
Low-Latency Broadcast Scheduling in Ad Hoc
Networks

Scott C.-H. Huang1, Peng-Jun Wan1,2, Xiaohua Jia1, and Hongwei Du1

1 City University of Hong Kong
{shuang, pwan, jia, hongwei}@cs.cityu.edu.hk

2 Illinois Institute of Technology
wan@cs.iit.edu

Abstract. Broadcast is a fundamental operation in wireless network,
and näıve flooding is simply not practical. Previous results showed that
although broadcast scheduling can achieve constant approximation ra-
tios in respect of latency, the current state-of-the-art algorithm’s ratio
is still overwhelmingly large (≈ 650). In this paper we present two basic
broadcast scheduling algorithms that both achieve small ratios 51 and 24,
while preserving low redundancy 1 and 4 (in terms of number of retrans-
missions a node has to make). Moreover, we also present a highly efficient
algorithm whose latency is R + O(

√
R log1.5 R) (where R is the network

radius) and each node only has to transmit up to 5 times. This result, in
a sense of approximation, is nearly optimal since O(

√
R log1.5 R) is neg-

ligible when R is large. Moreover, R is itself a lower bound for latency, so
the approximation ratio is nearly 1 and this algorithm is nearly optimal.

1 Introduction

Among many operations of mobile ad hoc networks, broadcast is probably the
most fundamental yet challenging operation since [25] tells us näıve flooding is
simply not practical. Our first objective is to find a good scheduling algorithm
that can mitigate the impact of potential collision and have a low broadcast la-
tency. In addition, we also want our algorithm efficient such that nodes only have
to transmit the message very few times. Redundancy is measured by how many
times a node has to retransmit in order to guarantee collision-free reception. We
want to balance latency and redundancy in this work.

It is known that broadcast in ad hoc networks has a constant approximation
algorithm [18]. However, it is still not practical because the approximation ratio is
overwhelmingly large (it was estimated to be near 648). In this paper, we present
two basic broadcast scheduling algorithms that significantly reduce this ratio.
One of our algorithms has ratio 51 and another has 24, and, more importantly,
they do not increase redundancy much. The above two algorithms guarantee that
each node only has to retransmit 1 and 4 times to guarantee proper reception,
respectively. Moreover, we also present a highly efficient algorithm whose latency
is R+O(

√
R log1.5 R) (where R is the network radius) and each node only has to

transmit up to 5 times. This result, in a sense of approximation, is nearly optimal
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since O(
√

R log1.5 R) is negligible when R is large. Moreover, R is itself a lower
bound for latency, so the approximation ratio is nearly 1 and this algorithm is
nearly optimal.

2 Related Work

Sheu et al [28] did empirical studies about the efficiency of broadcasting schemes
in terms of collision-free delivery, number of retransmissions and latency. Basagni
et al [4] presented a mobility transparent broadcast scheme for mobile multi-hop
radio networks by using mobility-transparent schedule that guarantees bounded
latency. Chlamtac and Kutten [8] first showed that the problem of finding an op-
timal deterministic broadcasting scheme for general graphs is NP-hard. Chlam-
tac and Weinstein [9] used undirected bipartite graphs to model this problem
and gave an O(log2 n) approximation algorithm (which gave a O(R log n) upper
bound on broadcast latency where R is the radius and n is the number of nodes).
Kowalski and Pelc [21] later reduced it to O(R log n + log2 n). Bar-Yehuda et al
[3] obtained the same result earlier, but their solution was a randomized algo-
rithm of Las Vegas type. Gaber and Mansour [17] employed clustering techniques
to reduce this broadcast latency upper bound to O(R + log5 n). Elkin and Ko-
rtsarz [16] refined this method and obtained a bound of R + O(

