
Analysis of Greedy Approximations with Nonsubmodular Potential

Functions

Ding-Zhu Du∗ Ronald L. Graham† Panos M. Pardalos ‡ Peng-Jun Wan §

Weili Wu ¶ Wenbo Zhao ‖

Abstract

In this paper, we present two techniques to analyze
greedy approximation with nonsubmodular functions
restricted submodularity and shifted submodularity.
As an application of the restricted submodularity, we
present a worst-case analysis of a greedy algorithm for
Network Steiner tree adapted from a heuristic originally
proposed by Chang in 1972 for Euclidean Steiner tree.
The performance ratio of Chang’s heuristic is a long-
standing open problem due to the nonsubmodularity
of its potential function. As an application of the
shifted submodularity, we present a worst-case analysis
of a greedy algorithm for Connected Dominating Set
generalized from a greedy algorithm proposed by Ruan
et al. Such generalized greedy algorithm is shown to
have performance ratio at most (1 + ε)(1 + ln(∆ − 1)),
which matches the well-known lower bound (1−ε) ln ∆,
where ∆ is the maximum vertex-degree of input graph
and ε is any positive constant.

1 Introduction

Greedy strategy is one of the major techniques in the
design of approximation algorithms for NP-hard opti-
mization problems. If the potential function used by a
greedy approximation algorithm is submodular, the per-
formance ratio of the greedy approximation algorithm

∗Department of Computer Science, University of Texas at Dal-

las, Richardson, TX 75083, USA and Xi’an Jiaotong University,

Xi’an, China. Email: dzdu@utdallas.edu. Support in part by

the NSF under grant CCF-9208913.
†Department of Computer Science, University of California at

San Diego, La Jolla, CA 92093, USA. Email: graham@ucsd.edu.
‡Department of Industrial Engineering and System Science,

University of Florida, Gainsville, FL 32611, USA. Email:

pardalos@ufl.edu.
§Department of Computer Science, Illinois Institute of Tech-

nology, Chicago, IL 60616, USA. Email: wan@cs.iit.edu.
¶Department of Computer Science, University of Texas at Dal-

las, Richardson, TX 75083, USA. Email weiliwu@utdallas.edu.

Support in part by the NSF under grant CCF-9208913.
‖Department of Computer Science and Engineering, University

of California at San Diego La Jolla, CA 92093, USA. Email:

w3zhao@cs.ucsd.edu.

can be easily derived. For greedy approximations with
nonsubmodular potential functions, their performance
analysis is a largely unexplored open area. Indeed, many
greedy heuristics with good performance demonstrated
in computational experiments cannot receive a theoret-
ical analysis due to the difficulty on dealing with non-
submodular potential function.

In this paper, we introduce two techniques to an-
alyze greedy approximations with nonsubmodular po-
tential functions: restricted submodularity and shifted
submodularity. These two techniques are illustrated
by their applications in analyzing two greedy approx-
imation algorithms for Network Steiner Tree and Con-
nected Dominating Set respectively. The greedy algo-
rithm for Network Steiner tree to be studied in this pa-
per is adapted from a heuristic originally proposed by
Chang [1, 2] in 1972 for Euclidean Steiner tree. Chang’s
heuristic starts with a minimum spanning tree and at
each iteration chooses a Steiner point such that using
this Steiner point to connect three vertices in the current
tree could replace two edges in the minimum spanning
tree and this replacement achieves the maximum gain
among such possible replacements. The performance ra-
tio of Chang’s heuristic is a long-standing open problem
due to the nonsubmodularity of its potential function. A
“submodular” variant of Chang’s heuristic was proposed
by Zelikovsky [8] for Network Steiner Tree. Zelikovsky’s
heuristic allows the newly added Steiner vertex to con-
nect only three terminals and adopts a submodular gain
function to choose the Steiner vertex in each iteration.
As a result, Zelikovsky [8] was able to establish a 11/6
bound on the performance ratio of his heuristic. In this
paper, we prove, by using the technique of restricted
submodularity, that Chang’s heuristic adapted for Net-
work Steiner Tree also has performance ratio bounded
by 11/6.

The greedy algorithm for Connected Dominating
Set to be studied in this paper is a generalization of
the greedy algorithm proposed by Ruan et al. [6] which
uses a nonsubmodular potential function. The latter
one chooses at each iteration a single vertex with maxi-

mum gain, and has a performance ratio at most 2+ln∆,
where ∆ is the maximum vertex-degree of the input
graph. Our generalization chooses at each iteration a
set of up to 2k−1 vertices with the maximum gain-cost
ratio, where k is a positive integer parameter. Using
the technique of shifted submodularity, we prove that
such generalization has a performance ratio at most
(

1 + 1
k

)

(1 + ln (∆− 1)). This implies that for any ε > 0
there is a (1 + ε) (1 + ln (∆− 1))-approximation algo-
rithm for Connected Dominating Set. An interesting
observation is that for greedy approximation algorithms
with submodular potential functions, the above gener-
alization cannot lead to better performance ratio.

