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Abstract— Nodes in wireless ad hoc networks may become
inactive or unavailable due to, for example, internal breakdown
or being in the sleeping state. The inactive nodes cannot take
part in routing/relaying and thus may affect the connectivity. A
wireless ad hoc network containing inactive nodes is then said
to be connected if each inactive node is adjacent to at least
one active node and all active nodes form a connected network.
This paper is the first installment of our probabilistic study of
the connectivity of wireless ad hoc networks containing inactive
nodes. We assume that the wireless ad hoc network consists of
n nodes which are distributed independently and uniformly in a
unit-area disk and are active (or available) independently with
probability p for some constant 0 < p ≤ 1. We show that if
all nodes have a maximum transmission radius rn =

√
ln n+c
πpn

for some constant c, then the total number of isolated nodes is
asymptotically Poisson with mean e−c and the total number of
isolated active nodes is also asymptotically Poisson with mean
pe−c.

I. INTRODUCTION

A wireless ad hoc network is a collection of radio devices
(transceivers) located in a geographic region. Each node is
equipped with an omni-directional antenna and has limited
transmission power. A communication session is established
either through a single-hop radio transmission if the com-
munication parties are close enough, or through relaying
by intermediate devices otherwise. Because of the no need
for a fixed infrastructure, wireless ad hoc networks can be
flexibly deployed at low cost for varying missions such as
decision making in the battlefield, emergency disaster relief
and environmental monitoring. In most applications, the ad
hoc wireless devices are deployed in a large volume. The shear
large number of devices deployed coupled with the potential
harsh environment often hinders or completely eliminates the
possibility of strategic device placement, and consequently,
random deployment is often the only viable option. In some
other applications, the ad hoc wireless devices may be con-
tinuously in motion or be dynamically switched to on or
off. For all these applications, it is natural to represent the
ad hoc devices by a finite random point process over the
(finite) deployment region. Correspondingly, the wireless ad
hoc network is represented by a random graph.

The classic random graph model due to Erdős and Rényi
(1960) [4], in which each pair of vertices are joined by an edge

independently and uniformly at some probability, is not suited
to accurately represent networks of short-range radio nodes
due to the presence of local correlation among radio links. This
motivated Gilbert (1961) [5] to propose an alternative random
graph model for radio networks. Gilbert’s model assumes that
all devices, represented by an infinite random point process
over the entire plane, have the same maximum transmission
radius r and two devices are joined by an edge if and only
if their distance is at most r. For the modelling of wireless
ad hoc networks which consist of finite radio nodes in a
bounded geographic region, a bounded (or finite) variant of the
standard Gilbert’s model has been used by Gupta and Kumar
(1998) [6] and others. In this variant, the random point precess
representing the ad hoc devices is typically assumed to be a
uniform n-point process Xn over a disk or a square of unit area
by proper scaling, and the wireless ad hoc network, denoted
by G (n, r), is exactly the r-disk graph over Xn. To distinguish
the random graph G (n, r) from the classic random graph due
to Erdős and Rényi, it is referred to as a random geometric
graph.

The connectivity of the random geometric graph G (n, r)
has been studied by Dette and Henze (1989) [3] and Penrose
(1997) [7]. For any constant c, Dette and Henze (1989) [3]

showed that the graph G
(
n,

√
ln n+c

πn

)
has no isolated nodes

with probability exp (−e−c) asymptotically. Eight years later,
Penrose (1997) [7] established that if a random geometric
graph G (n, r) has no isolated nodes, then it is almost surely
connected. These results are the exact analogue of the coun-
terpart in classic random graphs. However, as pointed out
by Bollobás (2001) [2], we should not be misled by the
remembrance: the proof for the random geometric graph is
much harder.