√
R · log2 n),

thus reducing it to O(R + log4 n). Alon et al [1] proved that there exists a
family of radius-2 networks for which any broadcast schedule requires at least
Ω(log2 n) time slots. Bruschi and Del Pinto [5] considered distributed protocols
and obtained a lower bound of Ω(D log n) with the assumption that no nodes
know the identities of their neighbors. Kushilevitz and Mansour [22] proved
that for any randomized broadcast protocol there exists a network whose la-
tency is Ω(D log(N/D)). Chlebus et al [10] studied deterministic broadcast-
ing without a-priori knowledge of the network. Elkin and Kortsarz showed in
[14] that the radio broadcast problem is Ω(log n)-inapproximable unless NP ⊂
BPTIME(nO(log log n)). Also, they showed in another work [15] that this prob-
lem can not be approximated within an additive term c log2 n for some constant
c unless NP ⊂ BPTIME(nO(log log n)).

Gandhi et al [18] proved that constant approximation exists in disk graphs,
which was impossible in general graphs according to [14]. In [18], an important
technique of finding a Connected Dominating Set (CDS) as a virtual backbone
is used. CDS plays an important role and has been used extensively in broad-
cast [18], routing [29] [12] [13], as well as many other areas of networking. Guha
and Khuller [19] studied the minimum connected dominating set problem in
general graphs and proved its NP-hardness. Clark et al [11] showed that this
problem remains NP-hard even in unit disk graphs (UDGs) There are also some
results on approximating this problem. Marathe et al [24] gave some heuristics
for UDGs. Cheng et al [6] designed a polynomial-time approximation scheme
for MCDS problem. Wan et al [30] and Alzoubi et al [2] studied the approxima-
tion of CDS, MCDS problem in terms of its size as well as time and message
complexity.
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3 Preliminaries

3.1 Network Model

An ad hoc network can be modelled as a unit disk graph G = (V, E) along with
a source node s ∈ V . Each node has transmission range 1, and two nodes u, v
are neighbors if and only if their Euclidean distance is less than 1. The radius of
G is defined as maxv∈V dist(s, v), where dist(u, v) is the hop distance between u
and v. For any node v ∈ V , its layer l(v) is defined as the hop distance between
v and s. The source node’s layer l(s) is 0. We can group V by layers as follows.
Li denotes the nodes whose layers are equal to i (i.e. Li = {v|l(v) = i}). Time
is assumed to be discrete and we use time slots to represent it throughout this
paper.

3.2 Problem Definition

Given G = (V, E) and s ∈ V , the objective is to find a schedule satisfying the
following requirements. (1) It is represented as a function, called TransmitT ime,
from V to subsets of natural numbers. A subset of S ⊂ V is mapped to a subset
of T ⊂ N if and only if all nodes in S are scheduled to transmit in time slots
indicated in T . (2) A node receives the message collision-free at some time if
and only if exactly one of its neighbors is transmitting at this time. (3) A node
cannot transmit unless it has already received the message collision-free earlier.

Latency is the first time slot such that all nodes have received the message
collision-free, and redundancy is the maximum size of these subsets of N mapped
by some subset in V , namely maxS⊂V |TransmitT ime(S)|. The goal this paper
is to find a scheduling algorithm that minimizes this latency while having low
redundancy.