2 Minimum Submodular Cover

Consider a ground set E and a real function f defined
on 2E . f is increasing if A ⊂ B implies f(A) ≤ f(B).
f is submodular if for any two subsets A and B of E,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

The marginal value of B ⊆ E with respect to A ⊆ E is
defined by

∆Bf(A) = f(A ∪B)− f(A).

Similarly, the marginal value of an element e ∈ E with
respect to A ⊆ E is defined by

∆ef(A) = f(A ∪ {e})− f(A).

Both monotonicity and submodularity of a function f
can be characterized in terms of the marginal values
(see, e.g., [5]): f is increasing if ∆xf (A) ≥ 0 for any
A ⊆ E and x ∈ E \ A; f is submodular if and only
if for any A ⊆ E and different x, y ∈ E \ A, the
inequality ∆xf (A) ≥ ∆xf (A ∪ {y}) holds. In addition,
the following are equivalent:

• f is increasing and submodular.

• For any A, B ⊆ E,

f (B)− f (A) ≤
∑

x∈B\A

∆xf (A) .

• For any A ⊆ E and x, y ∈ E \A,

∆xf (A) ≥ ∆xf (A ∪ {y}) .

Suppose that c is a nonnegative cost function on a
ground set E, and f is an integer-valued, increasing and
submodular function on 2E . The minimization problem

min

{

∑

x∈A

c(x) : f (A) = f (E) , A ⊆ E

}

is known as Minimum Submodular Cover. A greedy
approximation for it is as follows.

Greedy Algorithm GSC

A← ∅;
While ∃e ∈ E such that ∆ef (A) > 0 do

select a ∈ E with maximum ∆af (A) /c (a) ;
A← A ∪ {a};

Output A.

A general result on greedy algorithms with increas-
ing submodular potential functions has been existing in
the literature for a long time .

Theorem 2.1. Greedy Algorithm GSC produces an
H(γ)-approximation solution for Minimum Submodular
Cover, where γ = maxx∈E ∆xf(∅) and H(k) is the k-th
Harmonic number ([7]).

For many specific Minimum Submodular Cover

problems, the potential function f is not given explicitly.
For these problems, the main task is to find the proper
submodular potential function. Some Minimum Sub-

modular Cover problems such as Set Cover, the sub-
modular potential functions can be easily defined. But
for some others, it is far from trivial to find the sub-
modular potential function. A prominent example is
Weighted Connected Vertex Cover (CVC). An instance
of Weighted CVC is a connected vertex-weighted graph
G = (V, E). A solution to Weighted CVC is a connected
vertex cover, which is a subset of vertices inducing a con-
nected subgraph and covering all edges. The objective
is to find a connected vertex-cover with the minimum
total weight. The weighted CVC has the same approx-
imation hardness as weighted set cover [4]. The best-
known approximation algorithm for Weighted CVC is a
two-phased (2 + H(∆− 1))-algorithm presented in [4],
where ∆ is the maximum degree of G. In the next, we
show that Weighted CVC can be formulated as a Mini-

mum Submodular Cover problem, and consequently
the greedy approximation algorithm can be applied. We
pick V as the ground set. For any subset C of V , de-
fine g(C) to be the number of edges in G covered by
C, h(C) to be the number of connected components of
G[C], and f(C) = g(C) − h(C). Clearly, f(∅) = 0, and
f(V) = |E| − 1. In addition, f has the following prop-
erties.

Lemma 2.1. If |E| > 1 then C is a connected vertex-
cover if and only f(C) = |E| − 1. Furthermore, f is
increasing and submodular.

Proof. If C is a connected vertex-cover, then f (C) =
g (C) − h (C) = |E| − 1. Conversely, suppose that
f(C) = |E| − 1. Since |E| > 1, C is nonempty and
hence h (C) ≥ 1. On the other hand, g (C) ≤ |E|. So,
we must have g (C) = |E| and h (C) = 1. The former
implies that C is a vertex-cover, while the latter implies

that C induces a connected subgraph. Hence C is a
connected vertex-cover.

Now, we prove that f is increasing. Consider a
vertex subset C and a vertex u 6∈ C. We show that
∆uf(C) ≥ 0. We denote by N (u) the set of neighbors
of u in G. Then,

∆ug(C) = |N(u) \ C| ≥ 0.

On the other hand, −∆uh(C) is equal to the number
of connected components in G [C] adjacent to u minus
one. If C ∩ N(u) = ∅, then ∆ug(C) = deg(u) and
−∆uh(C) = −1, which implies that ∆uf(C) = deg(u)−
1 ≥ 0. If C∩N(u) 6= ∅, then u is adjacent to at least one
connected component of G[C] and hence −∆uh(C) ≥ 0,
which also implies that ∆uf(C) ≥ 0.