In this paper, we consider an extension to the random geo-
metric graph G (n, r) by introducing an additional assumption
that all nodes are active (or available) independently with
probability p for some constant 0 < p ≤ 1. Such extension is
motivated by the fault-tolerance of wireless ad hoc networks.
In a practical wireless ad hoc network, a node may be inactive
(or unavailable) due to either internal breakdown, or being
in the sleeping state. In either case, the inactive nodes will
not take part in routing/relaying and thus may affect the
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connectivity. It is natural to model the availability of the nodes
by a Bernoulli model, and hence we call the nodes as Bernoulli
nodes. A wireless ad hoc network of Bernoulli nodes is then
said to be connected if each inactive node is adjacent to at
least one active node and all active nodes form a connected
network.

Our probabilistic study of the connectivity of the random
geometric graph with Bernoulli nodes consists of two install-
ments due to the lengthy analysis. The first intallment, which is
the focus of this paper, addresses the distribution of the number
of nodes without active neighbors. For convenience, a node is
said to be isolated from active nodes, or simply isolated, it
has no active neighbors. We shall prove that both the number
of isolated nodes and the number of isolated active nodes
have asymptotic Poisson distributions. The second installment,
which will be reported in a separate paper, proves that if a
random geometric graph with Bernoulli nodes has no isolated
nodes, it is also connected almost surely.

In what follows, ‖x‖ is the Euclidean norm of a point x ∈
R2, and |A| is shorthand for 2-dimensional Lebesgue measure
(or area) of a measurable set A ⊂ R2. All integrals considered
will be Lebesgue integrals. The topological boundary of a set
A ⊂ R2 is denoted by ∂A. The disk of radius r centered at
x is denoted by D (x, r). The special unit-area disk centered
at the origin is denoted by Ω. For any set S and positive
integer k, the k-fold Cartesian product of S is denoted by Sk.
The symbols O, o,∼ always refer to the limit n −→ ∞. To
avoid trivialities, we tacitly assume n to be sufficiently large
if necessary. For simplicity of notation, the dependence of sets
and random variables on n will be frequently suppressed.

The remaining of this paper is organized as follows. In
section II, we present several useful geometric results and
integrals. In Section III, we derive both the distribution of the
number of isolated nodes and the distribution of the number
of isolated active nodes.

II. GEOMETRY OF DISKS

The results in this section are purely geometric, with no
probabilistic content. Let r be the transmission radius of the
nodes. For any finite set of nodes {x1, · · · , xk} in Ω, we
use Gr (x1, · · · , xk) to denote the graph over {x1, · · · , xk}
in which there is an edge between two nodes if and only
if their Euclidean distance is at most r. For any positive
integers k and m with 1 ≤ m ≤ k, let Ckm denote the set
of (x1, · · · , xk) ∈ Ωk satisfying that G2r (x1, · · · , xk) has
exactly m connected components.

We partition the unit-area disk Ω into three regions, Ω(0),
Ω(1) and Ω(2) as shown in Fig. 1: Ω(0) is the disk of radius
1/

√
π − r centered at the origin; Ω(1) is the annulus of radii

1/
√
π − r and

√
1/π − r2 centered at the origin; and Ω(2)

is the annulus of radii
√

1/π − r2 and 1/
√

π centered at the
origin. Then,

|Ω(0)| =
(
1 −

√
πr

)2
, |Ω(2)| = πr2,

|Ω(1)| = 2πr
(
1/

√
π − r

)
.
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Fig. 1. The partition of the unit-area disk Ω.

For any set S ⊆ Ω and r > 0, the r-neighborhood of S is the
set

⋃
x∈S D (x, r)∩Ω. We use νr (S) to denote the area of the

r-neighborhood of S, and sometimes by slightly abusing the
notation, to denote the r-neighborhood of S itself. Obviously,
for any x ∈ Ω, νr (x) ≥ πr2/3. If x ∈ Ω(0), νr (x) = πr2.
If x ∈ Ω(1), we have the following tighter lower bound on
νr (x).

Lemma 1: For any x ∈ Ω(1),

νr (x) ≥ πr2

2
+

(
1√
π

− ‖x‖
)

r.
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Fig. 2. The half-disk and the triangle.

