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Abstract

In wavelength routed optical networks, wavelength converters can potentially reduce the requirement on the number of wavelengths. A

recent study [Proceedings of 9th ACM-SIAM Symposium on Discrete Algorithms (1998)] raised the following problem: choose a minimum

number of nodes in a WDM network to place wavelength converters so that any set of paths requires the same number of wavelengths as if

wavelength converters were placed at all node. This problem is referred to as minimum sufficient set problem. It was shown to be NP-

complete in general WDM networks [Proceedings of 9th ACM-SIAM Symposium on Discrete Algorithms (1998)], and be as hard as the

well-known minimum vertex cover problem [Proceedings of 10th ACM-SIAM Symposium on Discrete Algorithms (1999)]. In this paper, we

extend their study in trees, tree-connected rings, and tree of rings which are widely used topologies in the telecommunications industry. We

show that the optimal wavelength converter placement problem in these two practical topologies are tractable. Efficient polynomial-time

algorithms are presented.

q 2002 Published by Elsevier Science B.V.
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1. Introduction

In wavelength routed WDM (wavelength-division multi-

plexed) optical networks [11] without any wavelength

conversion [12], the wavelength assignment must meet the

wavelength continuity constraint, i.e. the same wavelength

is allocated on all of the links in the path established for a

connection [1,2,9,10,13,15]. Such constraint can be relaxed

when wavelength converters are placed at certain nodes. If a

node of the network contains a wavelength converter, any

path that passes through this node may change its

wavelength. In a network with wavelength converters, the

wavelengths are assigned to individual links of all paths,

with the restriction that the same wavelength is allocated on

all of the links in any subpath that does not pass through a

wavelength converter. Clearly wavelength assignments in

networks with wavelength converters can be more efficient

(i.e. use fewer wavelengths) than wavelength assignments

for the same set of paths when no wavelength converters are

available. One extreme example is that if each node has

a wavelength converter, the number of wavelengths

required for any routing is reduced down to the natural

congestion or load bound, defined to be the maximum

number of paths passing through any one link in the

network.

However, it is not always necessary to place a

wavelength converter at each node such that the number

of wavelengths required by any set of paths is equal to its

link load. As observed in Ref. [16], it is sufficient to place a

converter at a single arbitrary node in a WDM ring to

achieve this objective [16]. Motivated by this observation,

the following question was raised in Ref. [16]: in a general

WDM network, how to choose a minimum number of nodes

to place wavelength converters so that the number of

wavelengths required by any set of paths is equal to its link

load? A set S of nodes in a network is said to be sufficient

[16] if placing converters at the nodes in S can ensure that

the number of wavelengths required by any set of paths

equals to its link load. The minimum sufficient set problem is

NP-complete in general WDM networks [16]. Furthermore,

it is as hard as the minimum vertex cover (MVC) problem in

undirected graphs [8]. Since providing an approximation

ratio better than 2 for the MVC problem is a long-standing
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open problem, this indicates that improving on

the performance guarantee of two for minimum sufficient

set problem will be difficult as well.

While the work in Ref. [8] provided approximation

solutions for general WDM networks, we notice that the

topologies of most practical WDM networks are not

general. In particular, trees, tree-connected rings and tree

of rings are of more practical concrete relevance to the

telecommunications industry. For practical reasons, back-

bone telecommunication networks need to reflect irregular-

ity of geography, non-uniform clustering of users and traffic,

hierarchy of services, dynamic growth, etc. In addition,

wide-area multiwavelength technology is evolving around

current signal wavelength networking architectures and

existing fiber networks. These are mainly SONET rings and

tree-like interconnection of such rings [3,4,14]. In this

paper, we will show that the minimum sufficient set problem

in these special topologies can be solved in polynomial

time. Our algorithms are based on the reduction of the

minimum sufficient set problem to the MVC problem

established in Ref. [8]. They are very efficient and easy to

implement.