Next, we prove that f is submodular. Consider a
vertex subset C and two different vertices u and v in
V \ C. We show that ∆uf(C ∪ {v}) ≤ ∆uf(C) in two
cases:

Case 1: u is not adjacent to v. Then, ∆ug(C ∪
{v}) = ∆ug(C). Consider an arbitrary connected
component of G[C ∪ {v}] adjacent to u. If it does not
contain v, then it is also a connected component of G[C]
adjacent to u. If it contains v, then it must contain
at least one connected component of G[C] adjacent
to u. Thus, the number of connected components of
G[C ∪{v}] adjacent to u is no more than the number of
connected components of G[C] adjacent to u. In other
words, −∆uh(C∪{v}) ≤ −∆uh(C). So ∆uf(C∪{v}) ≤
∆uf(C).

Case 2: u is adjacent to v. Then, ∆ug(C ∪ {v}) =
∆ug(C) − 1. Among all connected components of
G[C ∪{v}] adjacent to u, exactly one contains v and all
others are each a connected component of G[C] adjacent
to u. Hence, −∆uh(C∪{v}) ≤ −∆uh(C)+1. Therefore,
∆uf(C ∪ {v}) ≤ ∆uf(C).

Note that

max
u∈V

∆uf(∅) = max
u∈V

(deg (u)− 1) = ∆− 1.

Greedy Algorithm GSC with potential function f as
defined above is a H(∆−1)-approximation for Weighted
CVC.

3 Network Steiner Tree

An instance of Network Steiner Tree consists of a
complete graph G with metric cost (or length) over a set
V of vertices and a subset R of vertices, called terminals,
in V . The objective is is to compute a shortest tree
in G interconnecting all terminals. While a minimum

solution is called a Steiner minimum tree, every tree
interconnecting all terminals without nonterminal leaf
is called a Steiner tree. A Steiner tree may contain
some vertices other than terminals. Those vertices
are called Steiner vertices. In this section, we first
describe a heuristic for Network Steiner Tree adapted
from Chang’s heuristic for Euclidean Steiner tree. After
that, we give a worst-case analysis of this heuristic which
illustrates the technique of restricted submodularity.

Denote by G [R] the subgraph of G induced by R.
Consider a subgraph H of G in which each connected
component contains at least one terminal. The union of
minimum spanning trees in all connected components of
H is denoted by MSF (H), and its length is denoted by
msf (H). A forest F in G [R] is called a spanning tree on
(R : H) if MSF (H)∪F is a tree spanning all terminals
in R. We denote by H the graph with vertex set V (H)∪
R and edge set E (H). Then, a spanning tree on (R : H)
can be regarded as a spanning tree on the connected
components of H. We denote by MST (R : H) a
minimum spanning tree on (R : H), and by mst (R : H)
the length of MST (R : H). Equivalently, MST (R : H)
is a minimum spanning tree on R after every component
of H is contracted into a vertex. Define

g(H) = mst(R)−mst(R : H),

f(H) = mst(R)−mst(R : H)−msf(H).

A star in G is legal w.r.t. H if it is either an edge,
or a 2-star, or a 3-star joining at most three connected
components of H . The following is a greedy version of
Chang’s heuristic:

Greedy Algorithm CST

H ← ∅;
While mst (R : H) > 0 do

choose a legal (w.r.t. H) star T
maximizing ∆T f (H);

H ← H ∪ T ;
Output MST (H).

Theorem 3.1. Greedy Algorithm CST is a 11/6-
approximation for Network Steiner Tree.

We begin with some definitions and notations. A
tree in G is said to be full if all its leaves are terminals
and none of its internal nodes is a terminal. A full
tree is said to be k-restricted if it contains at most k
terminals. Consider a tree T without non-terminal leaf.
We decompose T into full subtrees at terminals with
degree more than one such that in each subtree every
terminal becomes a leaf. Those subtrees are called full
components of T. T is said to be k-restricted if all of
its full components are k-restricted. A forest without

non-terminal leaf is said to be k-restricted if all of its
tree components are k-restricted. Suppose that S is the
edge-disjoint union of full trees S1, S2, · · · , Sl. For each
1 ≤ i ≤ l, let Ti be a spanning tree of the subgraph of
G induced by the terminals in Si. If T1 ∪ T2 ∪ · · · ∪ Tl

is a spanning tree of G [R], then S is called a Steiner
hypertree, and each Si is called a full component of S.
The cost of a Steiner hypertree is defined to be the total
costs of its full components. A Steiner hypertree is said
to be k-restricted if all of its full components are k-
restricted. In general, a Steiner hypertree may not be
a Steiner tree, and it is a Steiner tree if and only if
any pair of its full components have no common Steiner
vertex.