3.3 Layered MIS and Virtual Backbone Construction

We will use the concept of Maximal Independent Sets (MIS) throughout this
paper. An independent set (IS) is a subset S ⊂ V such that no two nodes in S are
adjacent to each other (i.e. all nodes are independent of each other). A maximal
independent set M is an independent set with maximality, which means adding
any other node will destroy the independence property. Formally, M is an MIS if
it is an independent set and for all M ′ ⊃ M , M ′ is not independent. We construct
MIS in a layered manner, which ensures a 2-hop separation property as follows.
Starting from the first layer L1, we choose a MIS, denoted by BLACK1 ⊂
L1 first. Then we move on to L2 and select independent nodes BLACK2 ⊂
L2 as well. Not only are BLACK2 nodes independent of each other, they are
independent of all nodes in BLACK1 as well. We follow this method and select
BLACK3, BLACK4, . . . until we finish the last layer and finally we get a layered
MIS denoted by BLACK = ∪iBLACKi. Such set BLACK we construct in
this manner has a stronger property than arbitrarily constructed ones. Let’s
construct a breadth-first search tree TBFS for G and pick a node v ∈ BLACKi.
Observe that v’s parent p(v) in TBFS must be in Li−1 − BLACKi−1 (since
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p(v) is in Li−1 and not independent of v), and therefore p(v) must be adjacent
to some node in BLACKi−1. In short, for all i and any node in BLACKi, it
must have a 2-hop neighbor in BLACKi−1. This is called the 2-hop separation
property. Because of this property, if G is connected, we can construct a virtual
backbone consisting of the set BLACK along with another set BLUE defined
as BLUE = {v|v is the parent of some nodes in BLACK in TBFS} Obviously
BLACK ∪ BLUE form a connected dominating set as described above. For
simplicity we also use the term “black nodes” to refer to the set BLACK, and
the term “blue nodes” to refer to BLUE. This virtual backbone is actually
a tree Tbr formally defined as follows. Tbr = (BLACK ∪ BLUE, Ebr) where
(u, p(u)) ∈ Ebr (p(u) represents u’s parent in Tbr) if and only if{

u ∈ BLACKi, p(u) is u’s parent in TBFS

u ∈ BLUEi, p(u) ∈ BLACKi ∪ BLACKi−1, (u, p(u)) ∈ E

The second condition is always valid since BLACK is constructed layer by
layer. Any blue node at layer i must be adjacent to a black node either at layer i
or i− 1. However, there may be more than one black node adjacent to it. In this
case, we just pick one of them arbitrarily. Tbr has the following properties. (1)
A black node’s parent is always blue. (2) A blue node’s parent is always black.
(3) If u ∈ BLACKi then p(p(u)) ∈ BLACKi−1 where p(p(u)) is the parent of
u’s parent (i.e. u’s grandparent).

3.4 Coloring of MIS Nodes

If some black nodes get the broadcast message, then we are sure that all of
their neighbor nodes will get the message from them within very few time slots.
Similarly, if all black nodes get the message, then all nodes will get the message
from them in a short time. We are going to show that 12,13 time slots are enough.
The time required for black nodes to pass message to their neighbors depends
on a coloring of them.

If two nodes are separated by at least 3 hops (this essentially means their
Euclidean distance is greater than 2), then if they broadcast at the same time,
there will be no collision at all since their transmission ranges do not overlap. In
other words, two black nodes can be scheduled to transmit for the same time slot
as long as they are 2-independent (not 2-hop neighbors). We can define a new
graph H whose vertices are black nodes and an edge exists between two nodes
if they are 2-hop neighbors, and consider the coloring of H . Nodes of the same
color will be scheduled for the same time slot, and the time required for black
nodes to broadcast the message to all nodes (using this scheduling method) is
equal to the number of colors used. We show that 12 colors are enough if all
nodes know about their locations and 13 colors are enough if not.

Lemma 3.1. If all nodes know about their own locations, 12 colors are enough
to color H (H is defined as above).

Proof. We partition the entire plane into half-open, half-closed hexagons and
give a 12-coloring, as shown in Figure 1. Each hexagon has radius 1/2 (and
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Fig. 1. Partition of the entire plane into half-open, half-closed hexagons

therefore its diameter is equal to 1). According to its location, each node be-
longs to exactly one hexagon and is assigned to a corresponding color. Since
each hexagon has radius 1/2, there can be at most one black node in each
hexagon and the distance between any different hexagons of the same color is at
least 2. �
The above coloring takes great advantage of unit disk graphs geometrical proper-
ties. Note that this way of coloring does not need global information and can be
implemented locally. If location information is not known but the global topol-
ogy is known (by some server), then 13 time slots are enough. However, this is
a centralized approach.