The remaining of this paper is arranged as follows. In

Section 2, we first introduce some basic terminologies and

the reduction from the minimum sufficient set problem to

the MVC problem. In Section 3, we present a polynomial-

time algorithm which finds a minimum sufficient set

problem in tree networks. In Section 4, we present a

polynomial-time algorithm which finds a minimum suffi-

cient set problem in tree-connected rings. In Section 5, we

present a polynomial-time algorithm which finds a mini-

mum sufficient set problem in tree of rings. Finally Section 6

summarizes this paper.

2. Preliminaries

A WDM network in this paper is a bi-directed graph

G ¼ ðV ;EÞ: one for which ðu; vÞ [ E if and only if ðv; uÞ [
E:The skeleton of the network G, denoted by Gs ¼ ðV ;E0Þ, is

the undirected graph obtained from G by replacing each bi-

directed pair of edges with a single undirected edge. By

partial abuse of terminology, we will say a set is sufficient in

Gs if and only if it is sufficient in G. A vertex v is referred to as

a branching node if its degree in Gs is greater than 2, a relay

node if its degree in Gs is equal to 2, or a leaf node if its degree

in Gs is equal to 1. We will assume that Gs is connected and

contains at least one branching node, since otherwise Gs is

either a path or a cycle, and the minimum sufficient set can be

solved trivially. We say that a node of a path P is an internal

node in this path if it is not one of the two endpoints.

From the graph Gs; we construct another undirected

multigraph Gc ¼ ðVc;EcÞ; referred to as the contraction of

the graph Gs; as follows: Vc consists of all branching nodes

in Gs: For any two branching nodes u and v, ðu; vÞ is an edge

in Ec if and only if there exists a path in Gs between u and v

such that all internal nodes in this path are relay nodes. Note

that Gc may have self-loops, which we retain as part of the

graph. The following lemma establishes the connection

between the minimum sufficient set in G and the MVC in

Gc:

Lemma 1. [8] Any MVC of Gc is also a minimum sufficient

set of G.

As a consequence of Lemma 1, it is sufficient to obtain

a MVC of the contraction of Gc in order to find a

minimum sufficient set in a graph G. In general, the MVC

problem is NP-complete and it has a 2-approximation

algorithm. But it is fixed-parameter tractable: whether a

graph has a VC of size at most k can be decided with time

Oðf ðkÞpðnÞÞ (see e.g. [7]) where, p is a polynomial

function. If the graphs are planar, a polynomial-time

approximation scheme exists [5,6]. However, as will show

in this paper, when the graph is a tree or a tree-connected

rings, a MVC can be found in polynomial time.

3. Minimum sufficient set in trees

In this section, we consider the WDM networks whose

underlying topologies are trees. It is obvious that the

contraction of any tree is also a tree with the additional

property that all internal nodes have degrees of at least three.

Thus according to Lemma 1 the minimum sufficient set can

be obtained by finding a MVC in the contraction tree. In the

next we will present a general polynomial-time algorithm to

find MVCs in trees.

We call an internal node of a tree to be a leaf-root if one

of its neighbors is a leaf node. If a tree has no leaf-root then

it must be a single edge and its MVC consists of an arbitrary

node of this edge. If a tree contains a leaf-root, then the next

lemma indicates that there is a MVC which contains this

leaf-root.

Lemma 2. Let G be a tree with a leaf root u. Then G has a

MVC which contains u.

Proof. We prove the lemma by contradiction. Assume the

lemma were not true. Let C be a MVC of G which contains

the most number of leaf-roots of G, but does not contain u.

Let v be any leaf node that is a neighbor of u. Clearly, v must

be in C, for otherwise the edge ðu; vÞ would not be covered

by C. Consider

C0 ¼ ðC 2 {v}Þ< {u}:

Then C0 is also a MVC of G, and contains one more leaf-

roots of G than C. This contradicts the selection of C. Thus

the lemma is true. A

Let G be any tree and C be any MVC of G which contains

a leaf-root u of G. Let G0 be the graph obtained from G by

P.-J. Wan et al. / Computer Communications 26 (2003) 718–722 719



removing u and all its incident edges. Then G0 is a forest and

it is referred to as the residue of G. Let C0 ¼ C\{u}: Then for

each component tree T0 of G0, C0 > T 0 is also a MVC of T0.

