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Abstract

In this paper we consider WDM networks with a tunable transmitter and a fixed-wavelength receiver at each station (similar results hold

when the transmitter is fixed and the receiver is tunable). Traditionally, each station is required to be able to access all wavelength channels

used in the network. Such requirement limits the number of wavelengths that can be exploited in a WDM network up to the size of the

resolvable wavelength set of optical transceivers, which is very limited with current technology. In this paper we observe that this

requirement is actually an overkill. To realize a communication topology, physical or logical, it is sufficient that the tunable range of the

transmitter at each station covers all the wavelengths of the receivers at its neighboring stations. This observation leads to the study of optimal

wavelength assignment to minimize the tunability requirement while still guaranteeing that each receiver has a unique wavelength channel.

This optimization problem is shown to NP-complete in general and approximation algorithms with provable performance guarantees are

presented. When the communication topologies are complete graphs, de Bruijin digraphs, Kautz digraphs, shuffle or rings, the optimal

solutions are provided. Finally, we present tight lower bounds when the communication topology is a hypercube.

q 2002 Published by Elsevier Science B.V.
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1. Introduction

In WDM optical networks, either passive optical

networks or wavelength routed optical networks [9], the

multi-wavelength transmission/reception at each station is

realized through either an array of fixed-wavelength

transceivers or a tunable transceiver. A transceiver array

has the advantage of being able to select the wavelength for

each transceiver independently. However it becomes very

bulky as the number of transceivers increases. On the other

hand tunable transceiver has very limited tunable range with

the current technology. The tunability of tunable transcei-

vers is usually realized via tunable optical filters. Many

tunable optical filters have a very limited resolvable

wavelength set. These resolvable wavelength set in general

consists of a number of contiguous wavelength channels, for

an example, determined by the free spectral range.

Traditionally, each station is required to be able to access

all wavelength channels used in the network. Under such

requirement, the set of working channels of the network is

limited to the resolvable wavelength set of tunable

transceivers. To increase the transmission capacity of the

network, the transceivers at each station must be upgraded

to support more resolvable wavelength set. Unfortunately,

this is often not practical most of the time.

At the first glance, one might feel pessimistic on the

transmission capacity of the WDM networks making use of

tunable transceivers with limited resolvable wavelength

channels. However, careful re-examining the operation

principles of WDM networks reveals more optimistic

discoveries. The requirement on stations to be able to

access all working wavelength channels is actually an

overkill in most situations. For an example, in many real

applications, each station only communicates with a small

number of stations among a potentially large population of

stations in the entire network. To support the communi-

cations with these subset of stations, the tunable transceiver

only have to access the wavelength channels used by these

subset of stations. If the number of these channels is very
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small, then a tunable transceiver with a small resolvable

wavelength set is sufficient to carry out all communications.

Based on this observation, one might be interested in

finding out the minimum requirement on the tunable range of

optical transceivers to support a communication topology,

either physical or logical. This paper is intended to address

this question. Each station is assumed to have a tunable

transmitter and a fixed-wavelength receiver. The results can

be extended to the opposite configuration in which the

transmitter is fixed while the receiver is tunable. Each tunable

transmitter can access the same number of contiguous

resolvable wavelength channels while the re-solvable

wavelength set of different transmitters might be different.

Such assumption reflects the free spectral range of many

tunable filters [2]. These filters can operate on any contiguous

resolvable wavelength channels as long as the number of

these channels does not exceed the size of the free spectral

range. The contiguous resolvable wavelength channels of

any transmitter is referred to as a wave-band. Then to support

a given communication topology, the wavebands of the

tunable transmitters and the wavelength channels of the

fixed-wavelength receivers must be carefully selected such

that for any link in the communication topology, the

wavelength of the receiver at the destination station is within

the waveband of the transmitter at the source destination. In

addition, we require that each receiver owns a unique

wavelength channel so as to maximize the number of working

wavelength channels of the entire network. (Note that it’s the

set of wavelength channels used by the fixed-wavelength

receivers, rather than the set of wavelength channels covered

by the wavebands of the transmitters, that determines the

working wavelength channels of the entire network.) Any

waveband/wavelength assignment to the transmitters and

receivers satisfying these conditions is said to be valid. The

tunability requirement of any valid waveband/wavelength

assignment is then simply one plus the maximum difference

of the wavelength channels to any pair of receivers that can

potentially talk to the same transmitter. Our objective is then

to find a valid waveband/wavelength assignment with

minimum tunability requirement.

