because the capacities of the communication
links in multihop wireless networks, rather than being fixed,
vary with the underlying link schedule subject to the wire-
less interference constraint. Precisely, we model a multihop
wireless network by a triple (𝑉,𝐴, ℐ), where 𝑉 is the set
of networking nodes, 𝐴 is the set of direct communication
links among 𝑉 , and ℐ is the collection of sets of links in 𝐴
which can transmit successfully at the same time. Each set in
ℐ is referred to as an independent set. A link schedule for a
subset 𝐵 ⊆ 𝐴 of links is a partition of 𝐵 into 𝐼1, 𝐼2, ⋅ ⋅ ⋅ , 𝐼𝑘
such that each 𝐼𝑗 ∈ ℐ for 1 ≤ 𝑗 ≤ 𝑘; the number 𝑘 is
referred to as the length (or latency) of this schedule. The
problem Shortest Link Schedule (SLS) seeks a link schedule
of shortest length for a given subset 𝐴′ ⊆ 𝐴. A closely related
problem Maximum Independent Set of Links (MISL) seeks
a set 𝐼 ∈ ℐ of maximum size contained in a given subset
𝐴′ ⊆ 𝐴.

The majority of algorithmic works on link scheduling in
multihop wireless networks assume binary interference mod-
els such as the 802.11 interference model and the protocol
interference model. Under a binary interference model, a set
of links are conflict-free (i.e., belong to ℐ) if they are pairwise
conflict-free. As a result, link scheduling under the binary
interference model can employ the classic graph-theoretical
tools such as graph coloring for algorithm design and analysis.
But the binary interference model has to put a conservation
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and sometimes severe restrictions on interference ranges for
practical applicability of the link schedules. The inefficiency
of binary protocols compared to the physical model is well
documented and has been shown theoretically as well as
experimentally [6], [9], [12].

The physical interference model is more realistic and ac-
curate than the binary interference model. Under the physical
interference model, when a node 𝑢 transmits a signal at power
𝑝, the power of this signal captured by another node 𝑣 is
𝜂𝑝 ∥𝑢𝑣∥−𝜅, where ∥𝑢𝑣∥ is the Euclidean distance between
𝑢 and 𝑣, 𝜅 is path-loss exponent (a constant between 2 and 5
depending on the wireless environment), and 𝜂 is the reference
loss factor. The signal quality perceived by a receiver is
measured by the signal to interference and noise ratio (SINR),
which is the quotient between the power of the wanted signal
and the total power of unwanted signals and the ambient–both
internal and external–noise. In order to correctly interpret the
wanted signal, the SINR must be no less than certain threshold
𝜎. Suppose that all nodes can adjust their transmission power
to any value in a give set 𝑃 . Let 𝑝max and 𝑝min be the
maximum and minimum of 𝑃 respectively. We remark that the
(fixed) uniform power assignment corresponds to the special
case 𝑃 is a singleton. Then, 𝐴 consists of all links (𝑢, 𝑣)
satisfying that

∥𝑢𝑣∥ ≤
(
𝜂max𝑝∈𝑃 𝑝

𝜎𝜉

)1/𝜅

.

A set 𝐼 of links are independent (i.e., belong to ℐ) if and only
if there exists a transmission power assignment to the links in
𝐼 with values in 𝑃 satisfying that when all links in 𝐼 transmit
simultaneously, the SINR of each link in 𝐼 is above 𝜎.