Consider a 3-restricted Steiner minimum hypertree
SMT3 in G with the smallest number of Steiner points.
Clearly, each full component of SMT3 is either an edge
or a 3-star. Let T be the Steiner tree output by the
algorithm CST. It’s possible that SMT3 may use some
Steiner vertices in T , and some full components of
SMT3 may have a common Steiner vertex. For each
full component of SMT3 whose Steiner vertex belongs
to T , we add to G an exclusive replication of such
full component (but without duplicating terminals); for
each Steiner vertex which is not in T but is shared
by multiple full components, we add to G exclusive
replications of all but one of these full components.
Denote by G+ the union of G and the replicated full
components. Replacing each full component of SMT3

whose Steiner vertex belongs to T or is shared by
others by its replication, we obtain a 3-restricted Steiner
minimum tree SMT +

3 in G+, which contains no Steiner
vertex in T , and has the same cost as SMT3.

Suppose that H is a subgraph of G in which each
connected component contains at least two terminals.
A forest F in G+ is called a Steiner forest on (R : H)
if MSF (H) ∪ F is a forest, all its leaves are terminals,
and none of its Steiner vertices belongs to H . A Steiner
forest F on (R : H) is called a Steiner tree on (R : H)
if MSF (H) ∪ F is a tree interconnecting all terminals.
Then, for any Steiner forest F on (R : H),

MSF (H ∪ F) = MSF (H) ∪ F.

We extend the domain of g(·) and f(·) to the set
of subgraphs of G+. Clearly, g(·) is a monotone
increasing function on the set of subgraphs of G+,
and g(H) = mst(R) if and only if H is a connected
graph interconnecting all terminals. It’s also well-known
that g(·) is submodular when restricted on the set of
subgraphs of G [R] (see, e.g., [8]). The next lemma is a
generalization of this restricted submodularity.

Lemma 3.1. Suppose that H is a subgraph of G and
S is Steiner tree on (R : H) in G+. Let g∗ and f∗

be the functions on the set of subgraphs of G defined
by g∗ (A) = g (H ∪A) and f∗ (A) = f (H ∪A) respec-
tively. Then both of them are submodular restricted on
the set of unions of full components of S.

Proof. Suppose that H1, H2, · · · , Hl are the connected
components of H . For each 1 ≤ i ≤ l, let H ′

i be
a spanning tree of the subgraph of G induced by the
terminals in Hi. Denote

H ′ = H ′
1 ∪H ′

2 ∪ · · · ∪H ′
l .

Suppose that S1, S2, · · · , Sm are the full components of
S. For each 1 ≤ i ≤ m, let S′

i be a spanning tree of the
subgraph of G induced by the terminals in Si. For any
graph A = ∪i∈ISi for some I ⊆ {1, 2, · · · , m}, denote
A′ = ∪i∈IS

′
i. Then, for any subgraph A which is the

union of some full components of S,

g∗ (A) = g (H ∪A) = g (H ′ ∪A′) .

Now suppose that A and B are any two graphs which
are unions of some full components of S. Since g is
submodular on the set of subgraphs of G [R], we have

g∗(A) + g∗(B) = g (H ′ ∪A′) + g (H ′ ∪B′)

≥ g((H ′ ∪A′) ∪ (H ′ ∪B′)) + g((H ′ ∪A′) ∩ (H ′ ∪B′))

= g(H ′ ∪ (A′ ∪B′)) + g(H ′ ∪ (A′ ∩B′))

= g∗(A ∪B) + g∗(A ∩B).

Therefore, g∗ submodular restricted on the set of unions
of the full components of S.

Note that for any subgraph A of S,

msf (H ∪A) = msf (H) + msf (A) .

Thus,

f∗ (A) = g∗ (A)−msf (H)−msf (A) .

Clearly, msf (·) is modular restricted on the set of
unions of the full components of S. Hence, f∗ is also
submodular on the set of unions of the full components
of S.

Corollary 3.1. Suppose that H is a subgraph of G, S
is Steiner tree on (R : H) in G+ with full components
{S1, S2, · · · , Sm} and l is a positive integer at most m.
For each 1 ≤ i ≤ l, let Fi be a forest in the subgraph of
G induced by the terminals in Si. Then,

∆Sl+1∪···∪Sm
g(H ∪ F1 ∪ · · · ∪ Fl)

≥ ∆Sl+1∪···∪Sm
g(H ∪ S1 ∪ · · · ∪ Sl).

Proof. For each 1 ≤ i ≤ l, let S′
i be a spanning tree in

the subgraph of G induced by the terminals in Si which
contains Fi. Then, the union of H ′

i with 1 ≤ i ≤ l and
Si with l + 1 ≤ i ≤ m is also a Steiner tree on (R : H).
By Lemma 3.1,

∆Sl+1∪···∪Sm
f(H ∪ F1 ∪ · · · ∪ Fl)

≥ ∆Sl+1∪···∪Sm
f(H ∪ S′

1 ∪ · · · ∪ S′
l).

On the other hand,

∆Sl+1∪···∪Sm
g(H ∪ S′

1 ∪ · · · ∪ S′
l)

≥ ∆Sl+1∪···∪Sm
g(H ∪ S1 ∪ · · · ∪ Sl).