The remaining of this chapter is arranged as follows.

Section 2 formulates the minimum tunability problem into a

graph-theoretic optimization problem. Section 3 studies the

computational complexity of this problem in general

communication topologies and provides approximation

algorithms with provable performance. Section 4 presents

the optimal wavelength assignment in complete graphs, de

Bruijin/Kautz/shuffle digraphs, and rings respectfully, and

tight lower bounds on minimum tunability in hypercubes.

Finally Section 5 summarizes this paper.

2. Graph-theoretic formulation

The given communication topology in a

WDM network is represented by a graph G ¼ ðV ;EÞ

where V ¼ {0; 1;…;N 2 1}: Depending on whether the

communications are bidirectional or unidirectional, G is

expressed as an undirected graph or directed graph

correspondingly. The wavelength channels are indexed by

nonnegative integers. In the following, we prove that there

always exists an optimal valid waveband/wavelength

assignment in which the set of wavelength channels

assigned to the receivers is exactly {0; 1;…;N 2 1}:

Lemma 1. For any given communication topology with N

stations, there always exists an optimal valid waveband/

wavelength assignment in which the set of wavelength channels

assigned to the receivers is exactly {0; 1;…;N 2 1}:

Proof. Consider any optimal valid waveband/wavelength

assignment in which the N wavelengths assigned to the N

receivers are w0 , w1 , · · · , wN21: If w0 – 0; then

replacing each wavelength w by w 2 w0 results in another

valid waveband/wavelength with the same tunability

requirement. Let 0 ¼ w0
0 , w0

1 , · · · , w0
N21 denote the N

wavelengths assigned to the N receivers in this new optimal

waveband/wavelength assignment. If it is still not the

desired, then choose the minimum k such that w0
k . k and

then replace each wavelength w $ w0
k by w 2 w0

k þ k: The

resulting waveband/wavelength assignment is still an

optimal valid one. Such procedure can be repeated until a

desired waveband/wavelength assignment is obtained. A

From Lemma 1 we can restrict our attention to those

valid waveband/wavelength assignments in which the set of

wavelength channels assigned to the receivers is exactly

{0; 1;…;N 2 1}: Furthermore, any such wavelength assign-

ment to the receivers only can be extended to one or more

valid waveband/wavelength assignment by assigning each

transmitter a waveband containing the wavelengths of all

receivers that it communicates with. Thus we can focus on

only the wavelength assignment to the receivers with

wavelengths {0; 1;…;N 2 1}: As each receiver must have a

unique wavelength, any wavelength assignment corre-

sponds to a permutation over the set {0; 1;…;N 2 1}:

Thus the problem can be formulated as follows.

Minimum tunability problem. Given a graph G ¼ ðV ;EÞ;

find

FðGÞ ¼ 1 þ min
p[PV

max
v[V

max
ðv;uÞ[E

pðuÞ2 min
ðv;uÞ[E

pðuÞ

� �

where PV is the set of all permutations on V.

A remark on the above description is that when G is a

directed graph, the (v, u ) represents the link from node v to

node u and thus is an ordered pair. FðGÞ is exactly the

minimum tunability.

An opposite of the minimum tunability problem is the

maximum concurrence problem in which the tunability w of

the transmitters is given and we would like to assign as

many wavelengths as possible to the receivers under

the constraint that the wavelengths assigned all receivers
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that communicate with a common transmitter must within a

waveband of length w. For any graph G ¼ ðV ;EÞ and the

tunability 1 # w # lVl; the maximum concurrence can be

represented by

LwðGÞ ¼ max{l{lðvÞlv [ V}l

: max
v[V

max
ðv;uÞ[E

lðuÞ2 min
ðv;uÞ[E

lðuÞ

� �
, w:

To calculate FðGÞ; one may first calculate LwðGÞ for each

1 # w # lV l and then obtain FðGÞ according to the

following relation

FðGÞ ¼ min{1 # w # lV l : LwðGÞ ¼ lVl}:

This approach will be used later in this paper.

3. Optimal wavelength assignment in arbitrary

undirected graphs

In this section, we first prove that the minimum tunability

problem is NP-hard in general. A reduction will be made

from the well-known minimum bandwidth problem [6].