The link scheduling problem under physical interference
model is notoriously hard to resolve. The non-locality and
the additive nature of interference in the physical interference
model renders traditional techniques based on graph coloring
inapplicable. Because of such technical challenge, most of
the approximation bounds obtained in the literature are either
trivial or grow linearly with the number of links. Even for
these weak approximation bounds, many of them have to
assume zero ambient noise for the technical tractability, which
however effectively results in a single-hop wireless network
where every pair of nodes can directly communicate with
each other. Furthermore, some of the recent theoretical studies
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made false claims on their approximation bounds, whose
proofs contain non-fixable technical mistakes. In this paper,
we conduct a timely algorithmic study of MISL and SLS in
multihop wireless networks under physical interference model.
Our achieved approximation bounds involve two parameters,
the independence number 𝛼 of ℐ and the power diversity 𝛽
of 𝑃 . The parameter 𝛼 is the size of a largest independent set
in ℐ, i.e., 𝛼 = max𝐼∈ℐ ∣𝐼∣. The parameter 𝛽 is the smallest
value 𝑘 such that there exists a partition of 𝑃 into 𝑘 subsets in
each of which any two elements differ by a factor of at most
two. Note that 𝛼 ≤ ∣𝑉 ∣ /2 and

𝛽 ≤ 1 + log
max𝑝∈𝑃 𝑝

min𝑝∈𝑃 𝑝
.

We show that MISL has a polynomial 𝑂 (𝛽)-approximation al-
gorithm, and SLS has a polynomial 𝑂 (𝛽 ln𝛼)-approximation
algorithm.

The remaining of this paper is organized as follows. In
Section II, we review the literature on link scheduling in
multihop wireless networks. In Section III, we present a greedy
approximation algorithm for SLS utlizing an approximation
algorithm for MISL in any multihop wireless network under
any interference model. In Section IV, we present our approx-
imation algorithms for MISL and SLS in multihop wireless
networks under the physical interference model. In Section
V, we summarize this paper and describe some open problems
for further studies.

II. RELATED WORKS

Link scheduling under the physical interference model have
been obtained very recently by a few research works. There
are two variants of the link scheduling under the physical
interference. In link scheduling with power control, the power
assignment is part of the solution. In link scheduling with
fixed power assignment, the power assignment is pre-specified.
Typically, the pre-specified power assignment is oblivious, in
other words, the transmission power of the sender of each
link depends only on the path-loss factor of the link. There
are three common oblivious power assignment. In the uniform
power assignment, all senders of the links have the same
transmission power; in the linear power assignment, the sender
of a link transmits at a power proportional to the link’s path-
loss factor; in the square-root power assignment, the sender
of a link transmits at a power proportional to the square-
root of the link’s path-loss factor. The advantage of oblivious
power assignments is their simplicity which allows for simple
implementation. However, for any oblivious power assignment
there exists an instance of 𝑚 links which are independent with
power control but requires Ω(𝑚) time-slots with this power
assignment [2], [11]. With uniform power assignment, both
MISL and SLS are NP-hard [4]. With power control, MISL
is also NP-hard [1].

When the physical interference model is adopted, particular
attention should be paid to the assumption on the ambient
noise. As revealed in the recent studies [5], [15], [14], noise
is one of the major technical obstacle in achieving guaranteed

approximation bound. In some works, the claimed approxima-
tion bounds hold only with zero noise; while in some other
works, the noise is simply assumed to be zero to avoid the
technical obstacle due to the noise. However, the absence of
noise effectively results in the single-hop wireless network in
which every pair of nodes can directly with each other. Hence,
these approximation algorithms without noise can only apply
to single-hop wireless networks, but not to general multihop
wireless networks. The following five works either assume
zero noise or the claimed approximation bounds hold only
with zero noise:

∙ All the three works [4], [5] and [15] developed ap-
proximation algorithms for MISL with uniform power.
All of their approximation bounds are valid only in the
absence of noise despite of the their false claims to
the contrary. Goussevskaia et al. [4] developed the first
𝑂 (log Λ)-approximation algorithm, where Λ is the ratio
between the longest link length and the shortest link
length. The bound 𝑂 (log Λ) may grow linearly with the
number of links in general. Recently, Goussevskaia et
al. [5] made the first effort on developing a constant
approximation. However, as observed in [15], the claimed
constant approximation bound and its proof are valid only
when the noise is zero. Xu and Tang [15] then made an
attempt to fix this flaw. Unfortunately, their new algorithm
itself is incorrect too if noise is non-zero as pointed out
in [14].