Proof: Let y be the point in ∂Ω such that ‖y − x‖ =
1√
π

−‖x‖, and ab be the diameter of D (x, r) perpendicular to
xy (see Fig. 2). Then νr (x) contains a half-disk of D (x, r)
to the side of ab opposite to y, and the triangle aby. Since the
area of the triangle aby is exactly

(
1√
π

− ‖x‖
)
r, the lemma

follows.
The next lemma gives a lower bound on the area of the

r-neighborhood of more than one nodes.
Lemma 2: Assume that

r ≤ 1/
√
π

12/π + π/12
≈ 0.245/

√
π.

Let x1, · · · , xk be a sequence of k ≥ 2 nodes in Ω such that
x1 has the largest norm, and ‖xi − xj‖ ≤ 2r if and only if
|i − j| ≤ 1. Then

νr (x1, · · · , xk) ≥ νr (x1) +
π

12
r

k−1∑

i=1

‖xi+1 − xi‖ .

Proof: We prove the lemma by induction on k. We
begin with k = 2. Let t = ‖x2 − x1‖ and f (t) =
|D (x2, r) \ D (x1, r)|. We first show that f (t) ≥ (π/2) rt.
Let y1y2 be the common chord of ∂D (x1, r) and ∂D (x2, r),
and let z1z2 be another chord of ∂D (x2, r) that is parallel to
y1y2 and has the same length as y1y2 (see Fig. 3(a)). Then
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Fig. 3. The area of two intersecting disks.

f (t) is also equal to the area of the portion of D (x2, r)
between the two chords y1y2 and z1z2. Thus, f ′ (t) = ‖y1y2‖,
which is decreasing over [0, 2r]. Therefore, f (t) is concave
over [0, 2r]. Since f (0) = 0 and f (2r) = πr2, we have
f (t) ≥ (π/2) rt.

Now we are ready to prove the lemma for k = 2. If
x1 ∈ Ω(0), then νr (x1, x2) − νr (x1) is exactly f (t), and
thus the lemma follows immediately from f (t) ≥ (π/2) rt.
So we assume that x1 /∈ Ω(0). Note that for the same
distance t, νr (x1, x2) − νr (x1) achieves its minimum when
both x1 and x2 are in ∂Ω. It is sufficient to prove the
lemma for x1, x2 ∈ ∂Ω. Let y1y2 and z1z2 be the two
chords of ∂D (x2, r) as above with y2 ∈ Ω, and  be the
line through the two intersection points between ∂Ω and
∂ (D (x1, r) ∪ D (x2, r)) (see Fig. 3(b)). We use A1 to denote
the portion of D (x2, r) \D (x1, r) which lie in the same side
of  as y2; use A2 to denote the portion of D (x2, r) which is
surrounded by y1y2, z1z2,  and the short arc between y2 and
z2; and use A3 to denote the rectangle surrounded by y1y2,
z1z2,  and the line through x1 and x2. Then

νr (x1, x2) − νr (x1) ≥ |A1| = |A2| = f (t) /2 − |A3| .

Note that one side of A3 is exactly t and the other side is at
most

1√
π

−
√

1
π

− (2r)2 =
4r2

1√
π

+
√

1
π − (2r)2

.

Thus,

νr (x1, x2) − νr (x1) ≥



π

4
− 4r

1√
π

+
√

1
π − (2r)2



 rt.

It is straightforward to verify that if

r ≤ 1/
√
π

12/π + π/12
≈ 0.245/

√
π,

then
π

4
− 4r

1√
π

+
√

1
π − (2r)2

≥ π

12
,

and thereby the lemma follows.
In the next, we assume the lemma is true for at most k − 1

nodes and we shall show that the lemma is true for k nodes.

If k = 3, then

νr (x1, x2, x3) ≥ νr (x1) + νr (x3) ≥ νr (x1) +
πr2

3

= νr (x1) +
π

12
r · 4r ≥ νr (x1) +

π

12
r

2∑

i=1

‖xi+1 − xi‖ .