Minimum bandwidth problem. Given a graph G ¼ ðV ;EÞ;

find

BWðGÞ ¼ 1 þ min
p[PV

max
ðu;vÞ[E

lpðuÞ2 pðvÞl

where PV is the set of all permutations on V.

Theorem 2. The minimum tunability problem is NP-hard. It

is even NP-hard to approximate it within absolute error

N12e for any e . 0:

Proof. We reduce the problem of minimum bandwidth of

cobipartite graph to the minimum tunability problem [6].

Let G ¼ ðU;V ;EÞ be any cobipartite graph. Then for

any e $ 0; it is NP-hard to approximate BWðGÞ within

absolute error of ðlUlþ lV lÞ12e [6]. Without loss of

generality, we assume that lUl # lVl: We construct graph

H ¼ ðVðHÞ;EðHÞÞ as follows:

VðHÞ ¼ {a; b} < U < U 0 < V ;

where U 0 ¼ {u0 : u [ U} is a copy of U.

EðHÞ ¼ {ða; uÞ : u [ U} < {ðv; bÞ : v [ V} < {ðu; u0Þ

: u [ U} < {ðu0
; vÞ : ðu; vÞ [ EðGÞ}:

Let K ¼ ðVðKÞ;EðKÞÞ be the graph in which

VðKÞ ¼ {a; b} < U 0
;

and

EðKÞ ¼ {ða; u0Þ : u [ U} < {ðu0
; bÞ : u [ U} < {ðu0

1; u
0
2Þ

: u1; u2 [ U;’v [ V ; ðu1; vÞ; ðu2; vÞ [ EðGÞ}:

Then FðHÞ ¼ max{BWðGÞ;BWðKÞ}: Obviously,

BWðKÞ # 1 þ lU 0l ¼ 1 þ lUl # 1 þ lVl

and

BWðGÞ $ lVl:

Thus BWðGÞ # FðHÞ # 1 þ BWðGÞ: So the minimum

tunability problem is at least as hard as the minimum

bandwidth problem over cobipartite graphs. Therefore, the

lemma follows from the NP-hardness and approximality of

the minimum bandwidth problem over cobipartite

graphs. A

In the next, we seek approximation algorithms for the

minimum tunability problem in general graphs.

The approximation algorithms can be obtained by reducing

the minimum tunability problem to minimum bandwidth

problem. For any graph G ¼ ðV ;EÞ; let �G ¼ ðV ; �EÞ be the

graph in which

�E ¼ {ðv1; v2Þ : v1; v2 [ U;’v [ V ; ðv1; vÞ; ðv2; vÞ [ E}:

It is obvious that FðGÞ ¼ BWð �GÞ: Thus any approximation

algorithms for minimum bandwidth problem can be applied

to �G to obtain an approximation algorithm for the minimum

tunability of G. There are many approximation results on the

minimum bandwidth problem that can be readily adopted

for the minimum tunability problem. For examples, if the

nodal degree is QðlV lÞ; the minimum bandwidth problem is

approximable within 3 [7]. If G is a caterpillar, the minimum

bandwidth problem is approximable within OðloglVlÞ [3]. If

G is asteroidal triple-free, the minimum bandwidth problem

is approximable within 2 [8]. However, there are also some

inapproximality results. For any e . 0; the minimum

bandwidth problem is not approximable within 1.5 2 e

[1], and not approximable with an absolute error guarantee

of lVl12e
[6]. Even if G is a tree, it is still not approximable

within 1:332 2 e for any e . 0 [1].

Fortunately, most applications deals with special com-

munication topologies, which allow for polynomial-time

optimal solution. Before we move on to the these

special communications topologies, we first give the

following straightforward bounds on LwðGÞ : for any

graph G ¼ ðV ;EÞ and any 1 # w # lV l; w # LwðGÞ # lVl:

4. Optimal wavelength assignment in regular graphs

4.1. Complete graphs

The complete graph corresponds to a single-hop network

if it represents the virtual topology embedded into the

physical networks, or a all-to-all personalized communi-

cation request if it represents a communication pattern. We

use KN to denote the complete graph of N vertices. We show

that for any 1 # w # N; LwðKNÞ ¼ w: Obviously,

LwðKNÞ $ w: On the other hand, consider any feasible
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wavelength assignment lð·Þ: Let station a be the one

assigned with the smallest wavelength lðaÞ; and station b

the one assigned with the largest wavelength lðbÞ: As a and

b are both neighbors of any other node other than a and b,

lðbÞ2 lðaÞ , w: Thus LwðKNÞ # w: Therefore LwðKNÞ ¼

w; and therefore FðKNÞ ¼ N: Thus any wavelength assign-

ment which uses w wavelengths is optimal. To make the

wavelengths sharing the same workload, we should equally

partition the stations into w subsets, and assign a distinct

wavelength to all stations in the same subset.