∙ Both [3] and [7] studied approximation algorithms for
SLS with power control but without noise. Fanghänel,
Kesselheim and Vöcking [3] gave a randomized al-
gorithm using linear power assignment that uses
𝑂
(
𝑜𝑝𝑡 log Λ + log2𝑚

)
slots, where 𝑚 is the number

of links and 𝑜𝑝𝑡 is the optimal solution. Halldórsson
[7] proposes 𝑂 (log Λ)-approximation algorithm using
uniform power assignment, and a 𝑂 (log𝑚 ⋅ log log Λ)-
approximation algorithm using square-root power assign-
ment.

The technical challenge due to the noise was also recognized
by Andrews and Dinitz [1]. But they didn’t address this chal-
lenge. Instead, some restricted approximation was developed.
Andrews and Dinitz [1] presented a 𝑂 (log Λ)-approximation
algorithm for selecting maximum number of “short” links
which are are shorter than the largest communication radius by
a constant factor strictly greater than one. For arbitrary links,
their approximation bound 𝑂 (log Λ) is not valid.

By far, only three works [8], [13], [10], [14] dealt with the
noise and links of arbitrary lengths. Moscibroda et al. [13]
presented a scheduling algorithm for SLS with power control.
However, it does not give any approximation guarantee. Subse-
quently, Moscibroda et al.[10] devised a scheduling algorithm
for SLS with power control with a proved approximation
bound. But the approximation bound can be linear to the
number of nodes in the worst case. Wan et al. [14] developed
a constant-approximation algorithm for MISL under uniform
power assignment. The proved constant approximation bound

75



is not only regardless of the value of the noise and the lengths
of the communication links, but also significantly smaller
than those obtained in [5] and [15]. Recently, Halldórsson
and Wattenhofer [8] claimed a constant-approximation for
SLS with uniform power assignment. But the proof of a
key lemma (Lemma 8 in [8]) used to establish the constant
approximation bound is wrong and cannot be fixed. In the
appendix, we provide a detailed explanation on the fatal
mistakes in their proof. The lemma itself does not seem to
be true. Thus, constant approximation for SLS with uniform
power assignment claimed in [8] is at least baseless till now.

In summary, link scheduling under the physical interference
model is much more challenging than link scheduling under
the binary interference model. Many works on link scheduling
under the physical interference model have made false claims,
and some are simply incorrect. Most works fail to deal with
links of arbitrary lengths and positive noise. Even without
noise or restricted to short links, almost all approximation
bounds are on the order of link length diversity, which may
grow linearly with the number of links.

III. GREEDY LINK SCHEDULING IN ARBITRARY

WIRELESS NETWORKS

In this section, we present a greedy algorithm for SLS
utilizing an approximation algorithm for MISL. This greedy
algorithm is applicable to any multihop wireless network
under any interference model. Throughout this section, a
multihop wireless network is represented by a triple (𝑉,𝐴, ℐ)
as described in Section I, and the independence number of ℐ
is denoted by 𝛼.

Let 𝒜 be a polynomial approximation algorithm for MISL.
We can produce a link schedule of any given subset 𝐵 of 𝐴
by the greedy algorithm called Greedy Scheduling described
in Table I:

Greedy Scheduling
𝑆 ← 𝐵; Π← ∅;
while 𝑆 ∕= ∅ do

apply 𝒜 to select an independent set 𝐼 ⊆ 𝑆;
𝑆 ← 𝑆 ∖ 𝐼; Π← Π ∪ {𝐼};

output Π.

TABLE I
THE DESCRIPTION OF THE GREEDY LINK SCHEDULING ALGORITHM.

The theorem below presents an approximation bound of
Greedy Scheduling

Theorem 1: Suppose that 𝒜 is a polynomial 𝜇-
approximation algorithm for MISL. Then, Greedy Scheduling
is a polynomial (1 + 𝜇 ln𝛼)-approximation algorithm for
SLS.