Lemma 3.2. If the global topology is known, 13 colors are enough to color H.

Lemma 3.3. Given a black node v. There can be at most 12 black nodes other
than v itself in any half-disk centered at v with radius 2.

Proof. Consider a half disk shown in Figure 2(a). Since black nodes are inde-
pendent, they cannot appear in the unit circle centered at v. In other words,
all black nodes can only appear in the half-annulus (A1 ∪ A2). We divide this
region into A1 and A2 (where g is the golden ratio) as shown in the figure. This
lemma can be proved by showing that (1)there can be at most 5 black nodes in
A1 (2)there can be at most 7 black nodes in A2. To prove (1), we assume there
are 6 or more black nodes in A1. If we draw a line from v to each of them, then
there must be two black nodes u1, u2 such that ∠u1vu2 is at most 36◦. Since
1 < u1v, u2, v < g, we know that the distance between these two black nodes
is less than 1. Figure 2(b) shows the extreme case where u1v = g, u2, v = 1,
∠u1vu2 = 36◦, and u1u2 = 1 but equality does not hold and u1, u2 has to be
less than 1. (2) can be proved similarly. Suppose there are 8 or more black nodes
in A2, then there must be two black nodes u1, u2 such that ∠u1vu2 is at most
180/7 .= 25.71◦. This also implies u1, u2 < 1 since the extreme case happens
when u1v = g, u2, v = 2. u1, u2 > 1 would imply ∠u1vu2 > 29.77◦ as shown in
Figure 2(b), which is impossible. �

Proof of Lemma 3.2. Let’s give an ordering of vertices as follows. Since the
global topology is known, we can find the node v1 of smallest degree in H first.
Then we consider the new graph with v1 and all its incident edges removed from
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H . We pick another node v2 of smallest degree in this new graph, delete it, and
repeat this process until all nodes have been picked and deleted. When vi is
picked, v1, v1, . . . , vi−1 have already been removed and vi’s degree in the new
graph, denoted by di, equals di = |N(vi) ∩ {vn, vn−1, . . . , vi+1}|, where N(vi) is
the set of vi’s neighbors in H . This gives an ordering of nodes {v1, v2, . . . , vn}.
Note that di ≤ 12 for all i. This is due to the fact that, at any time, there is
always a vertex w that is geographically located at the leftmost position, which
implies all of its neighbors in H are located in a half annulus centered at w.
According to Lemma 3.3, there are at most 12 such neighbors.

We now reverse this ordering and claim that if we use first-fit coloring in the re-
verse order {vn, vn−1, . . . , v1}, 13 colors are enough. When we color a node vi, we
need to look at its neighbors in {vn, vn−1, . . . , vi+1} and avoid using any color ap-
peared there. Some of those neighbors may use the same color, but the worst case
may happen in which none of those neighbors use the same color. In this case,
|N(vi)∩{vn, vn−1, . . . , vi+1}| = di colors have been used, and we have to use an-
other color for vi. Since we already know earlier that di ≤ 12 for all i, 13 colors are
enough to color H . �

3.5 Tripartite Graph Model

We introduce a basic model called the Tripartite Graph Model for analyzing ap-
proximation ratios of broadcast latency. We focus on interactions between neigh-
boring layers BLACKi−1 and BLACKi, for all 1 ≤ i ≤ R where R is the radius
of G. Consider Tbr again. Since we know that each black node’s grandparent
must be a black node of the previous layer, it suffices to consider the interaction
between BLACKi−1, BLACKi and those blue nodes in-between as connectors
alone. If all black nodes have received the message, it only takes 12 or 13 more
time slots to pass the message to all nodes. We know earlier that BLACKi−1 and
BLACKi are connected through blue nodes in between, so we only focus on the
tripartite graph consisting of BLACKi−1, BLACKi, and blue nodes in between
and the edges are taken directly from Tbr, as shown in Fig 2(d). Note that it also
takes 12 or 13 time slots from BLACKi−1 to blue connectors, since BLACKi−1
must contain all blue connectors. Broadcast latency thus depend solely on the
schedule from blue connectors to BLACKi, called BLUE-to-BLACK. Using this
model, if BLUE-to-BLACK can be scheduled within ζ time slots, then we can
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repeat this process to pass the message to all black nodes within (13 + ζ)R time
slots (where R is the network radius) and finally to all nodes within (13 + ζ)R
time slots (we can regard the source s as blue and start from BLACK1). We also
know that R is itself a lower bound for transmission latency (since the message
needs at least R time slots to reach the farthest node). This actually means that
the approximation ratio of any broadcast algorithm using this model is at most
13 + ζ (or 12 + ζ if location is known).