If k > 3, then by the induction hypothesis

νr (x1, · · · , xk) ≥ νr (x1, · · · , xk−2) + νr (xk)

≥ νr (x1) +
π

12
r

k−3∑

i=1

‖xi+1 − xi‖ +
πr2

3

≥ νr (x1) +
π

12
r

k−1∑

i=1

‖xi+1 − xi‖ .

Therefore, the lemma is true by induction.
Corollary 3: Assume that

r ≤ 1/
√
π

12/π + π/12
≈ 0.245/

√
π.

Then for any (x1, · · · , xk) ∈ Ck1 with x1 being the one of
the largest norm among x1, · · · , xk,

νr (x1, · · · , xk) ≥ νr (x1) +
π

12
r max

2≤i≤k
‖xi − x1‖ .

Proof: Without loss of generality, we assume that
‖xk − x1‖ achieves max

2≤i≤k
‖xi − x1‖. Let P be a min-hop

path between x1 and xk in G2r (x1, x2, · · · , xk) and t be the
total length of P . Then every pair of nodes in P that are not
adjacent nodes in P are separated by a distance of more than
2r. Thus by applying Lemma 2 to the nodes in P , we obtain

νr ({xi | xi ∈ P}) ≥ νr (x1) +
π

12
rt.

Since νr (x1, · · · , xk) ≥ νr ({xi | xi ∈ P}) , and t ≥
‖xk − x1‖ , the corollary follows.

In the remaining of this section, we give the limits of several
integrals.

Lemma 4: For any z ∈
[
0, 1

2

]
, e−z−z2 ≤ 1 − z ≤ e−z.

Proof: For any z ≥ 0, 1 − z ≤ e−z ≤ 1 − z + z2

2 . If
z ∈

[
0, 1

2

]
, then

e−z−z2
≤

(
1 − z +

z2

2

)(
1 − z2 +

z4

2

)

= 1 − z − z2
(

1
2

− z

)
− 1

4
z5 (2 − z) ≤ 1 − z.

Lemma 5: Let r =
√

ln n+ξ
πpn for some constant ξ. Then

n

∫

Ω
e−npνr(x)dx ∼ e−ξ,

n

∫

Ω
(1 − pνr (x))n−1

dx ∼ e−ξ.

Proof: We only give the proof of the first asymptotic
equality. The second one can be proved in the similar manner
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together with the inequalities in Lemma 4. First, we calculate
the integration over Ω(0).

n

∫

Ω(0)
e−npνr(x)dx = ne−npπr2

|Ω(0)| ∼ ne−npπr2
= e−ξ.

Now, we calculate the integration over Ω(2).

n

∫

Ω(2)
e−npνr(x)dx ≤ ne− 1

3 npπr2
|Ω(2)|

= nπr2e− 1
3 npπr2

= o (1) .

Next, we calculate the integration over Ω(1). By Lemma 1,

n

∫

Ω(1)
e−npνr(x)dx

≤ ne− npπr2

2

∫

Ω(1)
e
−npr

(
1√
π

−‖x‖
)

dx

= 2πne− npπr2

2

∫ √
1
π −r2

1√
π

−r

ρe
−npr

(
1√
π

−ρ
)

dρ

≤ 2πne− npπr2

2

∫ 1√
π

1√
π

−r

ρe
−npr

(
1√
π

−ρ
)

dρ

≤ 2
√
πne− npπr2

2

∫ 1√
π

1√
π

−r

e
−npr

(
1√
π

−ρ
)

dρ

= 2
√
πne− npπr2

2

∫ r

0
e−nprtdt

≤ 2
√
π

p

1
r
e− npπr2

2 = O (1) (log n)−1/2 = o (1) .

Therefore,

n

∫

Ω
e−npνr(x)dx ∼ e−ξ.

Lemma 6: Let r =
√

ln n+ξ
πpn for some constant ξ. Then for

any fixed integer k ≥ 2,

nk

∫

Ck1

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi = o (1) ,

nk

∫

Ck1

(1 − pνr (x1, x2, · · · , xk))n−k
k∏

i=1

dxi = o (1) .