Proof: Let 𝜒 be the length of a shortest link schedule of
input set 𝐵. Suppose that the algorithm runs in 𝑘 iterations
and 𝐼𝑗 is the independent set selected in the 𝑗-th iteration
for 1 ≤ 𝑗 ≤ 𝑘. We will prove that 𝑘 ≤ (1 + 𝜇 ln𝛼)𝜒. Let
𝑆0 = 𝐵, and for each 1 ≤ 𝑗 ≤ 𝑘, let 𝑆𝑗 be the set at the end
of the iteration 𝑗. For each 1 ≤ 𝑗 ≤ 𝑘, let ℓ𝑗 = ∣𝑆𝑗 ∣. Then

∣𝐵∣ = ℓ0 > ℓ1 > ⋅ ⋅ ⋅ > ℓ𝑘 = 0.

Let 𝑡 be the first (smallest) nonnegtive integer such that ℓ𝑡 <
𝜒. Since each iteration chooses at least one link, we have
𝑘 − 𝑡 ≤ 𝜒 − 1. Thus, 𝑘 = 𝑡 + (𝑘 − 𝑡) ≤ 𝑡 − 1 + 𝜒. So, it is
sufficient to show that 𝑡− 1 ≤ 𝜇𝜒 ln𝛼. This inequality holds
trivially if 𝑡 ≤ 1. So we assume that 𝑡 > 1. Then ℓ𝑡−1 ≥ 𝜒.
For each 0 ≤ 𝑗 < 𝑡, the size of maximum independent set in
𝑆𝑗−1 is at least ℓ𝑗−1

𝜒 . Since 𝒜 is a 𝜇-approximation for MIS,
we have

ℓ𝑗−1 − ℓ𝑗 = ∣𝐼𝑗 ∣ ≥ ℓ𝑗−1

𝜇𝜒
.

Hence,
ℓ𝑗−1 − ℓ𝑗
ℓ𝑗−1

≥ 1

𝜇𝜒
.

Therefore,

𝑡− 1

𝜇𝜒
≤

𝑡−1∑
𝑗=1

ℓ𝑗−1 − ℓ𝑗
ℓ𝑗−1

≤ ln
ℓ0
ℓ𝑡−1

≤ ln
∣𝐵∣
𝜒

≤ ln𝛼.

So, 𝑡− 1 ≤ 𝜇𝜒 ln𝛼. This completes the proof of the theorem.

IV. LINK SCHEDULING UNDER PHYSICAL INTERFERENCE

MODEL

In this section, we present polynomial approximation al-
gorithm for MISL and SLS under the physical interference
model described in Section I. An instance of a multihop
wireless network is specified by the five primitive parameters:
the path-loss exponent 𝜅, the reference loss factor 𝜂, the SINR
threshold 𝜎, the set 𝑉 of networking nodes, and the set 𝑃
of possible values of transmission power of all nodes. From
these five primitive parameters, we can define the set 𝐴 of
communication links and the collection ℐ of independent sets
of links as in in Section I. We denote by 𝛼 the independence
number of ℐ, and by 𝛽 the power diversity of 𝑃 .

For uniform power assignment (i.e., 𝑃 is a singleton), a
constant-approximation algorithm for MISL was given in [14].
Let 𝒜 denote such algorithm and 𝜇 be its approximation
radio. By Theorem 1, we immediately have the following
approximation results.

Theorem 2: Under the uniform power assignment, SLS has
a polynomial (1 + 𝜇 ln𝛼)-approximation algorithm;

For non-singleton 𝑃 , we prove the following theorem.
Theorem 3: Suppose that 𝑃 is non-singleton. Then,

1) MISL has a polynomial 16𝛽𝜇-approximation algorithm;
2) SLS has a polynomial (1 + 16𝛽𝜇 ln𝛼)-approximation

algorithm.