4 First and Second Broadcast Algorithms

4.1 First Broadcast Algorithm - Least Redundancy

First algorithm has approximation ratio 51 and each node is only required to
broadcast the message at most once. Using the tripartite graph model, we claim
that applying First-Fit scheduling on BLUE-to-BLACK yields a result in which
ζ = 39 and the approximation ratio will be 39 + 13 = 52 (or 51 if location is
known).

Observe that for two blue nodes to be able to interfere with each other, their
distance must be at most 2. Therefore, if we regard one blue node u as the
origin, any potential interfering blue nodes must lie inside the circle centered
at the origin with radius 2. Every interfering blue node must have at least one
black child, otherwise this blue node wouldn’t need to transmit and wouldn’t
be selected as a connector at all. The number of blue nodes lying inside a circle
with radius 2 cannot exceed the number of black nodes lying inside the concentric
circle with radius 3. We can apply Wegner’s Theorem [31] with proper scaling
to show that this number is at most 41 as follows.

Let S denote the set of black nodes that are at most three hops away from u.
Then the convex hull of S is contained in the disk of radius 3.5 centered at u.
Let k = |S|. Apply scaled Wegner Theorem, we know k ≤ 42, and apparently 43
time slots are enough to schedule BLUE-to-BLACK. Now, we are going to show
that 39 time slots are enough. First, we know that u’s parent must have been
counted, but u certainly does not have to transmit to its parent. Moreover, u
must have a black child that it has to transmit to. This has been over-counted as
an interfering blue node as well. So far, we know that 41 time slots are enough.

We will show that we only have to consider the case in which u has two
or more children. The reason is that if u has only one child, we actually need
way less than 39 time slots for the following reason. Assume u has only one
child w, then any blue node that may interfere with u’s transmission must be
a neighbor of w. This essentially means the number of interfering blue nodes
cannot exceed the number of black nodes inside the disk of radius 2 centered
at w. Applying Wegner’s Theorem and using the same argument, we can prove
that the number of independent nodes lying inside a disk of radius 2 is at most
21 (the proof is omitted here for simplicity). Since w is itself a black node and
has been counted already, w has at most 20 interfering blue neighbors and 39
time slots are certainly more than enough.
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The above argument shows that we only have to consider the case in which u
has 2 or more children. For this reason we know that we have over-counted one
black node, and 40 time slots are enough so far. Finally, we are going to show
that we still have over-counted one more black node and our desired result will
be proved.

We look at u’s parent p(u) now. We claim that we only need to consider the
case in which there exists some interfering blue node whose parent is not p(u),
otherwise it will result in an even tighter time bound. Assume the contrary that
all interfering blue nodes’ parent is p(u), then the number of interfering blue
nodes cannot exceed the number of black nodes lying inside the disk of radius
2 centered at p(u). Again, by Wegner’s Theorem, this results in a bound of 21
time slots and, indeed, we don’t have to consider this case. Finally, since there
exists some blue node whose parent is not p(u), we can further subtract 1 from
40 and 39 time slots are enough to schedule BLUE-to-BLACK.

Note that all transmissions are scheduled in such a way that all possible
collisions are avoided, so In the first algorithm each node needs to broadcast the
message at most once.