Thus, the corollary follows.

Lemma 3.2. Suppose that H is a subgraph of G and
S is Steiner tree on (R : H) in G+. Then, for each
full component Q of S, there is a legal (w.r.t. H) star
Q′ ⊆ G satisfying that ∆Qf(H) ≤ ∆Q′f(H).

Proof. The lemma is trivial if Q ⊆ G, and so we assume
that Q G. Then Q is a replicated from some 3-star
{ou, ov, ow}. If o /∈ V (H), set Q′ to be this 3-star. Then
Q′ is a legal star w.r.t. H , and ∆Q′f(H) = ∆Qf(H).
So, we further assume o ∈ V (H). Suppose that

MST (R : H ∪Q) = MST (R : H)− {e∗, e∗∗} .

Then,

∆Qg(H) = length(e∗) + length(e∗∗),

and MST (H) ∪ MST (R : H) − {e∗, e∗∗} consists of
three tree components containing u, v, and w respec-
tively. Without loss of generality, suppose that o lies in
the tree component containing u. Set Q′ = {ov, ow}.
Then Q′ is a legal, and MST (H) ∪ MST (R : H) −
{e∗, e∗∗}∪Q′ is also a tree interconnecting all the termi-
nals. Hence, MST (R : H)−{e∗, e∗∗}∪Q′ is a spanning
tree on (R : H), which implies that

∆Q′g(H) ≥ length(e∗) + length(e∗∗) = ∆Qg(H).

Clearly,

msf (H ∪Q′) = msf (H) + msf (Q′) .

Therefore,

∆Q′f(H) = ∆Q′g(H)−msf (Q′)

≥ ∆Qg(H)−msf (Q) = ∆Qf(H).

Consider the following greedy algorithm which is a
generalization to CST:

Greedy Algorithm CST(A)
H ← A;
While mst (R : H) > 0 do

choose a legal (w.r.t. H) star T
maximizing ∆T f (H);

H ← H ∪ T ;
Output MST (H).

Lemma 3.3. Suppose that H is a subgraph of G in
which every connected component contains at least two
terminals, and T is the Steiner tree obtained by Greedy
Algorithm CST(H). Then, for any 3-restricted Steiner
tree S on (R : H) in G+ which contains no Steiner point
in T , 2∆T f(H) ≥ ∆Sf(H).

Proof. Let T1, T2, · · · , Tk be the sequence of trees cho-
sen by Greedy Algorithm CST(H) in the order of ap-
pearance. We prove the lemma by induction on k. If
k = 0, then both T and S are empty and the lemma
holds trivially. Now assume that k > 0 and denote
T ′ = T2 ∪ · · · ∪ Tk. Note that

∆Sf(H) = mst (P : H) + mst (H)−mst (H ∪ S)

= mst (P : H)−mst (S) .

It is sufficient to prove that the lemma holds when S
is the shortest 3-restricted Steiner tree on (R : H). So
we assume that S is a shortest 3-restricted Steiner tree
on (R : H). Then, each full component of S is either
an edge or a star with three leaves. By Lemma 3.2 and
the greedy principle, ∆Qf(H) ≤ ∆T1

f(H) for each full
component Q of S. The rest of the proof is divided
into three cases depending on the number of connected
components of H joined by T1.

Case 1. T1 joins only one connected components of
H.

In this case, S is still a 3-restricted Steiner tree on
(R : H ∪ T1). By induction hypothesis,

2∆T ′f(H ∪ T1) ≥ ∆Sf(H ∪ T1).

On the other hand,

∆Sf(H ∪ T1) = ∆Sg(H ∪ T1)−mst(S)

= ∆Sg(H)−mst(S) = ∆Sf(H).

Therefore, by the greedy principle,

2∆T f(H) = 2∆T ′f(H ∪ T1) + 2∆T1
f(H)

≥ ∆Sf(H ∪ T1) = ∆Sf(H).

Case 2. T1 joins two connected components of H .
We first claim that S contains a full component

S1 satisfying that S′ = S − S1 is a Steiner forest on
(R : H ∪ T1) and

∆S′f(H ∪ T1) ≥ ∆S′f(H ∪ S1).

Indeed, pick two terminals u and v from the two
connected components of H joined by T1 respectively.
Let e′ = uv and suppose that

MST (R : H ∪ T1) = MST (R : H)− e∗.

Then,

∆T1
g(H) = length(e∗).

Let P1 be the path in MST (H) ∪ S between u and v.
Connect every pair of consecutive terminals in each path
component of P1 ∩ S with an edge. Then, there exists
one such edge e1 bridging the two tree components of
MST (H)∪MST (R : H)−e∗. So, MST (H)∪MST (R :
H)− e∗ + e1 is also a tree interconnecting all terminals.
Hence,

∆e1
g(H) ≥ length(e∗) = ∆T1

g(H).