By Theorem 1, the second part follows from the first part.
So, it is sufficient to prove the first part. In the remaining of
this section, we prove the first part by presenting a polynomial
16𝛽𝜇-approximation algorithm for MISL. We simply adopt
the uniform maximum power assignment in which all nodes
transmit at the maximum power 𝑝max in 𝑃 , and apply 𝒜 to
find an independent set 𝐼∗ under the uniform maximum power
assignment. We show that 𝐼∗ is a 16𝛽𝜇-approximate solution.

Let ℐ∗ denote the collection of the subsets 𝐼 of links
which which can transmit successfully at the same time
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under the uniform maximum power assignment. Let ℐ ′ denote
the collection of the subsets 𝐼 of links which can transmit
successfully at the same time under some power assignment
in which the transmission powers of all links in 𝐼 lie in 𝑃 and
differ by a factor of at most two. Clearly, ℐ∗ ⊆ ℐ ′ ⊆ ℐ. Denote
𝛼∗ = max𝐼∈ℐ∗ ∣𝐼∣ and 𝛼′ = max𝐼∈ℐ′ ∣𝐼∣. Then, 𝛼∗ ≤ 𝛼′ ≤ 𝛼.
In addition, they have the following opposite relation.

Lemma 4: 𝛼/𝛽 ≤ 𝛼′ ≤ 16𝛼∗.
Proof: The first inequality is easy to prove. Let 𝐼 be a set

in ℐ with ∣𝐼∣ = 𝛼 and 𝑝 ∈ 𝑃 𝐼 be a power assignment under
which all links in 𝐼 can transmit successfully at the same
time. By the definition of 𝛽, there exists a partition of 𝑃 into
𝛽 subsets 𝑃1, 𝑃2, ⋅ ⋅ ⋅ , 𝑃𝛽 satisfying that for each 1 ≤ 𝑗 ≤ 𝛽,
all elements of 𝑃𝑗 differ by a factor of at most two. For each
1 ≤ 𝑗 ≤ 𝛽, let

𝐼𝑗 = {𝑎 ∈ 𝐼 : 𝑝 (𝑎) ∈ 𝑃𝑗} .
Then 𝐼𝑗 ∈ ℐ ′ for each 1 ≤ 𝑗 ≤ 𝛽, and the 𝛽 subsets
𝐼1, 𝐼2, ⋅ ⋅ ⋅ , 𝐼𝛽 for a partition of 𝐼 . Hence,

𝛼′ ≥ max
1≤𝑗≤𝛽

∣𝐼𝑗 ∣ ≥ ∣𝐼∣ /𝛽 = 𝛼/𝛽.

In the remaining of this proof, we prove the second inequal-
ity in the lemma. Our proof uses a notion relative interference
originally defined in [14] under the uniform power assignment.
We extend this notion under an arbitrary power assignment as
follows. Consider a set 𝐼 of links in 𝐴 and a transmission
power assignment 𝑝 ∈ 𝑃 𝐼 . It’s easy to verify that when
all the links in 𝐼 transmit at the same time under the power
assignment 𝑝, the SINR of a link 𝑎 = (𝑢, 𝑣) ∈ 𝐼 is at least 𝜎
if and only if

0 <
∑

𝑎′=(𝑢′,𝑣′)∈𝐼∖{𝑎}

𝜂𝑝 (𝑢′, 𝑣′) ∥𝑢′𝑣∥−𝜅

𝜂𝑝(𝑢,𝑣)∥𝑢𝑣∥−𝜅

𝜎 − 𝜉
≤ 1.

Motivated by this characterization, we define the relative
interference on a link 𝑎 = (𝑢, 𝑣) ∈ 𝐼 by another link
𝑎′ = (𝑢′, 𝑣′) ∈ 𝐼 ∖ {𝑎} under the power assignment 𝑝 to
be

𝜂𝑝 (𝑢′, 𝑣′) ∥𝑢′𝑣∥−𝜅

𝜂𝑝(𝑢,𝑣)∥𝑢𝑣∥−𝜅

𝜎 − 𝜉
.

and define the relative interference on a link 𝑎 ∈ 𝐼 by a
subset 𝐼 ′ of 𝐼 under the power assignment 𝑝 as the sum of the
relative interferences on 𝑎 by all links in 𝐼 ′ under the power
assignment 𝑝. Then, under the power assignment 𝑝, all links
in 𝐼 can transmit successfully at the same time if and only if
the relative interference on each link in 𝐼 by all other links in
𝐼 is at most one and positive.