4.2 Second Broadcast Algorithm - Tradeoff Between Latency and
Redundancy

In this section we present another algorithm that achieves a better approximation
ratio (24 if location is known and 26 if global topology is known) at the price of
increasing redundancy by a factor of 4. Note that redundancy is measured as the
maximum number of transmissions a single node has to make rather than the
total number of transmissions in the entire network. We believe our metric makes
the most sense in measuring redundancy, as it most precisely reflects the battery
lifetime of a sensor node in sensor networks. The lifetime of a sensor network
should be characterized as the lifetime of a single node rather than the number of
all transmissions, since the failure of few nodes may disconnect the network and
a small number of total transmissions does not guarantee network connectivity.
We will study the tradeoff between latency and redundancy in detail in this
subsection.

Again, we start from the tripartite graph model and schedule the part BLUE-
to-BLACK. Instead of First-Fit, we now use the coloring-H method similar to
the BLACK-to-BLUE part. Note that we can color H with 12 colors if location is
known and with 13 colors if global topology is known. We schedule the blue nodes
in the following way. Each blue nodes has at most 4 black children (since each
blue node has at most 5 black neighbors and one of them must be its parent),
so each blue node simply looks at its black children’s colors and transmit in
the corresponding time slots. For example, if a blue node has 4 children that are
colored with colors #3, #5, #6, #11, this blue node simply transmit in time slots
{3, 5, 6, 11}. This way of scheduling may cause collisions, but it ensures that, in
any time slot, all receiving black nodes with corresponding color will receive the
message collision-free. This can be proved by the following arguments. Assume
that in a time slot, there is a black node w receiving from two blue nodes u, v and
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assume without loss of generality that u is the parent of w. Since u, v must have
different black children that are their destinations, v must have a child w′ other
than w. Now, v is blue and w, w′ are black. Then w and w′ must be neighbors
in H (H is defined in the tripartite graph model) since v is adjacent to both of
them. Therefore, they wouldn’t have been colored with the same color. On the
other hand, since u, v are transmitting at the same time, w, w′ must be of the
same color and we finally get a contradiction.

5 Third Broadcast Algorithm - Theoretically the Best

Third algorithm achieves a highly efficient latency R + O(
√

R · log1.5 R), where
R represents the radius of the radio network. Since R is also a lower bound
of the optimal solution, the above latency essentially means the approximation
ratio is nearly 1, when R is large. In some sense, this means our algorithm is
nearly optimal. This algorithm combines the first and second algorithms with the
broadcast algorithm in [16] as well as some new elements to achieve this result.
In addition to its high efficiency, it also has very low redundancy: Each node
only needs to broadcast at most once to achieve this result if the first algorithm
is used as one of its subroutines.

Phase 1: Virtual backbone construction
We construct MIS layer by layer with the 2-hop separation property and get
the set BLACK. Then we construct the Shortest Path Tree (in G) of this set
BLACK. Let Tsp = (Vsp, Esp) denote the shortest path tree. We denote the
set of non-black nodes in the shortest path tree by GRAY , and we also call
they gray nodes as well. Note that Vsp = BLACK ∪ GRAY is a connected
dominating set in G, since they form a tree and are therefore connected. Vsp

can be regarded as a virtual backbone for G.
Phase 2: Broadcast inside virtual backbone

Let Hvb denote the induced subgraph of Vsp in G. We simply apply the
broadcast algorithm in [16] to Hvb, s.

Phase 3: Broadcast from virtual backbone to others
Now, since all nodes in Vsp have already received the message, all black
nodes must have received the message. By the technique of MIS coloring
described in § 3.4, we know that we need 12 or 13 more time slots to pass
this information to all nodes.

The latency of this algorithm is actually Rvb + O(
√

Rvb log2 |Vsp|)+ 13 where
Rvb is the radius of Hvb. Since Rvb ≤ R, the broadcast latency is thus Rvb +
O(

√
Rvb log2 |Vsp|), using asymptotic notations. The following lemma gives us

an upper bound for |Vsp|.

