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Abstract 

A minimum Steiner tree for a given set X of points is a network interconnecting the points 
of X having minimal possible total length. The Steiner ratio for a metric space is the largest 
lower bound for the ratio of lengths between a minimum Steiner tree and a minimum spanning 
tree on the same set of points in the metric space. Du et al. (1993) conjectured that the Steiner 
ratio on a normed plane is equal to the Steiner ratio on its dual plane. In this paper we show 
that this conjecture is true for Ixl ~<5. 

1. Introduction 

Given a compact,  convex, centrally symmetric domain D in the Euclidean plane E 2, 

one can define a norm II" liD : E2 --* R by setting IIxI[D ----- 2 where x = 2u and u C ~?D, 

the boundary of  D. We can then define a metric dD on E 2 by taking 

dD(x,y) = IIx - yllz~- 

Thus ~O = {x I IlxllD = 1}. The resulting metric space M = M(D) = (E2,do) is often 

called a Minkowski or normed plane with unit disk D. We will usually suppress the 

explicit  dependence o f  various quantities on D. For a finite subset X C E 2, a minimum 

spanning tree S = S(X) consists o f  a collection of  segments AB with A, B E X,  which 

spans all the points of  X,  and such that the sum of  all the lengths [[ABIID is a minimum. 

We denote this minimum by LM(X). Further, we define 

Ls(X) = inf L M ( X  ) 
YD_X 

where Y ranges over all finite subsets o f  E 2 containing X.  It is not hard to show that 

there always exists X '  _D X with IX'[ ~< 2 IX[ - 2 having Ls (X) = LM (X'). The minimum 

* Corresponding author. 
] Support in part by the NSF under grant CCR-9208913. 

0012-365X/97/$17.00 Copyright (~) 1997 Elsevier Science B.V. All rights reserved 
PII S 0 0 1 2 - 3 6 5 X ( 9 6 ) 0 0 0 8 0 - 5  



262 P.-Z Wan et al./Discrete Mathematics 171 (1997) 261~75 

spanning tree S(Y) will be called a minimum Steiner tree T(X) for X. The points of 
Y\X  are usually called Steiner points of T(X); the points of X are known as regular 
points of T(X). A minimum Steiner tree is full if every regular point is a leaf (i.e., 
has degree one). A tree is called a full Steiner tree if, by varying its edge lengths, it 
can occur as a full minimum Steiner tree for the resulting set of endpoints. 

Minimum Steiner trees have been the subject of extensive investigations during 
the past 25 years or so (see [4, 10, 12, 17]). Most of this research has dealt with the 
Euclidean metric, with much of the remaining work concerned with the Ll metric, or 
more generally, the usual Lp metric or norm (see [6,3]). Cockayne [4] initiated a study 
of minimum Steiner trees in a generic metric space and Melzak [17] investigated this 
problem on a normed plane. Chakerian and Ghandehari [2] found interesting properties 
of minimum Steiner trees for three points in a normed space. D u e t  al. [6] established 
some fundamental properties of minimum Steiner trees on a normed plane. It has been 
shown, for example, that the determination of Ls(X) in general is an NP-complete 
problem, both for the Euclidean as well as the L1 case (cf. [10,11]). 

The Steiner ratio p(D) for M(D) is defined by 

Ls(X) 
p(D) := inf - -  

x LM(X) 

Thus, p(D) is a measure of how much the total length of a minimum spanning tree 
can be decreased by allowing additional (Steiner) points. More recently, D u e t  al. [6] 
conjectured that the Steiner ratio on a normed plane is equal to the Steiner ratio on its 
dual normed plane, i.e., p(D) = p(D*) where D* = {x I xry ~< 1, for all y C D} is the 
polar dual of D. 

For all n C N, define 

pn(D) := inf Ls(X) 
[Xl<~n LM(X)" 

Then p(D) := infn~up,(D). In this paper, we show that for n~<5, pn(D) = pn(D*). 
Thus, this partially verifies the conjecture of D u e t  al. [6]. 