Suppose that S1 is the full component of S containing
two endpoints of e1, and let S′ = S − S1. Then
MST (H)∪S′∪{e′} is a forest and so is MST (H)∪S′∪
T1. In addition, MST (H) ∪ S′ ∪ {e1} and MST (H) ∪
S′∪{e′} have the same collection of components, which
implies that

∆S′∪{e1}g(H) = ∆S′∪{e′}g(H) = ∆S′∪T1
g(H).

Thus,

∆S′g(H ∪ {e1, e2}) = ∆S′∪{e1}g(H)−∆e1
g(H)

≤ ∆S′∪T1
g(H)−∆T1

g(H) = ∆S′g(H ∪ T1).

By Corollary 3.1,

∆S′g(H ∪ {e1}) ≥ ∆S′g(H ∪ S1),

Therefore,

∆S′g(H ∪ T1) ≥ ∆S′g(H ∪ S1 ∪ S2).

Hence,

∆S′f(H ∪ T1) = ∆S′g(H ∪ T1)−msf (S′)

≥ ∆S′g(H ∪ S1)−msf (S′) = ∆S′f(H ∪ S1).

Thus, our claim holds.

Note that S′ ∪ MST (R : H ∪ T1 ∪ S′) is a 3-
restricted Steiner tree on (R : H ∪ T1) and contains no
Steiner point in T ′. By induction hypothesis, we have

2∆T ′f(H ∪ T1) ≥ ∆S′∪MST (R:H∪T1∪S′)f(H ∪ T1)

= mst (R : H ∪ T1)−msf (S′)−mst (R : H ∪ T1 ∪ S′)

= ∆S′f(H ∪ T1) ≥ ∆S′f(H ∪ S1).

Therefore, by the greedy principle,

2∆T f(H) = 2∆T ′f(H ∪ T1) + 2∆T1
f(H)

≥ ∆S′f(H ∪ S1) + ∆S1
f(H) + ∆T1

f(H)

= ∆Sf(H) + ∆T1
f(H) ≥ ∆Sf(H).

Case 3. T1 joins three connected components of H.
Similarly, we can prove that that S contains two

(possibly identical) full components S1 and S2 satis-
fying that S′ = S − (S1 ∪ S2) is a Steiner forest on
(R : H ∪ T1) and

∆S′f(H ∪ T1) ≥ ∆S′f(H ∪ S1 ∪ S2).

So, S′ ∪MST (R : H ∪ T1 ∪ S′) is a 3-restricted Steiner
tree on (R : H ∪ T1) and contains no Steiner point in
T ′. By induction hypothesis, we have

2∆T ′f(H ∪ T1) ≥ ∆S′∪MST (R:H∪T1∪S′)f(H ∪ T1)

= mst (R : H ∪ T1)−msf (S′)−mst (R : H ∪ T1 ∪ S′)

= ∆S′f(H ∪ T1) ≥ ∆S′f(H ∪ S1 ∪ S2).

By greedy principle,

2∆T f(H) = 2∆T ′f(H ∪ T1) + 2∆T1
f(H)

≥ ∆S′f(H ∪ S1 ∪ S2) + ∆S1
f(H) + ∆S2

f(H)

≥ ∆S′f(H ∪ S1 ∪ S2) + ∆S1∪S2
f(H) = ∆Sf(H).

This completes the proof.

Now we are ready to prove Theorem 3.1. Note that
Greedy Algorithm CST is exactly CST(∅). Let T be
the Steiner tree obtained from Greedy Algorithm CST.
By Lemma 3.3,

2∆T f(∅) ≥ ∆SMT
+

3
(R)f(∅).

which implies that

2f(T) ≥ f(SMT +
3 (R)) = f(SMT3 (R)).

Hence,

length(T) ≤
1

2
(mst(R) + smt3(R)).

Let smt(R) be the length of a Steiner minimum tree for
R in G. Then,

length(T)

smt(R)
≤

1

2

(

mst(R)

smt(R)
+

smt3(R)

smt(R)

)

≤
1

2

(

2 +
5

3

)

=
11

6
.

4 Connected Dominating Set

An instance of Connected Dominating Set consists of
a connected graph G = (V, E). The objective is is to
compute a minimum connected dominating set (CDS).
A minimum CDS can be computed trivially if the
maximum degree ∆ of G is either one or two. Indeed, if
∆ = 1, then G contains only one edge and a minimum
CDS consists of any single vertex. If ∆ = 2, G is a
path or a cycle. When G is a path, the minimum CDS
consists of all internal vertices. When G is a cycle, a
minimum CDS can be obtained by deleting two adjacent
vertices. So we assume ∆ ≥ 3 from now on. We first
present a generalization of the heuristic proposed by
Ruan et al. [6].After that, we give a worst-case analysis
of this heuristic which illustrates the technique of shifted
submodularity.