Lemma 5.1. |Vsp| = O(R3) where R is the radius of G.

Proof. Since Vsp = BLACK ∪ GRAY , let m1 = |BLACK| and m2 = |GRAY |.
Since R is the radius, the hop distance between any node and s is at most R,
which essentially means the Euclidean distance between them is at most R too. If
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we consider a disk with radius R centered at s, then all nodes must lie within this
disk. We know all black nodes are independent. If, for each black node, we draw
a disk with radius 1/2 center at it, then none of these disks will overlap since the
distance between any two black nodes is at least 1. These disks altogether should
lie within the disk with radius R + 1/2 centered at s, and the sum of their areas
is bounded by the area of this big disk. Therefore, m1π(1/2)2 ≤ π(R + 1/2)2

and m1 = O(R2). To bound m2, we know that Tsp is a shortest path tree. Since
the hop distance between any black node and s is at most R, there are at most
R − 2 intermediate nodes between any shortest path from s to this black node.
This means black node contributes at most R−2 gray nodes, and m2 is therefore
bounded by (R − 2)m1. Therefore m2 = O(R3) and |Vsp| = m1 + m2 = O(R3).
Actually, |Vsp| ≤ 4R3 (This can be proved by applying Wegner’s Theorem and
is omitted here for simplicity.) �

This lemma tells us that by constructing a virtual backbone, the broadcast
latency of unit disk graphs can be significantly improved. The latency of third
algorithm is Rvb + O(

√
Rvb log2 |Vsp|). Since Rvb ≤ R and |Vsp| ≤ 4R3. The

latency is at most R+O(
√

R log2 R). If we compare this bound with the latency
bound of [16], which is R+O(

√
R log2 n), although they look very similar, there

is a significant difference. The latency of our third algorithm depends solely
on R, which implies that when R is large O(

√
R log2 R) is negligible and the

latency is nearly R. Since R is a also a lower bound for broadcast latency, this
essential means the approximation ratio is nearly 1 and our algorithm is nearly
optimal. However, in [16], we still know nothing about their approximation
ratio. Actually, if we modify the phase 2 of [16], we can further reduce this
latency bound to R + O(

√
R log1.5 R). Because of the limitation of space, we

omit the proof here.

6 Conclusions and Future work

In this paper we presented three broadcast scheduling algorithms in ad hoc
networks modeled by unit disk graphs, and all of them have latency significantly
lower than any other scheduling algorithms in the literature. In addition, they
all have low redundancy as well. The first two algorithms clearly showed that
there is some trade-off between latency and redundancy and we believe that we
have already balanced them and achieved the maximum overall benefits.

One might think that we took great advantage in the geometrical properties
of unit disk graphs, and they might be too ideal to be practical. For example,
in real cases, the transmission topology and interference topology are not the
same, the range a node could interfere with other nodes may be several times
large than its transmission area. Actually, all three of our algorithms can be
modified to suit this scenario, except that their approximation ratios may be
increased. Moreover, though UDG model is ideal, it is a good place to start
with. If we jump into complex models directly without know what advantages
we could take in the ideal case, then we cannot get any good results.
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Another important point regarding these algorithms is whether they can be
implemented in a distributed manner. For first and second algorithms, if loca-
tion is known, they there can be distributed implementation. However, if lo-
cation is not known, we need global topology to color MIS nodes in order to
get comparable results. Otherwise, the approximation ratios are not that good
any more. Our third algorithm cannot be implemented in a distributed fashion
either. The reason is that it involves some graph partitioning techniques which
entail the knowledge of the whole topology. Although it seems to be a nearly
optimal approximation algorithm, this requirement makes it excellent only from
a theoretical point of view. How to find an algorithm that can avoid this strong
requirement while having comparable performance is the main goal of our follow-
up research topic.
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