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Abstract

One of the main applications of wireless sensor networks
is to provide proper coverage of their deployment regions.
A wireless sensor network k-covers its deployment region if
every point in its deployment region is within the coverage
ranges of at least k sensors. In this paper, we assume that
the sensors are deployed as either a Poisson point process
or a uniform point process in a square or disk region, and
study how the probability of the k-coverage changes with
the sensing radius or the number of sensors. Our results
take the complicated boundary effect into account, rather
than avoiding it by assuming the toroidal metric as done in
the literature.

1 Introduction

One of the main applications of wireless sensor networks
is to provide proper coverage of their deployment regions.
Typically, the sensing range of a sensor is a (closed or open)
circular disk centered at the sensor, whose radius is termed
as the sensing radius of the sensor. For any positive inte-
ger k, a point is said to be k-covered by a sensor network
if it falls in the sensing ranges of at least k sensors, and a
region is said to be k-covered if each point in this region is
k-covered. In this paper, we study how the probability of a
deployment region being k-covered by randomly deployed
sensors changes with the sensing radius or the number of
sensors. A precise description of the problems is given be-
low.

Let X;,X5,--- be independent and uniformly dis-
tributed random points on a bounded region A in the
plane. Given a positive integer m, the point process
{X1,Xs, -+, X} is referred to as the uniform n-point
process on A, and is denoted by X, (A). Given a positive
number A, let Po () be a Poisson random variable with
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parameter )\, independent of { X 1, X5, - - - }. Then the point
process {Xl, X2, 5 Xpo(n) } is referred to as the Poisson
point process with mean X on A, and is denoted by P (A).
Let k be a fixed nonnegative integer, and €2 be the unit-area
square or disk centered at the origin o. For any real num-
ber t, use t€) to denote the set {tx : x € Q}, i.e., the square
or disk of area t? centered at the origin. Let C,, , (respec-
tively, Cy, ,.) denote the event that Q2 is (k + 1)-covered by
the (open or closed) disks of radius r centered at the points
in Py, () (respectively, X, (©2)). Let K, ,, (respectively,
K ,) denote the event that /52 is (k + 1)-covered by the
unit-area (closed or open) disks centered at the points in
Py (/sQ) (respectively, X, (1/s€2)). Then, we would like
to study the asymptotics of Pr[Cy,] and Pr [C] ] as n
approaches infinity, and the asymptotics of Pr[K ,] and
Pr[K/,] as s approaches infinity.

Let 7 denote the peripheral of €2, which is equal to 4
(respectively, 2/7) if  is a square (respectively, disk). For
any £ € R, let

2

3
— 7~ e 3, ifk=0;
a(§) = 16(2ﬁn+e*%)
%6_%, 1fl€>1
and
4= 42 ﬁ—l—iﬂ)ne*%, if k = 0;

The mains results of this paper are summarized in the fol-
lowing two theorems.

Theorem 1 Let 7, = In ”+(2’€+2Lln1n ntln r
lim, o &, = & for some £ € R, then

1-p (5) < nh_{rolo Pr [Cn,rn] < m, and (1)
. , 1
Ifhmn—>oo fn = 0, then
lim Pr[C,,,]= lim Pr [C’,’Mn} =1. (3)

n—oo n—o0
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Iflimy, 0 &, = —00,then

lim Pr(C,,, ]= lim Pr[C) . ]=0. 4)

n—oo n—o0

Theorem 2 Let ji(s) = Ins+2(k+1)Inlns +§(s). If
limg_ 00 € (s) = & for some € € R, then

1
=00 < Jim Pr{Kous] < 757 and
) 1
1-6(0 < lim Pr K] < 50y

)
lim Pr K (5] = i
Iflimg_, o € (8) = —o0, then
Jim Pr[K, ] = lim Pr[K ] =0.

The equalities (3) and (4) will be derived from the in-
equalities (1) and (2) by a perturbation argument. The in-
equality (2) will be obtained from the inequality (1) by a
de-Poissonization argument. Theorem 2 can be proved from
Theorem 1 by using a scaling argument. Due to the limita-
tion on paper length, we will skip the detail and only the
proof of the equality (1) will be given in this paper.

We remark that the probabilistic studies of k-coverage
by a random point process have been conducted for k = 1
in [1] and arbitrary integer-valued constant £ in [5] but
with certain limitations. Both studies assume Poisson point
processes on a square and use the toroidal metric, rather
than the Euclidean metric which is more relevant to the
applications. This renders their results hardly applicable
to wireless sensor networks. Indeed, the smallest sensing
radius or sensor density to ensure the k-coverage under
the toroidal metric almost surely fails to guarantee the k-
coverage under the Euclidean metric. The assumption of
the toroidal metric technically eliminates the boundary ef-
fect under the Euclidean metric.