To describe the greedy approximation, we first de-
fine a potential function. Consider an input connected
graph G = (V, E) and a subset B ⊆ V . Let τ (B) be
the set of edges incident to B and n = |V |. Define
f1 (B) = r (τ (B)) where r is the rank function of the
graphic matroid on G. In other words, f1 (B) is equal
to n minus the number of connected components in the
graph (V, τ (B)). Define f2 (B) to be the number of
connected components of the graph G [B]. The poten-
tial function is then defined by f = f1 − f2. Clearly,
f (∅) = 0. For any B 6= ∅, f (B) ≤ n− 2 and the equal-
ity holds iff B is a CDS. Moreover, if n ≥ 3 then B is a
CDS iff ∆xf(B) = 0 for every x ∈ V ([6]). In addition,
f1 is submodular , but f is non-submodular.

Now let k be any positive integer parameter and
consider the following greedy algorithm.

(2k − 1)-Greedy Algorithm

B ← ∅;
While ∃x ∈ V such that ∆xf (B) > 0 do

select X ⊆ E \B maximizing ∆Xf(B)
|X|

s.t. |X | ≤ 2k − 1;
B ← B ∪X ;

Output B.

Note that when k = 1, the (2k − 1)-Greedy Algo-
rithm is exactly the one presented in [6]. We will prove
the following result on the performance of the (2k − 1)-
Greedy Algorithm.

Theorem 4.1. Let B be the output by the (2k − 1)-
Greedy Algorithm. If ∆ ≥ 3, then

|B| ≤

(

1 +
1

k

)

(1 + ln (∆− 1)) · opt.

The following “shifted submodularity” of the po-
tential function is essential to the proof of the above
theorem.

Lemma 4.1. Let A and B be two vertex subsets. If both
G[B] and G[X] are connected, then

∆Xf(A ∪B)−∆Xf(A) ≤ 1.

Proof. Since f1 is submodular, ∆Xf1(A ∪ B) ≤
∆Xf2(A). Since G[X] is connected, −∆Xf2 (A) (re-
spectively, −∆Xf2 (A ∪B)) is equal to the number of
connected components of G [A] (respectively, G [A ∪B])
adjacent to X minus one. Since G[B] is connected,
the number of connected components in G[A ∪ B] ad-
jacent to X is at most one more than the number
of connected components in G[A ∪ B] adjacent to X .
Hence, −∆Xf2 (A ∪B) ≤ −∆Xf2 (A) + 1. Therefore,
∆Xf(A ∪B) ≤ ∆Xf(A) + 1.

Let C be a minimum CDS. The next lemma gives
a lower bound on |C|.

Lemma 4.2. n ≤ (∆− 1)|C|+ 2.

Proof. We prove by induction on |C| that if G[C] is
connected then C can dominate at most (∆− 1)|C|+ 2
vertices. For |C| = 1, it is trivially true. For |C| ≥ 2,
choose a vertex x ∈ C such that G[C − {x}] is still
connected. Removal x would remove at most ∆ − 1
vertices from the set of vertices dominated by C. By
the induction hypothesis, C−{x} can dominate at most
(∆−1)(|C|−1)+2 vertices. Therefore, C can dominate
at most (∆− 1)|C|+ 2 vertices.

The next lemma gives a special decomposition of C.

Lemma 4.3. C can be decomposed into Y1, Y2, · · · , Yp

satisfying that
(a) C = Y1 ∪ Y2 ∪ · · · ∪ Yp,
(b) for 1 ≤ i ≤ p, both G

[

∪i
j=1Yj

]

and G [Yi] are
connected,

(c) k + 1 ≤ |Yi| ≤ 2k − 1 for 1 ≤ i ≤ p − 1,
1 ≤ |Yp| ≤ 2k − 1, and

(d)

p
∑

i=1

|Yi| ≤ opt + p− 1.

Proof. Consider a tree T with vertex set C. Choose a
vertex r ∈ C as the root of T . For any vertex x ∈ C, let
T (x) denote the subtree rooted at x and |T (x)| denote
the number of vertices in T (x). If T contains less than
2k vertices, let Y1 consist of all vertices in T . Otherwise,
there must exist a vertex x ∈ C such that |T (x)| ≥ k+1
and |T (y)| ≤ k for every child y of x. We consider two
cases.

Case 1. There is a child y of x such that |T (y)| = k.
Let Y1 consist of all vertices of T (y) together with x and
delete all vertices of T (y) from T .

Case 2. For every child y of x, |T (y)| ≤ k − 1.
Suppose y1, ..., yi are all children of x (see Fig. 1). There
must exist 2 ≤ j ≤ i such that

|T (y1)|+ · · ·+ |T (yj)| ≤ k − 1

and

|T (y1)|+ · · ·+ |T (yj)|+ |T (yj+1)| ≥ k.

Since |T (yj+1)| ≤ k − 1, we have

|T (y1)|+ · · ·+ |T (yj)|+ |T (yj+1)| ≤ 2k − 2.