The second inequality in the lemma holds trivially if 𝛼′ ≤
16. So we assume that 𝛼′ > 16. Let 𝐼 ′ be a set in ℐ ′ with
∣𝐼∣ = 𝛼′ and 𝑝 ∈ 𝑃 𝐼 be a power assignment satisfying that all
links in 𝐼 ′ can transmit successfully at the same time under 𝑝
and

max
𝑎∈𝐼′

𝑝 (𝑎) ≤ 2min
𝑎∈𝐼′

𝑝 (𝑎) .

For two distinct links 𝑎 and 𝑎′ in 𝐼 , the relative interference
on 𝑎 by 𝑎′ under the power assignment 𝑝 (respectively, the

uniform maximum power assignment) is denoted by 𝑅𝐼 (𝑎; 𝑎′)
(respectively, 𝑅𝐼∗ (𝑎; 𝑎′)) . For a link 𝑎 ∈ 𝐼 ′ and a subset
𝐼 ′′ of 𝐼 ′ ∖ {𝑎}, the relative interference on 𝑎 by 𝐼 ′′ under
the power assignment 𝑝 (respectively, the uniform maximum
power assignment) is denoted by 𝑅𝐼 (𝑎; 𝐼 ′′) (respectively,
𝑅𝐼∗ (𝑎; 𝐼 ′′)). By definition,

𝑅𝐼 (𝑎; 𝐼 ′′) =
∑
𝑎′∈𝐼′′

𝑅𝐼 (𝑎; 𝑎′) ,

𝑅𝐼∗ (𝑎; 𝐼 ′′) =
∑
𝑎′∈𝐼′′

𝑅𝐼∗ (𝑎; 𝑎′) .

Since all links in 𝐼 ′ can transmit successfully at the same
time under the power assignment 𝑝, for each link 𝑎 ∈ 𝐼 ′,
0 < 𝑅𝐼 (𝑎; 𝐼 ′ ∖ {𝑎}) ≤ 1.

Next, we construct a subset 𝐼 ′′ of 𝐼 satisfying that ∣𝐼 ′′∣ ≥
∣𝐼 ′∣ /16 and for each 𝑎 ∈ 𝐼 ′′, 𝑅𝐼 (𝑎; 𝐼 ′′ ∖ {𝑎}) ≤ 1/2. We
pick an arbitrary ordering of the links in 𝐼 ′. We partition 𝐼 ′

into a sequence of subsets in the first-fit manner in this link
ordering such that for each link 𝑎, the relative interference of
the preceding links in the subset containing 𝑎 to 𝑎 itself is at
most 1/4. Since the relative interference to each link 𝑎 in 𝐼 ′ at
most one, the number of subsets used in this first-fit partition
of 𝐼 ′ is at most four. We then repeat the same approach in the
reverse order to partition on each of the subsets into at most
four smaller subsets such that in each of these smaller subsets
the relative interference on each link by all succeeding links
in the original link order is at most 1/4. Thus, the number
of these smaller subsets is at most 16 and in each of these
smaller subsets, the relative interference on each link by other
links is at most 1/4 + 1/4 = 1/2. Let 𝐼 ′′ be the largest one
among these smaller subsets. Then, ∣𝐼 ′′∣ ≥ ∣𝐼 ′∣ /16.