In what follows, ||z| is the Euclidean norm of a point
x € R?, and |A| is shorthand for 2-dimensional Lebesgue
measure (or area) of a measurable set A C R2. All inte-
grals considered will be Lebesgue integrals. The topologi-
cal boundary of a set A C R? is denoted by O A. The (closed
or open) disk of radius  centered at x is denoted by D ().
For any z,y € , let

vp () = |D, (z) N Q,

vor (y\z) = [(Dr () \ Dy (2)) N9,

k 7
(TLUT"({E)) efan(w)
1.

P (T) =

i

)

0

E |

(TLUT (y\x))l e~ nr (y\z)
i! '

bnr (Y\T) = ‘

(2

0

An event is said to be asymptotic almost sure (abbreviated
by a.a.s.) if it occurs with a probability converges to one as
n — oo. The symbols o, ~, 2, < refer to either the limit
n — oo. To avoid trivialities, we tacitly assume n to be
sufficiently large if necessary. For simplicity of notation,

the subscripts will be frequently suppressed.

2 Geometric Ingredients

For any » > 0 and a unit-area square {2, we partition
() into three subregions 2, (0), €2, (1) and €, (2) as illus-
trated in Figure 1(a): 2,- (0) consists of all points in {2 apart
from the sides of 2 by at least 7, €2,. (1) consists of all points
in (2 apart from some side of () by less than r and from all
other sides by at least 3r, and 2, (2) consists of the rest
points in Q. For any z € Q, (i), v, (z) > 27 ¢7r?.

3r 1-6r 3r

Figure 1. Parition of (2 :(a) 2 is square, (b)
is disk.

For any r > 0 and a unit-area disk €2, we partition € into
three subregions 2, (0), €2, (1) and €2, (2) as illustrated in

Figure 1(b): 2, (0) is the disk of radius ﬁ — r centered at

0; O, (1) is the annulus of radii % —rand /L — 72 cen-
1

tered at o; and 2, (2) is the annulus of radii |/~ — r? and

% centered at 0. For any x € Q.. (i), v, (z) > 27772,

In the remaining of this section, we introduce the follow-
ing lemma. Due to the limitation on paper length, its proof
is not given here.

Lemma 3 Let S be a disk of radius s. For anyr > s, let
be the set of points (z,y) € R? x R? satisfying that there
exists z € S such that ||z — z|| = |ly — z|| = r and 7y x
2% > 0. Then the Lebesgue measure of F is (4mr?) |S].

3 Critical Sensing Radius

This section is devoted to the proof of the equality (1).
The inequality (1) consists of the asymptotic upper bound
and the asymptotic lower bound on Pr [C), ., ].
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The proof of the asymptotic upper bound on Pr [C', ., |
is based on the observation that the event V), ,. implies that
the (k + 1)-vacancy V,, , defined by the Lebesgue measure
(i.e., area) of the set of points in Q which are not (k + 1)-
covered by the closed disks of radius r centered at the points
in P, () is zero. Hence, Pr[C,, ,] is upper bounded by
Pr[V,, = 0]. Based on the Cauchy-Schwartz inequality,
Pr [V, = 0] can be further upper bounded in terms of the
mean and variance of V, .

The proof of the asymptotic lower bound on Pr [C, -, ] is
based on the following characterization of (k + 1)-coverage
by open disks: Let L, , denote the number of (n,r)-
crossing points where an (n,r)-crossing point is either
an intersection point of 9Q and 0D, (X )for some X €
P (), or an intersection point of D, (X) and 9D, (Y)
for some X,Y € P, (Q) respectively, and M, , denote
the number of (n, r)-crossing points which are not (k + 1)-
covered by the open disks of radius r centered at the points
in P, (Q). Then, C,, , occurs if and only if L, , > 0 and
M, = 0 (see, e.g., [3]). Hence,

PriC,.| = nr > 0, My, » = 0]

Pr[L
=Pr[L,, >0]—Pr[L,, >0,M,, >0
=Pr[L,, > 0] —Pr[M,, > 0]
2 Pr(Ln, >0 = E[Mn,],

where the last inequality follows from the Markov inequal-
ity.
3.1 Mean and Variance of the (k+1)-

Vacancy

The following lemma gives the asymptotic mean of the
(k 4 1)-vacancy and an asymptotic upper bound on the
variance of the (k + 1)-vacancy.

Inn+(2k+1) Inlnn+&,

Lemmad Letr, = — with lim &, =
& for some £ € R. Then,
_ o _E
Bl () Var ]~ | L5 TE=0
n Sl e s ifk>1;
and
:
16e~ §+32\/_776 5 ifk=0;
Var [n (nmr2) Ve, ] < ’
ety vn) £ { R T

3.2 Crossing Points

In this subsection, we prove the following lemma.