Let Y1 consist of all vertices in T (y1) ∪ · · · ∪ T (yj+1)
together with x and delete Y1 − {x} from T .

Repeating above process on the remainder of T ,
we will obtain a required decomposition by properly
renumbering those sets in the decomposition.

> k

2
yjy1

< k< k

x

y

< k

Figure 1: Case 2 in the proof of Lemma 4.3.

It’s easy to show that the number p in the above
lemma satisfies that p − 1 ≤ (opt− 1) /k. Thus, to
prove Theorem 4.1, it is sufficient to show that

|B| ≤ (opt + p− 1) (1 + ln (∆− 1)) .

Suppose X1, · · · , Xg are in turn selected by the algo-
rithm. Denote B0 = ∅ and Bi = X1 ∪ · · · ∪ Xi for

1 ≤ i ≤ g. If n ≤ opt + p + ∆− 1, then

|B| =

g
∑

i=1

|Xi| ≤ |X1|+

g
∑

i=2

∆Xi
f (Bi−1)

= |X1|+ f (B)− f (X1)

≤ |X1|+ (n− 2)− |X1| (∆− 1)

= n− 2− |X1| (∆− 2)

≤ n−∆ ≤ opt + p− 1

< (opt + p− 1) (1 + ln (∆− 1)) .

So we assume that n > opt + p + ∆ − 1. For each
0 ≤ i ≤ g, let `i = f (V) − f (Bi) − (p− 1) be the
”shifted” uncoverage at the end of iteration i. Then

n− 1− p = `0 > `1 > · · · > `g = − (p− 1) .

and `0 ≥ opt + ∆ − 2 > opt. Let Y1, Y2, · · · , Yp be a
decomposition of S specified in Lemma 4.3, and denote
Cj = ∪j

l=1Yl for 1 ≤ j ≤ p. By Lemma 4.1,

f (V)− f (Bi) = f (C)− f (Bi)

= ∆Y1
f (Bi) +

p
∑

j=2

∆Yj
f (Bi ∪ Cj−1)

≤ ∆Y1
f (Bi) +

p
∑

j=2

(

∆Yj
f (Bi) + 1

)

≤ (p− 1) +

p
∑

j=1

∆Yj
f (Bi) .

Thus, `i ≤
∑p

j=1 ∆Yj
f (Bi) .Hence,

∆Xi
f(Bi−1)

|Xi|
≥ max

1≤j≤p

∆Yj
f(Bi−1)

|Yj |

≥

∑p
j=1 ∆Yj

f(Bi−1)
∑p

j=1 |Yj |
≥

`i−1

opt + p− 1
.

Therefore, if `i−1 > 0, then

`i−1 − `i

`i−1
≥

|Xi|

opt + p− 1
.

In addition, for each 1 ≤ i ≤ g, `i−1 − `i ≥ |Xi| . Now,
let t be such that `t ≥ opt > `t+1. Then,

t
∑

i=1

|Xi|+
`t − opt

`t − `t+1
|Xt+1|

≤ (opt + p− 1)

(

t
∑

i=1

`i−1 − `i

`i−1
+

`t − opt

`t

)

≤ (opt + p− 1) ln
`0

opt

≤ (opt + p− 1) ln (∆− 1) ,

and

opt− `t+1

`t − `t+1
|Xt+1|+

g
∑

i=t+2

|Xi|

≤ (opt− `t+1) +

g
∑

i=t+2

(`i−1 − `i)

= opt− `g = opt + p− 1.

So,

|B| =

g
∑

i=1

|Xi| ≤ (opt + p− 1) (1 + ln (∆− 1)) .

References

[1] S.-K. Chang, The generation of minimal trees with a
Steiner topology, J. ACM, 19 (1972) 699-711.

[2] S.-K. Chang, The design of network configurations
with linear or piecewise linear cost functions, Symp. on

Computer-Communications, Networks, and Teletraffic,
(1972) 363-369.

[3] U. Feige, A threshold of lnn for approximating set
cover. Proc. the Twenty-Eighth Annual ACM Symp.

Theory of Computing (1996) 314–318.
[4] T. Fujito, On approximability of the indepen-

dent/connected edge dominating set problems, Lec-

ture Notes in Computer Sciences, vol. 1974, Springer,
Berlin, 2000, pp. 117–126.

[5] G. L. Nemhauser and L. A. Wolsey, Integer and Com-

binatorial Optimization, Wiley, 1999.
[6] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.

Ko. A Greedy Approximation for Minimum Connected
Dominating Sets. Theoretical Computer Science, 329
(2004) 325-330.

[7] L.A. Wolsey, An analysis of the greedy algorithm for
the submodular set covering problem. Combinatorica

4(2) (1982) 385–393.
[8] A.Z. Zelikovsky, The 11/6-approximation algorithm for

the Steiner problem on networks, Algorithmica 9 (1993)
463-470.