For prior results on minimum Steiner trees in normed planes, the reader can consult 
[1,2, 8,18,20]. This note is organized in the following way. In Section 2, fundamental 
properties of minimum Steiner trees and dualities are presented. In Section 3, some 
new concepts about *-dual are introduced. In Section 4, the main result is proved. 

2. Preliminaries 

Let t '  ] denote the Euclidean norm and II" tl denote the norm determined by D, 
an arbitrary fixed compact, convex, centrally symmetric domain in E 2. The dual norm 
tl-I1" is defined by 

Ilxll* = m a x  xry 
y Ilyll" 
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It is a well-known fact that the unit disk of  the dual norm H " II* is the polar dual of  

D, i.e., D* = {xlxry<~l , for  all y E D }  and D** = D .  

The following lemma given in [9] states a relation o f  Steiner ratios on different 

normed planes. 

Lemma 2.1. Let d( OD, OD ~) denote the maximum Euclidean distance between the two 
intersections of  a ray from the origin with OD and OD ~. Then for any 6 > 0 and n, 
there exists E > 0 such that d(OD, OD') < e implies Ipn(D)-  p,(D')l < 6. 

From the above lemma, for every unit disk D and n, we can choose a sequence 

o f  disks D ~ with differentiable and strictly convex boundaries such that the pn(D ~) 
converge to pn(D) and the pn(D ~*) converge to pn(D*). So we need only consider the 

unit disk D with a differentiable and strictly convex boundary. For such a unit disk, 

we can introduce the concept of  dual point as follows. First, for every point x E ~3D, 

there exists a unique point y such that IlYlI* = 1 and oy is an outward normal vector 

to the unique line tangent to ~D at x. The point y is called the dual point of  x, and 

is denoted by x*. In general, for any point x, its dual point is defined to be 

We also say that the directions of  x and x* are conjugate. Clearly ()~x)* = (1/2)x*. 

The above facts and definitions can easily imply the following lemma about prop- 

erties of  dual points. 

Lemma 2.2. Suppose that ?D & differentiable and strictly convex. Then: 
( l )  for  any point x, xTx * - - I l x l t '  IIx*ll* = l .  
(2) for any point x and y, xTy<~ I lx l l  I lyl* with equality holdin9 iff y = )~x* for 

some positive scalar )o," 

If for any two points x and y, IIx - yH = 2Ix* - y*l* for some constant 2, then it 
follows immediately that the Steiner ratio for the normed plane is equal to the Steiner 

ratio for its dual normed plane. However, in general such a property does not hold 
for the duality. For a counterexample, we may consider the plane with Lp norm. Its 

dual norm is the Lq n o r m  with 1/p + 1/q = 1, and the dual point of  (xl/p, X I/p)2 
with Ix, [ +  Ix2[ = 1 i s  (xl/q, x~/q). Consider three points x = (1,0), y = (0, 1) and 
z = ((1/2)~/P,(1/2)I/P). Clearly x* = x, y* = y and z* = ((1/2)l/q,(1/2)l/q). If  the 

expected property held, we would have 

H x -- Y[[p IIx - zllp 
IIx* - y* /q  IIx* - z * ] ] q  

However this would imply 

which is impossible for 1 < p < 2. 
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In fact, to the best o f  our knowledge, we do not know any bijection between a 
normed plane and its dual normed plane such that distance is preserved proportionally. 

So in order to prove our result, we will need to use some special properties of  the 

minimum Steiner trees on the normed plane. 

The minimum Steiner tree for three points has the following property (which can be 
found in [2, 6]). 

L e m m a  2.3. Suppose that OD is differentiable and strictly convex and A COD. Then 
there exist unique points B and C on OD such that {OA, OB, OC} forms a minimum 
Steiner tree for the set {A,B, C}. Furthermore, the following are equivalent: 

(1) {OA, OB, OC} forms a minimum Steiner tree for the set {A,B,C} 
(2) The triangle induced by the three tangent lines to D at A,B and C has the 

property that the sum of the distances to the three sides of the triangle is the same 
for all points inside the triangle 

(3) Let A*,B* and C* be the dual points of A,B and C, respectively, and let 
A*~,B *~ and C *~ be the reflections of A*,B* and C*, respectively. Then the hexagon 
A*A*IB*B*~C*C *~ is partitioned into six congruent equilateral triangles of side length 
1 (w.r.t the dual norm) by joining each of its six vertices to O. 