Proof: Since

(1 − pνr (x1, x2, · · · , xk))n−k ≤ e−npνr(x1,x2,··· ,xk)

(1 − pkπr2)k
,

the second equality would follow from the first one. Hence,
we only have to prove the first one. Let S denote the set
of (x1, x2, · · · , xk) ∈ Ck1 satisfying that x1 is the one with
largest norm among x1, · · · , xk and x2 is the one with longest
distance from x1 among x2, · · · , xk. Then

nk

∫

Ck1

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi

≤ k (k − 1)nk

∫

S

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi.

So it suffices to prove

nk

∫

S

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi = o (1) .

Note that for any (x1, x2, · · · , xk) ∈ S,

νr (x1) + cr ‖x2 − x1‖ ≤ νr (x1, x2, · · · , xk) ≤ kπr2

for some constant c by Corollary 3, and

xi ∈ B (x1, ‖x2 − x1‖) , 3 ≤ i ≤ k;
x2 ∈ B (x1, 2 (k − 1) r) .

Thus,

nk

∫

S

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi

≤ nk

∫

S

e−np(νr(x1)+cr‖x2−x1‖)
k∏

i=1

dxi

≤ nk

∫

Ω
e−npνr(x1)dx1

∫

B(x1,2(k−1)r)
e−npcr‖x2−x1‖dx2

k∏

i=3

∫

B(x1,‖x2−x1‖)
dxi

= nk

∫

Ω
e−npνr(x1)dx1

∫

B(x1,2(k−1)r)
e−npcr‖x2−x1‖

(
π ‖x2 − x1‖2

)k−2
dx2

= 2πk−1
(
n

∫

Ω
e−npνr(x1)dx1

)

(
nk−1

∫ 2(k−1)r

0
e−npcrρρ2k−3dρ

)

< 2πk−1
(
n

∫

Ω
e−npνr(x1)dx1

)

(
nk−1

∫ ∞

0
e−npcrρρ2k−3dρ

)

=
(2k − 3)!2πk−1nk−1

(npcr)2k−2

(
n

∫

Ω
e−npνr(x1)dx1

)

= O (1)
n

∫
Ω e−npνr(x1)dx1

(lnn)k−1 = o (1) ,

where the last equality follows from Lemma 5.

Lemma 7: Let r =
√

ln n+ξ
πpn for some constant ξ. Then for

any fixed integers 2 ≤ m < k.

nk

∫

Ckm

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi = o (1) ,

nk

∫

Ckm

(1 − pνr (x1, x2, · · · , xk))n−k
k∏

i=1

dxi = o (1) .

Proof: Since

(1 − pνr (x1, x2, · · · , xk))n−k ≤ e−npνr(x1,x2,··· ,xk)

(1 − pkπr2)k
,
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the second equality would follow from the first one, and thus
we only have to prove the first one. For any m-partition Π =
{K1,K2, · · · ,Km} of {1, 2, · · · , k}, let Ωk (Π) denote the
set of (x1, x2, · · · , xk) ∈ Ωk such that for any 1 ≤ j ≤
m, the nodes {xi : i ∈ Kj} form a connected component of
G2r (x1, x2, · · · , xk). Then Ckm is the union of Ωk (Π) over
all m-partitions Π of {1, 2, · · · , k}. So it is sufficient to show
that for any m-partition Π of {1, 2, · · · , k},

nk

∫

Ωk(Π)
e−npνr(x1,x2,··· ,xk)

k∏

i=1

dxi = o (1)

Now fix a m-partition Π = {K1,K2, · · · ,Km} of
{1, 2, · · · , k}, and let lj = |Kj | for 1 ≤ j ≤ m. Then,

Ωk (Π) ⊆
m∏

j=1

Clj1,

and for any (x1, x2, · · · , xk) ∈ Ωk (Π),

νr (x1, x2, · · · , xk) =
m∑

j=1

νr ({xi | i ∈ Kj}) .