Finally, we show that 𝐼 ′′ ∈ ℐ∗. For each pair of distinct
links 𝑎 = (𝑢, 𝑣) and 𝑎′ = (𝑢′, 𝑣′) in 𝐼 ′′,

𝑅𝐼 (𝑎; 𝑎′) =
𝜂𝑝 (𝑢′, 𝑣′) ∥𝑢′𝑣∥−𝜅

𝜂𝑝(𝑢,𝑣)∥𝑢𝑣∥−𝜅

𝜎 − 𝜉
≥

1
2𝜂𝑝 (𝑢, 𝑣) ∥𝑢′𝑣∥−𝜅

𝜂𝑝(𝑢,𝑣)∥𝑢𝑣∥−𝜅

𝜎 − 𝜉

=
1

2

𝜂 ∥𝑢′𝑣∥−𝜅

𝜂∥𝑢𝑣∥−𝜅

𝜎 − 𝜉
𝑝(𝑢,𝑣)

≥ 1

2

𝜂 ∥𝑢′𝑣∥−𝜅

𝜂∥𝑢𝑣∥−𝜅

𝜎 − 𝜉
𝑝max

=
1

2

𝜂𝑝max ∥𝑢′𝑣∥−𝜅

𝜂𝑝max∥𝑢𝑣∥−𝜅

𝜎 − 𝜉
=

1

2
𝑅𝐼∗ (𝑎; 𝑎′) ,

which implies 𝑅𝐼∗ (𝑎; 𝑎′) ≤ 2 ⋅𝑅𝐼 (𝑎; 𝑎′). Thus, for each link
𝑎 ∈ 𝐼 ′′,

0 < 𝑅𝐼∗ (𝑎; 𝐼 ′′ ∖ {𝑎}) ≤ 2 ⋅𝑅𝐼 (𝑎; 𝐼 ′′ ∖ {𝑎}) ≤ 1.

So, 𝐼 ′′ ∈ ℐ∗. Therefore,

𝛼∗ ≥ ∣𝐼 ′′∣ ≥ ∣𝐼 ′∣ /16 = 𝛼′/16,

which implies 𝛼′ ≤ 16𝛼∗.
Now, we are ready to show that 𝐼∗ is a 16𝛽𝜇-approximate

solution. Since 𝒜 has approximation ratio to 𝜇, we have ∣𝐼∗∣ ≥
𝛼∗
𝜇 . By Lemma 4, 𝛼∗ ≥ 𝛼

16𝛽 . So,

∣𝐼∗∣ ≥ 𝛼∗

𝜇
≥ 𝛼

16𝛽𝜇
.
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Therefore, 𝐼∗ is a 16𝛽𝜇-approximate solution.

Finally, we remark that the power diversity 𝛽 can be
computed in polynomial time by dynamic programming if 𝑃
consists of disjoint intervals.

V. CONCLUSION

In this paper, we show that MISL has a polynomial
𝑂 (𝛽)-approximation algorithm, and SLS has a polynomial
𝑂 (𝛽 ln𝛼)-approximation algorithm, where 𝛼 is the indepen-
dence number of ℐ and 𝛽 is the power diversity of 𝑃 . In
particular, in practical networks with constant power diversity
𝛽, all of them have a polynomial 𝑂 (ln𝛼)-approximation
algorithm. There are still many interesting and challenging
unresolved research issues on the link scheduling subject to
the physical interference. For examples, it is open whether SLS
has a polynomial constant-approximation algorithm. It is also
open whether the weighted variant of MISL has a polynomial
constant-approximation algorithm.
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APPENDIX

The scheduling algorithm B given in [8] is a first-fit greedy
algorithm. A sufficiently small constant 𝑐 < 1 is chosen, and
all the links are scheduled sequentially in the increasing order
of lengths. When a link is considered, it is assigned to the first
time-slot satisfying that the cumulative relative interference (or
the affectance in their term) of all the links already assigned to
this time-slot to this link is at most 𝑐. Let 𝒮 be the output link
schedule. Suppose that 𝒳 is a shortest link schedule satisfying
that each link receives a cumulative relative interference of at
most 𝑐 from all other links scheduled in the same time-slot as
this link. Lemma 8 in [8] claims that for any positive integer
𝑘, the total number of links scheduled by 𝒳 in the first 𝑘 time-
slots is no more than the total number of links scheduled by 𝒮
in the first 12𝑘 time-slots. This lemma is vital to the claimed
constant approximation bound of the scheduling algorithm B.
However, its proof is incorrect and there is no basis that this
lemma is true.