The directions of  the set {OA, OB, OC) in the above lemma will be called a 

consistent triple of directions. 
The following lemma states an important property of  full minimum Steiner trees 

(which can be found in [6]). 

L e m m a  2.4. Suppose that OD is differentiable and strictly convex. Then every full 
Steiner minimum tree consists of three sets of parallel segments. 

A tree is called a 3-regular tree if  every vertex which is not a leaf has degree three. 

A consequence of  Lemma 2.4 is that for strictly convex and differentiable norms, every 

minimum Steiner tree is a 3-regular tree. 
In [7], Du and Hwang prove the following. 

Lemma  2.5. Suppose that OD is differentiable and strictly convex. Then pn(D) is 
achieved by the vertex set of a polygon which can be triangulated into at most 
n -  2 interior-disjoint isomorphic equilateral triangles without adding new vertices. 
Furthermore, the vertex set has a full minimum Steiner tree. 

The polygon satisfying the conditions in the above 1emma is said to be a critical 
structure and its vertex set is called as a critical set. Recall that a maximal outerplanar 
graph is a planar graph whose vertices all lie on the exterior ( 'ou ter ' )  face and whose 
interior faces all have three vertices. Thus, a critical structure is a maximal outerplanar 
graph. Since every full minimum Steiner tree is 3-regular tree, it will be useful to 
establish a duality between maximal outerplanar graphs and 3-regular trees. 
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3. *-Dual 

Every maximal outerplanar graph G can be directed so that the boundary of each 
interior face is either clockwise or counterclockwise. Similarly, every 3-regular tree T 

can be directed so that at each internal vertex, the three edges either all point to it or 

all leave it. In the following, we only consider directed maximal outerplanar graphs 

and 3-regular trees with such directions. 
For every directed maximal outerplanar graph G, we define its *-dual graph to be a 

directed 3-regular tree obtained in the following way: 
1. First, for every finite region of G we put a vertex in it. Connect the two vertices 

if the two regions in which the two vertices lie share a common portion of their 

boundaries. 

2. Then, for every part of  the boundary l of the infinite region, we put a vertex in 
the infinite region so that the edge between it and any other vertex in a finite region, 

whose boundary also contains l, crosses l. Connect every pair of  such two vertices. 
The resulting graph is a 3-regular tree. 

3. Finally, direct the 3-regular tree so that at every internal vertex v, the directions 
of the three edges all leave (point to) it if the boundary of the interior region of G in 
which v lies is counterclockwise (clockwise). 

The *-dual of G is denoted by G*. Fig. 1 shows examples of this duality. 
For every directed 3-regular tree T, we define its *-dual graph to be a directed 

maximal outer planar graph in the following way: 

1. First we add a star to the tree such that every leaf of the tree is identified with 

a leaf of the star and vice versa. The resulting graph is a planar graph. 
2. Then, form the dual graph of the resulting planar graph. The dual graph is a 

maximal outerplanar graph and each internal vertex of T lies in exactly one of its 
interior regions. 

3. Finally, direct the maximal outer planar graph so that for each internal vertex v, 
if the directions of the three edges all leave (point to) v, the boundary of the interior 
region in which v lies is counterclockwise (clockwise). 

The *-dual of T is denoted by T*. Fig. 2 illustrates this duality. 

i - I  i I 
n=3  n = 4  n=5  

Fig. 1. *-Dual of maximal outer planar graphs. 
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Fig. 2. *-Dual of 3-regular trees. 

There are three important properties of this *-duality. 
1. For every directed maximal outer planar graph G, G** -~ G. For every directed 

3-regular tree T, T** --~ T. 
2. There is bijection between the edge sets of the graph and its *-dual such that two 

corresponding edges cross each other. Let ~ denote this bijection. 
3. The number of vertices of a directed maximal outer planar graph is equal to the 

number of leaves of its *-dual, a directed 3-regular tree, and vice versa. 
The topologies of two *-dual graphs are also called *-dual to each other, and the 

*-dual of a topology t is denoted by t*. The above bijection rc induces a bijec- 
tion between two *-dual topologies and we will also denote this induced bijection 
by ~. 