Thus,

nk

∫

Ωk(Π)
e−npνr(x1,x2,··· ,xk)

k∏

i=1

dxi

= nk

∫

Ωk(Π)
e−np

∑ m
j=1 νr({xi|i∈Kj})

k∏

i=1

dxi

= nk

∫

Ωk(Π)

m∏

j=1

e−npνr({xi|i∈Kj})
k∏

i=1

dxi

≤ nk
m∏

j=1

∫

Clj1

e−npνr({xi|i∈Kj})
∏

i∈Kj

dxi

=
m∏

j=1



nlj

∫

Clj1

e−npνr({xi|i∈Kj})
∏

i∈Kj

dxi



 = o (1) ,

where the last equality follows from Lemma 6 and the fact
that at least one lj ≥ 2.

Lemma 8: Let r =
√

ln n+ξ
πpn for some constant ξ. Then for

any fixed integer k ≥ 2,

nk

∫

Ckk

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi ∼ e−kξ,

nk

∫

Ckk

(1 − pνr (x1, x2, · · · , xk))n−k
k∏

i=1

dxi ∼ e−kξ.

Proof: We again only give the proof of the first asymp-
totic equality and remark that he second one can be proved in
the similar manner together with the inequalities in Lemma 4.
For any (x1, x2, · · · , xk) ∈ Ckk,

νr (x1, x2, · · · , xk) =
k∑

i=1

νr (xi) .

Thus,

nk

∫

Ckk

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi

= nk

∫

Ckk

e−np
∑ k

i=1 νr(xi)
k∏

i=1

dxi

= nk

∫

Ωk

e−np
∑ k

i=1 νr(xi)
k∏

i=1

dxi

− nk

∫

Ωk\Ckk

e−np
∑ k

i=1 νr(xi)
k∏

i=1

dxi.

We show the first term is asymptotically equal to e−kξ, and
the second term is asymptotically negligible. Indeed,

nk

∫

Ωk

e−np
∑ k

i=1 νr(xi)
k∏

i=1

dxi

= nk

∫

Ωk

k∏

i=1

e−npνr(xi)
k∏

i=1

dxi

=
k∏

i=1

∫

Ω
e−npνr(xi)dxi ∼ e−kξ,

where the last equality follows from Lemma 5. Note that for
any (x1, x2, · · · , xk) ∈ Ωk \ Ckk,

νr (x1, x2, · · · , xk) ≤
k∑

i=1

νr (xi) .

Thus,

nk

∫

Ωk\Ckk

e−np
∑ k

i=1 νr(xi)
k∏

i=1

dxi

≤ nk

∫

Ωk\Ckk

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi

=
k−1∑

m=1

∫

Ckm

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi = o (1) ,

where the last equality follows from Lemma 6.

III. ASYMPTOTIC DISTRIBUTION OF THE NUMBER OF

ISOLATED NODES

The main result of this paper is the following theorem.
Theorem 9: Suppose that all nodes have a maximum trans-

mission radius r =
√

ln n+ξ
πpn for some constant ξ. Then the

total number of isolated nodes is asymptotically Poisson with
mean e−ξ, and the total number of isolated active nodes is
also asymptotically Poisson with mean pe−ξ.

The above theorem will be proved by using Brun’s sieve in
the form described, for example, in [1], Chapter 8, which is
an implication of the Bonferroni inequalities.
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Theorem 10: Let B1, · · · , Bn be events and Y be the num-
ber of Bi that hold. Suppose that for any set {i1, · · · , ik} ⊆
{1, · · · , n}

Pr (Bi1 ∧ · · · ∧ Bik
) = Pr (B1 ∧ · · · ∧ Bk) ,

and there is a constant µ so that for any fixed k

nk Pr (B1 ∧ · · · ∧ Bk) ∼ µk.