4.2. de Bruijin digraphs, Kautz digraphs and shuffles

A de Bruijin digraph [4,10] (or Kautz digraph [5], shuffle,

respectively) of size N and degree p is denoted by DðN; pÞ

(or KðN; pÞ; SðN; pÞ; respectively). We assume that in these

graphs, the degree p is always selected to be a factor of the

size N. For each 0 # i , N=p; let Rl ¼ {lp þ kl0 # k ,p }:

Then Rl consists of exactly the immediate successors of

some node in DðN; pÞ; KðN; pÞ or SðN; pÞ; and thus can be

assigned with at most min{p;w} wavelengths.

Furthermore, in any optimal wavelength assignment the

two sets of wavelengths assigned to Rl and Rl should be

disjoint for any 0 # i , j , N
p
: So the total number of

wavelength used is at most N=p min{p;w} ¼

min{N;wðN=pÞ}: On the other hand, there are many

wavelength assignments which use min{N;w N
p

} wave-

lengths. For an example, for each 0 # i , N
p
; we partition

Rl into min{p;w} groups as equally as possible and then

any min{p;w} contiguous wavelengths are assigned to these

min{p;w} groups. Therefore, LwðDðn; pÞÞ ¼ LwðKðn; pÞÞ ¼

LwðSðn; pÞÞ ¼ min{N;w N
p

}: This implies FðDðn; pÞÞ ¼

FðKðn; pÞÞ ¼ FðSðn; pÞÞ ¼ p: Thus even with fixed-wave-

length transmitters, certain degree of concurrence ð N
p
Þ is

achievable. In particular, if the nodal degree is two, we can

still achieve half of the full concurrence.

Consequently, as long as the number of resolvable

wavelengths of each transmitter is no less than the degree of

these graphs, full concurrence can be achieved. In

particular, if the degree is equal to two, then any tunable

transmitters are sufficient to achieve full concurrence. In

general, when choosing the degree of these graphs as virtual

topologies to be embedded into any given physical net-

works, the degree should be chosen to be no more than the

number of resolvable wavelengths of the transmitters in

order to achieve the full concurrence.

4.3. Rings

We begin with unidirectional rings. Let URN denote the

unidirectional ring of N vertices {0; 1;…;N 2 1}: The

wavelength assignment which assigns each vertex a distinct

wavelength is feasible as each vertex has only one

immediate successor. Thus for any 1 # w # N;LwðURNÞ ¼

N; and thereby FðURNÞ ¼ 1: This implies that there is no

need to use tunable transmitter at all in unidirectional rings.

The fixed-wavelength transmitter is sufficient.

Now we consider bidirectional rings. Let BRN denote the

bidirectional ring of N vertices {0; 1;…;N 2 1}: Without

loss of generality, we assume that the vertices are numbered

in the clockwise order. The wavelength routing in bidirec-

tional rings will be reduced to the following optimal ring

labeling problem in the bidirectional rings.

Optimal ring labeling problem. Given a ring of size N

and an integer 0 , w , N; assign a label ‘ðiÞ to each 0 #

i , N such that

l‘ðiÞ2 ‘ðði þ 1Þmod NÞl , w

and l{‘ðiÞ : 0 # i , N}l is maximized. The maxima is

denoted by GwðNÞ:

Then for any 1 # w # N;

LwðBRNÞ ¼
2Gw

N

2

� �
if N is even;

GwðNÞ if N is odd:

8><
>: :

In fact, when N is even, let BR0
N and BR00

N be the two rings

consisting of all even nodes and all odd nodes in BRN,

respectively. Thus a wavelength assignment in BRN is

feasible if and only if it induces a feasible ring labeling with

respect to w in both BR0
N and BR00

N : Thus, to maximize the

number of wavelength used, the wavelengths/labels

assigned to these two small rings should be disjoint.