Let G be a maximal outerplanar graph. Then the outside boundary of G, called the 
circumference of G, forms a cycle going through each vertex once. The cyclic order 
of the vertices on the circumference will be referred as the circumferential order. Let 
T be a 3-regular tree. Inflate the edges of T to have positive width. Then the outside 
boundary of the inflated T, also called the circumference of T, forms a cycle going 
through each leaf once and each edge twice. The cyclic order of the leaves on the 
circumference will also be referred as the circumferential order. 

Now we define the *-product of two graphs G and T having *-dual topologies as 

(:::;* ~ := ~ Ilell' II~(e)ll*. 
eGE(G) 

Lemma 3.1. Suppose that G is a directed maximal outerplanar 9raph with topology 
9, and Xl,X2,. . . ,x,  are vertices of  G in the clockwise circumferential order. Let T 

be a directed 3-regular tree with topology 9* and Yl, y2 . . . .  , y,  be leaves of  T in the 
clockwise circumferential order such that for each 1 <~i<~n, the edge incident to Yi 
is 7~(XiXi+l ) (where Xn+l = Xl ). Then 

T G * T >~ y((xl  - x 2  ) -~ Y2 ( X 2  - -  X 3  ) - [ -  " ' " - [ -  yf(Xn - xl ). 

Moreover, equality holds iff for every e E E(G), e and ~z(e) are in conjugate 
directions. 
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Proof. We first prove by induction on n that 

T erTt(e) = y [ ( x l  - x2 )  + Y2 (x2 - -  x 3 )  q - " "  -}- Yrn(xn - x l  ). (1) 
eEE(G) 

Consider the case n = 3. In this case G is a triangle. Let z be the internal vertex of  

T. If the boundary of  G is clockwise (see Fig. 3), then 

Z er~z(e) 
eEE(G) 

---- (X2 - -  Xl )T(z  -- Yl ) + (X3 - -  xz )T (  2 -- Y 2 )  + (Xl - -  X3)T( z -- Y 3 )  

---- [(X2 - -  Xl ) + (x3 - -  x 2 )  + (Xl - x 3 ) ] r  z - -  (X2 - x l  )Vyl  

- - ( x 3  - -  x 2 ) T y 2  -- (Xl - -  X3 )Ty3 

= - - (X2  - -  Xl ) r y l  (x3 T - -  - - X 2 )  Y2 - -  (Xl - -X3)TY3 

= y'~(Xl -- X2)  -[- y ; ( x 2  -- X3)  -[- y ; ( x 3  -- Xl ). 

If the boundary of  G is clockwise (see Fig. 4), then 

Z eTrc(e) 
eEE(G) 

= (Xl - -  x 2 ) T ( y l  -- Z) q- (X2 - -  X3 ) r ( y 2  - -  z )  q-  ( x  3 - -  x I ) r ( y  3 - -  Z )  

= [(X1 - -  X2)  -~- (x2 - -  X3)  -[- ( x  3 - -  Xl ) ]Tz  -}- (Xl - -  x 2 ) T y l  

+ ( X 2  - -  X3 )Ty2 -k (X 3 - -  Xl )Ty3 

= (Xl - -  x 2 ) T y l  + (X2 - -  X3)TY2 + (X3 - -  x 1 ) T y 3  

= y f ( x l  - x2 )  + y 2 ( x 2  - x3)  + yT(x3 -- Xl ). 

x3 

Xl x2 

Y2 

Fig. 3. 

x2 

Xl x3 

)i Y2 

Fig. 4. 
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Thus the desired equality holds for n = 3. Now we assume that it holds for n - 1 and 

consider the case n. Without loss generality, we may assume that Xl is of  degree 2 
and the internal vertex of T corresponding to the region xlX2Xn is z. Consider G' = 

{x2,x3 . . . . .  Xn} and T' = {Y2,Y3 . . . . .  Yn-l,Z}. Then G' and T' are *-dual to each other 
and by the induction hypothesis, 