Then Y is also asymptotically Poisson with mean µ.
For applying Theorem 10, let Bi be the event that Xi is

isolated for 1 ≤ i ≤ n and Y be the number of Bi that hold.
Then Y is exactly the number of isolated nodes. Similarly, let
B′

i be the event that Xi is isolated and active for 1 ≤ i ≤ n
and Y ′ be the number of Bi that hold. Then Y ′ is exactly
the number of isolated active nodes. Obviously, for any set
{i1, · · · , ik} ⊆ {1, · · · , n} ,

Pr (Bi1 ∧ · · · ∧ Bik
) = Pr (B1 ∧ · · · ∧ Bk) ,

Pr
(
B′

i1 ∧ · · · ∧ B′
ik

)
= Pr (B′

1 ∧ · · · ∧ B′
k) .

In addition,

Pr (B′
1 ∧ · · · ∧ B′

k) = pk Pr (B1 ∧ · · · ∧ Bk) .

Thus, in order to prove Theorem 9, it suffices to show that if

r =
√

ln n+ξ
πpn for some constant ξ, then for any fixed k,

nk Pr (B1 ∧ · · · ∧ Bk) ∼ e−kξ. (1)

The proof of this asymptotic equality will use the following
two lemmas.

Lemma 11: For any x ∈ Ω,

Pr (B1 | X1 = x) = (1 − pvr (x))n−1
.

Proof: For any x ∈ Ω,

Pr (B1 | X1 = x)
= Pr (∀2 ≤ i ≤ n,Xi is either outside vr (x) or inactive)

=
n−1∑

i=0

qi

(
n − 1

i

)
(1 − vr (x))n−1−i

vr (x)i
dx

= (1 − vr (x) + qvr (x))n−1 = (1 − pvr (x))n−1
.

Lemma 12: For any k ≥ 2 and (x1, · · · , xk) ∈ Ωk,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

≤ (1 − pνr (x1, · · · , xk))n−k
.

In addition, the equality is achieved for (x1, · · · , xk) ∈ Ckk.
Proof: For any (x1, · · · , xk) ∈ Ωk,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

≤ Pr
(

νr (x1, · · · , xk) contains no active node
in Xk+1, · · · ,Xn

)

=
n−k∑

j=0

qj

(
n − k

j

)
(1 − νr (x1, · · · , xk))n−k−j

νr (x1, · · · , xk)j

= (1 − pνr (x1, · · · , xk))n−k
.

For any (x1, · · · , xk) ∈ Ckk,

Pr (B1 ∧ · · · ∧ Bk | Xi = xi, 1 ≤ i ≤ k)

= Pr
(

∀1 ≤ i ≤ k, νr (xi) contains no active node
in Xk+1, · · · ,Xn

)

=
n−k∑

m1+···+mk=0

Pr




∀1 ≤ i ≤ k, νr (xi) contains mi

inactive nodes and no active nodes
in Xk+1, · · · ,Xn





=
n−k∑

m1+···+mk=0

(
n − k

m1, · · · ,mk

) (
k∏

i=1

(qmiνr (xi)
mi)

)

(1 − νr (x1, · · · , xk))
n−k−

k∑
i=1

mi

= (1 − pνr (x1, · · · , xk))n−k
.

Now we are ready to prove the asymptotic equality (1).
From Lemma 11 and Lemma 5,

nPr (B1) = n

∫

Ω
(1 − pvr (x))n−1

dx ∼ e−ξ.

So the asymptotic equality (1) is true for k = 1. Now we fix
k ≥ 2. From Lemma 12, Lemma 6 and Lemma 7,

nk Pr
(
B1 ∧ · · · ∧ Bk, and (X1, · · · ,Xk) ∈ Ωk \ Ckk

)

≤ nk

∫

Ωk\Ckk

(1 − pνr (x1, · · · , xk))n−k
k∏

i=1

dxi = o (1) .

From Lemma 12 and Lemma 8,

nk Pr (B1 ∧ · · · ∧ Bk, and (X1, · · · ,Xk) ∈ Ckk)

= nk

∫

Ckk

(1 − pνr (x1, · · · , xk))n−k
k∏

i=1

dxi ∼ e−kξ.

Thus, the asymptotic equality (1) is also true for any fixed
k ≥ 2. This completes the proof of Theorem 9.
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