Thus we can apply Lemma 2 to all component trees of G0

recursively. Based on this observation, we have the

following recursive algorithm to find a MVC of a tree

described in Table 1.

The algorithm MVC_Tree can be implemented effi-

ciently. The details are omitted over here.

4. Minimum sufficient set in tree-connected rings

The tree-connected rings, illustrated in Fig. 1, is an

interconnection topology widely used in the telecommuni-

cations industry. In this topology, each node is within a ring

and these rings are interconnected via a tree-like topology. It

is easy to see that the contraction of any tree-connected

rings is also a tree-connected rings. As the MVC of the

contraction graph provides an optimal sufficient set of the

original graph, we will provide a polynomial-time algorithm

that finds a MVC in an arbitrary tree-connected rings.

It is well-known that there are at least two leaf-nodes in

any tree. Similarly, one can show that in any tree-connected

rings, there exist at least two rings in which all nodes have

degree of two except one whose degree is three. Such rings

are referred to as leaf-rings. The only node in a leaf-ring

whose degree is three is called a bridging-node. Suppose

that a leaf-ring contains m nodes. Then any MVC contains at

least dm=2e nodes in this leaf-ring. In the next we show that

there is always a MVC, which contains the bridging node of

any leaf ring.

Lemma 3. Let G be a tree-connected rings. Then G has a

MVC which contains all bridging-nodes of all leaf-rings in

G.

Proof. We prove the lemma by contradiction. Assume the

lemma were not true. Let C be a MVC of G which contains

the most number of bridging-nodes of G, and let u be any

bridging-nodes of G that is not in C. Let R be the leaf-ring

containing the bridging-node u. Then R cannot be a self-

loop, for otherwise u must be in any VC of G and thus in C

too. So R contains m $ 2 nodes, say u ¼ v1; v2;…; vm in the

clockwise order. Clearly C must contain at least dm=2e nodes

in R, i.e.

lC > Rl $
m

2

� �
:

Consider

C0 ¼ ðC 2 RÞ< {vi : 1 # i # m; i is odd}:

Then C0 is also a VC of G, and

lC0l ¼ lC 2 Rlþ
m

2

� �
¼ lCl2 lC > Rlþ

m

2

� �
# lCl:

Thus C0 is also a MVC of G. On the other hand, C0 contains

one more bridging-nodes of G than C. This contradicts the

selection of C. Thus the lemma is true. A

The proof of Lemma 3 suggests a MVC of a leaf-ring.

Suppose that a leaf-ring R contains m nodes, say

v1; v2;…; vm in the clockwise order in which v1 is its

bridging node. The set of vertices

{vi : 1 # i # m; i is odd}

is called a canonical VC of the leaf-ring R. Then Lemma

3 indicates that for any leaf-ring R, there is a MVC C of

G which contains its canonical VC. Let G–R denote the

graph obtained from G by removing all node in R and

their incident edges. Let C –R denote the vertex set

obtained from C by removing the canonical VC of R.

Then G–R is also a tree-connected rings and C –R is a

MVC of G0. On the other hand, the union of the

canonical VC of R and any MVC of G–R is also a MVC

of G. Based on this observation, we have the following

incremental algorithm to find the MVC of a tree-

connected rings listed in Table 2.

The algorithm MVC_Tree_Rings removes one leaf-ring

at each incremental step and add its canonical VC. With

carefully selected data structures and implementation, its

run-time can be linear in the network size. The details are

omitted over here.

Table 1

Recursive algorithm to find a MVC of a tree

Fig. 1. An example of tree-connected rings.
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From the algorithm MVC_Tree_Rings, we can expli-

citly count the cardinality of any MVC of a tree-connected

rings.