Z e:rn(e) V r = Y2 (X2 --  X3) -[- • " " -~- Yn_l (Xn-1  -- Xn) + zT(Xn -- X2). 

e6E(G' ) 

I f  the boundary of xlX2Xn is clockwise (see Fig. 5), then 

Z eTn(e) 
e6E(G) 

= (X2 --  x 1 ) T ( z  -- Yl)  + (Xl - -  Xn)T( Z -- Yn)  + Z eTa(e) 
eCE(G') 

= y~((X, -- X2) + y~(Xn -- X l )  + zT (x :  -- Xn) 

+ y~ (x 2  -- X3) + ' ' "  + Y~n-~(Xn-~ -- X . )  + Z~(~.  -- ~2) 

T = y~(xl - x 2 )  -]- yT(x2  -- X3 ) "q-' '" @ Yn (Xn -- Xl ). 

If  the boundary of xlx2x, is counterclockwise (see Fig. 6), then 

Z ern(e)  = (xl - -x2)r(yl  - -Z)+(Xn - - x I ) T ( y n  - - Z ) q -  Z ern(e)  
e6E(G) e6E(G') 

= y'((xl - x2) -~- y~(x.  - x l )  - z r ( x n  - -  X2) 

_ T X @yT(x2  X3) + ' ' "  q- Y n - l (  n-1 - -Xn )  "-[-zr(xn - - X 2 )  

T : yT(x1 -- X2) + yT(x2  -- X3) ~ - ' ' '  -~- Yn (Xn -- Xl ). 

Thus the desired equality holds for n. Therefore, by induction (1) holds for every n/> 3. 

Now we prove Lemma 3.1. By Lemma 2.2 and (1), we have 

G *  T = Z Ilel[" IITc(e)ll*/> ~ ern(e)  
eEE(G) e6E(G) 

T = yT(xl -- X2) + Y2 (X2 -- X3) + ' ' "  + yT(Xn -- Xl). 

and equality holds iff for every e E E(G), e and n(e) are in conjugate directions. [] 

x 1 x n Yn 

Fig. 5. 
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Xl Xn Yn 

Fig. 6. 

4. Main result 

The main result of  this paper is the following theorem. 

Theorem 4.1. For n = 3,4, and 5 

p , (D)  = p,(D*) 

This result partially verifies the conjecture given by D u e t  al. [6] that the Steiner 
ratio for a normed plane is equal to the Steiner ratio for its dual normed plane. Before 

we give the proof of this theorem, let us first look at the following conjecture. 

Conjecture 4.2. Suppose that t~D is differentiable and strictly convex, and G is a 
directed critical structure with topology g having a full minimal Steiner tree T 
with topology t. Then there exists a sequence of maximal outer planar graphs {Ha} 

satisfying: 
(1) Each H~ has topology t* and has a directed full Steiner tree S~ with topology g* 

such that for each edge e of S~, the corresponding edge n(e) of G is in the conjugate 
direction of e. 

(2) As ~ --~ ~0, {H~} converges to a critical structure H on the dual normed plane 
and H has the same number of vertices as G. 

(3) As ct ~ ~0, {S~} converges to a tree S spanning the vertices of H. 

This conjecture plays an important role in our proof of Theorem 1. In fact, we have 
the following result. 

Lemma 4.3. I f  Conjecture 4.2/s true for  all critical structures with at most n vertices, 

then 

p~(D) = p.(D*). 

Proof. First we suppose that c3D is differentiable and strictly convex. According to 
Lemma 2.5, pn(D) is achieved at the vertices of a directed critical structure G with a 
full minimal Steiner tree T. Let g be the topology of G and t be the topology of T. Let 
H~, S~, H and S be the graphs occurring in Conjecture 4.2. Suppose that xl,x2 . . . . .  Xm 

are vertices of G for some m ~< n and y~, 1, Y~,2 . . . . .  Y~,m are leaves of S with the order 
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and relations as in Lemma 3.1. By Lemma 3.1, 

T T 
G * S~ = y~r,l(Xl - x2) + y~,2(x2 - x3) + ' "  + y~,m(Xm - X1) 

x T : xT(y~ ,m -- Y ~ , m - l )  q- m - l ( Y ~ , m - I  -- Y~ ,m-2 )  + ' ' "  q - x T ( y ~ , I  -- Y~,m) 

<~H~,T. 