Lemma5 Let 1, = /20t CHDInntn i iy ¢, =

& for some § € R. Then, Ly, ., > 0 is asymptotically almost
sure and E [M,, ,.] < B(€).

r 1-2r r

E  RegionA
Il  RegionB
— Possible location of z for region A

=== Possible location of z for region B

Figure 2. Region A and B for the crosspoint
in O(.

For simplicity, we suppress the subscripts. An (n,r)-
cross pointing is said to be of the first (respectively, second)
type if it is an intersection point between 952 and 0D (X)
for some X € P, () (respectively, between D (X) and
0D (Y) for some X,Y € P, (2)). Let L’ be the number
of crossing points of the first type. Then,

Pr[L = 0] < Pr[L/ = 0] = e "\UOI = =© ()
=o(l).

Thus, L > 0 is asymptotically almost sure.

Let M’ (respectively, M") be the number of crossing
points of the first (respectively, second) type which are not
(k + 1)-covered. By Lemma 4, E [M,,,,] < 5(€) would
follow from

E[M'] ~ and E [M"] < AE [n (nmr®) V].

ne_ :
k12k=1\/7
We begin with the limit of E [M'].
First we consider the case that € is a square region. Let
X be a random point and ) be the event that the right half-

circle of D (X) and the upper side of 2 intersects at a
point which is not (k + 1)-covered. By symmetry,

E(M')=8nPr(Q).

Let A be the set of points of x such that the right half-circle
of D (x) and the upper side of 2 intersects at a point which
is at a distance of at least » from both vertical sides of €2, and
B be the set of points of x such that the right half-circle of
0D (x) and the upper side of €2 intersects at a point which
is at a distance of less 7 from either the left vertical side of
Q or the right vertical side of €2 (see figure 2). Then,

Pr(Q):/AUBPr(Q|X:x)d;v.

TEEE .2
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After some calculation, we have

1 3
n| Pr(Q|X=z)dr ~——=¢ 2,and
LK; K12k /7
n/ Pr(Q| X =xz)de=0(1).
B
Therefore,
_¢
no_ ne 2
E(M')=8nPr(Q) ~ 7]“2]671\/%.

Now we consider the case that {2 is a disk region. Each
node in 2\ ©(0) produces two crossing points of the first
type. Each node on 92 (0) produces exactly one cross-
ing pint of the first type, but 92 (0) has zero measure.
All other nodes does not produce any crossing point of
the first type. For any point z € 0fQ, since ¢, , (2) ~

k

1 nwr? —# h
o\ s e , We have

1 2\F e
B(M') ~ 2012\ (0)| (’””" ) e

ne s
kl2k=1,/7"
Next we derive the asymptotic upper bound on E [M "].

Fix an ordered pair of random nodes X and Y. Let Z be the
intersecting point of the two circles 9D (X) and 0D (Y')

with )ﬁ} X ﬁ > 0. Let @ denote the event that Z lies
inside  and Z is not (k + 1)-covered. Then by symmetry,
E[M"]=n(n-1)Pr[qQ].

By Lemma 3, the probability that Z lies in a sufficiently
small circular disk of area dz centered at a point z € () is at
most 4772dz. Thus,

EM")<n(n- 1)/ b (2) dmrPdz
Q
<A4FE [n (nﬂ'rQ) V} .
3.3 Proof of Theorem 1

Here we prove the inequality (1). For simplicity, we sup-
press the subscripts. By Lemma 4, it is straightforward to
show that )

E [n (mer) V] > 0 (€)
Var n(nmr2) V] ~ s
By the Cauchy-Schwartz inequality,

Var[V] 1
Pr [V = 0] < 2 2
E[V
EVI] 14 Va[r[]V]
= 1 < 1

En(nrr2)V]2 ~ ’
L+ Var[n(nwr2)V] 1+a (5)

Thus, )

On the other hand, by Lemma 5,
Pr{C] > Pr[Lyp, > 0] - E[M,,] 2 1-03().

So, the inequality (1) holds.

4 Conclusion

We address the asymptotic (k + 1)-coverage of a square
or disk region by a Poisson or uniform point process. A
major technical challenge is the handling of the boundary
effect. For the purpose of comparison between with and
without the boundary effect, let us consider the asymptotic
(k 4 1)-coverage of a square by Poisson point process with
unit-area coverage range. With boundary effect, the asymp-
totic (k + 1)-coverage requires that the sensor density n/s
should grow with the area s at least according to

n/s=Ins+2(k+1)Inlns+ £ (s)

with lim,_, o € (s) = oco. Without the boundary effect, the
asymptotic (k + 1)-coverage only requires that the sensor
density n/s grows with the area s according to

n/s=Ins+ (k+2)Inlns+ £(s)

with lims_.o & (s) = oo [5].
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