The paper gave a proof by contradiction. Assume the claim
is false for some integer 𝑘. For each 1 ≤ 𝑖 ≤ 12𝑘, let 𝑆𝑖
denote the links scheduled by 𝒮 in the 𝑖-th time-slot. For each
1 ≤ 𝑗 ≤ 𝑘, let 𝑋𝑗 denote the links scheduled by 𝒳 in the
𝑗-th time-slot. In addition, let 𝒮12𝑘 denote the set of links
scheduled by 𝒮 in the first 12𝑘 time-slots, and 𝒳𝑘 denote the
set of links scheduled by 𝒳 in the first 𝑘 time-slots. Then, for
some 1 ≤ 𝑖0 ≤ 12𝑘 and 1 ≤ 𝑗0 ≤ 𝑘,

∣𝑆𝑖0 ∖ 𝒳𝑘∣ < ∣𝑋𝑗0 ∖ 𝒮12𝑘∣ /12.
Let 𝑆 = 𝑆𝑖0 , 𝑆

′ = 𝑆𝑖0 ∖ 𝒳𝑘, 𝑋 = 𝑋𝑗0 and 𝑋 ′ = 𝑋𝑗0 ∖
𝒮12𝑘. Following their notation, we use 𝛼𝐵 (ℓ) to denote the
total relative interference of a set 𝐵 of links to a link ℓ. By
the choice of 𝑐, the paper shows that for some link ℓ ∈ 𝑋 ′,
𝛼𝑆′ (ℓ) < 𝛼𝑋′ (ℓ). Based on this, the paper claims that

𝛼𝑆 (ℓ) = 𝛼𝑆′ (ℓ)+𝛼𝑆∩𝑋 (ℓ) < 𝛼𝑋′ (ℓ)+𝛼𝑆∩𝑋 (ℓ) = 𝛼𝑋 (ℓ) .
(1)

Consequently, 𝛼𝑆 (ℓ) < 𝛼𝑋 (ℓ) ≤ 𝑐, which contradicts to the
fact that the link ℓ was not selected into 𝑆. However, the two
equalities in the above equation (1) are false. Indeed, since
𝑆′ = 𝑆 ∖ 𝒳𝑘, we have 𝑆 = 𝑆′ ∪ (𝑆 ∩ 𝒳𝑘). Similarly, 𝑋 =
𝑋 ′ ∪ (𝑋 ∩ 𝒮12𝑘). Therefore,

𝛼𝑆 (ℓ) = 𝛼𝑆′ (ℓ) + 𝛼𝑆∩𝒳𝑘
(ℓ) ,

𝛼𝑋 (ℓ) = 𝛼𝑋′ (ℓ) + 𝛼𝑋∩𝒮12𝑘
(ℓ) .

Since 𝑆 ∩ 𝒳𝑘 could be much larger than 𝑆 ∩ 𝑋 in general,
𝛼𝑆 (ℓ) may be much larger than 𝛼𝑆′ (ℓ)+𝛼𝑆∩𝑋 (ℓ). So the first
equality in equation (1) has to be changed to the inequality ≥
in the reverse direction, which cannot lead to 𝛼𝑆 (ℓ) < 𝛼𝑋 (ℓ)
any more. The mistake seems to come from the confusion
between 𝑋 and 𝒳𝑘 and the confusion between 𝑆 and 𝒮12𝑘.
One may hope that 𝛼𝑆∩𝒳𝑘

(ℓ) ≤ 𝛼𝑋∩𝒮12𝑘
(ℓ) so that we

can still get 𝛼𝑆 (ℓ) < 𝛼𝑋 (ℓ). But there is no basis for the
inequality 𝛼𝑆∩𝒳𝑘

(ℓ) ≤ 𝛼𝑋∩𝒮12𝑘
(ℓ) at all, and we do not

believe this inequality is true in general.
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