Hence LwðBRNÞ is twice of Gwð
N
2
Þ: Now we assume that

N is odd. Consider the ring G in which nodes are arranged

clockwise in the following order

0; 2; 4;…;N 2 3;N 2 1; 1; 3; 5;…;N 2 4;N 2 2:

It can be shown that a wavelength assignment in BRN is

feasible if and only if it induces a feasible ring labeling with

respect to w in G. Thus LwðBRNÞ ¼ GwðNÞ:

In the next we find the optimal ring labeling. If w ¼ 1;

then all nodes in the ring must have the same labeling and

thus G1ðNÞ ¼ 1: If w . 2 and N is even, we consider the

following ring labeling ‘ð·Þ : ‘ð0Þ ¼ 0; ‘ð N
2
Þ ¼ N 2 1;

‘ðiÞ ¼ 2i 2 1 for any 0 , i , N
2
; ‘ðiÞ ¼ 2ðN 2 iÞ for any

N
2
, i , N: If w . 2 and N is odd, we consider the

following ring labeling ‘ð·Þ : ‘ð0Þ ¼ 0; ‘ðiÞ ¼ 2i 2 1 for

any 0 , i # b N
2
c; ‘ðiÞ ¼ 2ðN 2 iÞ for any d N

2
e # i , N: In

both cases, l‘ðiÞ2 ‘ðði þ 1Þmod NÞl # 2 # w 2 1 and

l{‘ðiÞ : 0 # i , N}l ¼ N: Thus we also have GwðNÞ ¼ N

if w . 2. Now we assume that w ¼ 2. Then for any 0 ,

i , N; l‘ðiÞ2 ‘ð0Þl # min{i;N 2 i} # b N
2
c: Thus G2ðNÞ #

1 þ bN=2c ¼ dðN þ 1Þ=2e: On the other hand, there is a ring

labeling that uses dðN þ 1Þ=2e different labels. If N is odd, we

consider the following ring labeling ‘ð·Þ : ‘ð0Þ ¼ 0; ‘ðiÞ ¼

‘ðN 2 iÞ ¼ i for any 0 , i # b N
2
c: If N is even, we

consider the following ring labeling ‘ð·Þ : ‘ð0Þ ¼ 0;

‘ðN=2Þ ¼ N=2; ‘ðiÞ ¼ ‘ðN 2 iÞ ¼ i for any 0 , i , N
2
:

Thus G2ðNÞ ¼ dðN þ 1Þ=2Þe for any N. In summary, for any
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N . 1,

GwðNÞ ¼

1 if w ¼ 1;

N þ 1

2

	 

if w ¼ 2;

N if w . 2:

8>>><
>>>:

Therefore,

LwðBRNÞ ¼

2 2 N mod 2 if w ¼ 1;

2
N

4

� �
þ

ðN 2 1Þmod 4

4

	 

þ 1 if w ¼ 2;

N if w . 2:

8>>><
>>>:

FðBRNÞ ¼
2 if N ¼ 2 or 4;

3 if N $ 5 or N ¼ 3:

(

This implies that to achieve the full concurrence the number

of resolvable wavelengths can be as low as three. If each

transmitter can tune to only two contiguous wavelengths,

we can still achieve the full concurrence when N ¼ 2 or 4,

and around half of the full concurrence if N $ 5 or N ¼ 3. If

the transmitters are fixed, the concurrence is very poor.

4.4. Hypercubes

Let Cn to denote the n-dimensional hypercube. Without

loss of generality, we always assume that the wavelengths

are positive integers and the lowest wavelength is 1 which is

assigned to node 0. Consider any optimal wavelength

assignment in Cn which achieves full concurrence while

requires minimum tunability. Note that there are ð n
2
Þ nodes

which have distance of two from node 0, and all of them

have a unique larger wavelength. One of them must have

wavelength at least ð n
2
Þ þ 1: Hence FðCnÞ $ 1 þ ð n

2
Þ:

This lower bound is also sufficient when n # 4. If n ¼ 2;

1 þ ð n
2
Þ ¼ 2: The following feasible wavelength assignment

achieves full concurrence, and the difference between the

wavelengths assigned to two neighbors of any node is at

most 2:

lð00Þ ¼ 1; lð11Þ ¼ 2; lð01Þ ¼ 3; lð10Þ ¼ 4:

If n ¼ 3; 1 þ ð n
2
Þ ¼ 4: The following feasible wavelength

assignment achieves full concurrence, and the difference

between the wavelengths assigned to two neighbors of any

node is at most 4:

lð000Þ ¼ 1; lð011Þ ¼ 2; lð101Þ ¼ 3;

lð110Þ ¼ 4; lð001Þ ¼ 5; lð010Þ ¼ 6;

lð107Þ ¼ 3; lð111Þ ¼ 8:

If n ¼ 4; 1 þ ð n
2
Þ ¼ 7: The following feasible wavelength

assignment achieves full concurrence, and the difference

between the wavelengths assigned to two neighbors of any

node is at most 7:

lð0000Þ ¼ 1; lð0011Þ ¼ 2; lð0101Þ ¼ 3;

lð0110Þ ¼ 4; lð1001Þ ¼ 5; lð1010Þ ¼ 6;

lð1100Þ ¼ 7; lð1111Þ ¼ 8; lð0001Þ ¼ 9;

lð0010Þ ¼ 10; lð0100Þ ¼ 11; lð0111Þ ¼ 12;

lð1000Þ ¼ 13; lð1011Þ ¼ 14; lð1101Þ ¼ 15;

lð1110Þ ¼ 16:

When n $ 5, we have

FðCnÞ $
n

2

 !
þ

n 2 2

2

 !

2

66664
77775þ 1:

Suppose to the contrary. Then all ð n
2
Þ nodes which contain

exactly two 1s must have wavelengths of no more than

ð n
2
Þ þ bð n22

2
Þ=2c: Let a be the node with the smallest

wavelength among these ð n
2
Þ nodes. Then the wavelength

assigned to a is at most bð n22
2

Þ=2cþ 1: Among the

wavelengths assigned to those ð n22
2

Þ nodes which contain

exactly four 1s and have distance of two from a, the

maximum is at least 1 þ ð n
2
Þ þ n22

2
: Therefore,

FðCnÞ $ 1 þ 1 þ
n

2

 !
þ

n 2 2

2

 ! !

2

n 2 2

2

 !

2

66664
77775þ 1

0
B@

1
CA

¼
n

2

 !
þ

n 2 2

2

 !

2

2
6666

3
7777þ 1

which is a contradiction.

In the next, we present another stronger lower bound on

FðCnÞ when n is large. We consider the wavelengths

assigned to all 2n21 nodes of even parity in any optimal

wavelength assignment. Suppose that node a has the lowest

wavelength and node b has the largest wavelength. Let m be

the Hamming distance between a and b. Let a ¼

v0; v1;…; vm=2 ¼ b be the nodes of even parity along a

shortest path from a to b. Since the differences between the

two wavelengths assigned to a ¼ v0 and vm=2 ¼ b is at least

2n21 2 1; there exist some 0 # i , m=2 such that the

difference of the two wavelengths assigned to vi and viþ1

is at least

2n21 2 1
m

2

2
6666

3
7777 ¼

2n 2 2

m

	 

:
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So when n is even, m # n and thus

FðCnÞ $
2n 2 2

n

	 �
þ 1;

when n is odd, m # n 2 1 and thus

FðCnÞ $
2n 2 2

n 2 1

	 

þ 1:

In summary, for and 2 # n # 4;

FðCnÞ ¼
n

2

 !
þ 1

for any n $ 5; if n is even,

FðCnÞ $ max
n

2

 !
þ

n 2 2

2

 !

2

66664
77775; 2n 2 2

n

	 
8><
>:

9>=
>;þ 1

and if n is odd,

FðCnÞ $ max
n

2

 !
þ

n 2 2

2

 !

2

66664
77775; 2n 2 2

n 2 1

	 
8><
>:

9>=
>;þ 1:

5. Conclusion

This paper studies the minimum tunability requirement

of a WDM network with a tunable transmitter and a fixed-

wavelength receiver at each station to achieve full

transmission concurrence. The problem is proved to be

NP-hard in general. In addition, it is even NP-Hard to

approximate it within absolute error N12e for any e . 0:

However, polynomial time approximation algorithms can

be obtained by reducing it to the well-studied minimum

bandwidth problem. When the communication topologies

are complete graphs, de Bruijin digraphs, Kautz digraphs,

shuffle or rings, the optimal solutions are provided. Finally,

we present tight lower bounds when the communication

topology is a hypercube.
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