Theorem 4. Let G ¼ ðV ;EÞ be a tree-connected rings, and k

be the number of odd-sized rings in G. Then the cardinality

of any MVC of G is ðlV lþ kÞ=2:

Proof. Let R1,R2,…,Rl be the component rings in G.

According to our above algorithm, each ring will eventually

become a leaf-ring and its canonical VC will be added to the

MVC of G. Note that the canonical VCs of different

component rings are disjoint. Thereby, the cardinality of any

MVC of G is

Xl

i¼1

lRil
2

� �
¼

Xl

i¼1

lRil
2

þ
k

2
¼

1

2

Xl

i¼1

lRilþ
k

2
¼

lVl
2

þ
k

2

¼
lV lþ k

2
:

A As a corollary of Theorem 4, the cardinality of any

minimum sufficient set is at least half of the number of

branching-nodes. In order to reduce the number of

converters needed, the topology should be carefully

designed. For an example, we can choose the topology

such that the number of branching nodes in each component

ring to be even.

5. Minimum sufficient set in trees of rings

A tree of rings, also known as a cactus, is a connected

graph whose biconnected components are all rings (Fig. 2),

i.e. a pair of vertices have two vertex-disjoint paths if and

only if they are within the same ring. From any tree of rings,

a tree, referred to its underlying tree, can be constructed in

the following manner. The vertex set of the underlying tree

consists of the original vertices in the tree of rings with

degree (even) at least four and a number of new vertices (the

black squares in Fig. 2), each of which corresponds to a

unique ring in the tree of rings (imagine the new node as the

center of the ring). The edge in the underlying tree exists

only between an original vertex and a new vertex, and the

edge exists if the original vertex is the inside the ring

represented by the new vertex (see the dashed lines in

Fig. 2).

The contraction of any tree of rings is also a tree of

rings with the property that the nodal degrees are all

even numbers greater than two. In addition, the

contraction has at least two rings which are self-loops.

These rings are also referred to as leaf-rings. Note that

any VC of the contraction must contain the unique node

in each loop. However, after removing all edges incident

to the vertices selected as part of the VC, the residue

graph may no longer be a tree of rings, and it may even

be disconnected. However, each connected component

can be treated as subgraph of a tree of rings, which can

be obtained by choosing a subset of rings and remove a

link from each of these rings. We refer to each such

component as a sub-tree of rings. In a sub-tree of rings,

we can similarly define leaf-roots as in trees and leaf-

rings as in tree-connected rings. A leaf-root is an internal

node with at least one neighbor as a leaf. A leaf-ring is a

ring which contains at most one node with nodal degree

more than two. For each leaf-ring, one can define its

canonical VC as for tree-connected rings. By the similar

argument, we can show that if a sub-tree of rings has

non-empty leaf-roots, then it has a MVC that contains all

leaf-roots. If a sub-tree of rings has no leaf-roots, then it

must contains at least two leaf-rings. Pick any leaf-ring.

Then the sub-tree of rings has a MVC that contains the

canonical VC of the picked leaf-ring. Notice that a tree

Table 2

Algorithm to find a MVC of a tree-connected rings

Fig. 2. The tree of rings depicted in solid arcs, and its underlying tree

depicted in dashed lines with black squares representing the centers of the

rings.
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of rings can also be treated as a sub-tree of rings. So we

propose the following recursive algorithm for MVC of

sub-tree of rings as describe in Table 3.

6. Summary

The minimum sufficient set problem is in general NP-

complete and is as hard as the MVC problem. However,

the underlying topologies of most WDM networks in the

telecommunications industry are built around trees, rings,

tree-connected rings, and tree of rings. For these

topologies, this paper showed that both minimum

sufficient problem and the MVC problem can be solved

in polynomial time. Efficient algorithms have been

provided for the MVC problem in these topologies

which in turn are used to solve the minimum sufficient

set problem in these topologies.
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