Let L(T) and L*(T) denote the lengths of  a tree T on a normed plane and its dual 

normed plane, respectively. Let LM(G) and L~(G) denote the lengths of  a minimum 

spanning tree of  the vertices of  a critical structure G on a normed plane and its dual 
normed plane, respectively. Note that in a critical structure, all edges are of  equal 

length. Thus 

G ,  S~ -- ~ Ilell' [In(e)ll * 
eEE(G) 

and 

LM(G) . L*(S~) 
m - 1  

LM(G) - - . L * ( S )  as ~ - - ~ a 0  
m - 1  

Ha, T = ~ [lell*" llTc(e)ll 
ecE(H~) 

~ Hell*' Ilzc(e)ll ( a s  a --~ ao )  
eEE(H) 

L~(H)  
= m -  1 ~ II~(e)tl 

eEE(H) 

<~ L~t(H) 
m--ST ~ II~(e)ll 

eEE(H~ ) 

L~(H) 
.L(T). 

m - 1  

The above inequality follows from the following fact: 

{n(e) I e E E ( H ) }  C_{n(e) I e E E(H~)}. 

Hence we have 

LM( G) . L*( S) <<.L*M(H ) • L( T) 

and thus 

_< L*(S) L(T) 
pn(D* ) -¢ L,M(H) <~ LM(G~) - pn(D). 
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C A 

tc F 
tA 

Fig. 7. 

Since D** = D, we also have 

pn(D) = pn(D**)<~pn(D*). 

Therefore, p,(D) = p,(D* ). 

If  3D is not differentiable and strictly convex, then by Lemma 2.1 we can approx- 

imate it by a sequence of  differentiable and strictly convex disks. Taking limits, the 
theorem follows. [] 

From Lemma 4.3, in order to prove Theorem 4.1, we only need to prove that 
Conjecture 4.2 is true for all critical structures with 3, 4, or 5 vertices. We first present 
the following result. 

L e m m a  4.4. Suppose that OD is differentiable and strictly convex, and A,B and C 
are three distinct points in OD such that { OA, OB, OC} forms a minimum Steiner tree 

for the set {A,B,C}. Let A' E 3D be the reflection of  A w.r.t. O, and let F be the 
unique point in OD such that F and B lie on the same side of  AA ~, and ZXAOF is 
equilateral (see Fig. 7). Then OF lies between OA and OB. 

ProoL Let tA,tB and tc be three tangent lines to ~D at A,B and C, respectively. Let 
EE' be a diameter of  D such that EEI is parallel to tA, and E and B lie on the same 
side of  AA ~. For any point x and any line •, we denote by dist(x, ( )  the distance from 
x to E. Since 

IIEAII > dist(E, tA)= IIOAII = IIFAll, 

OF must lie between OA and OE. By Lemma 2.3, 

dist(B, tA ) + dist(B, ts) + dist(B, tc) 

= dist(O, tA)+ dist(O, tB )+  dist(O, t c ) =  1 + 1 + 1 = 3. 

Since dist(B,t~) = 0, dist(B, t A ) +  dist(B, tc) = 2. Noting that dist(B, tA) < 2 and 
dist(B, tc) < 2, we have 1 < dist(B, tA) < 2. This implies that OF must lie between 
OA' and OE. Hence OF lies between OA and OB. 
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For a full Steiner tree T, let P(T)  denote its set of  endpoints (i.e., vertices of  
degree 1). 

Lemma 4.5. Suppose that dq, d2 and ~ are a consistent triple of  directions. Then 
there is full Steiner tree T of  the form 

d l  

d2 d 3 

such that P(T)  is a critical set. 

Proof.  Let Ii, 12 and 13 be three rays at O in the directions of  dq,d2 and d~, respec- 
tively. We take a fixed point A in ll, and we let B be an arbitrary point on 12. Let C 
be the unique point on the side of  13 such that Z~IBC is an equilateral triangle (see 
Fig. 8). 

By Lemma 4.4, as B ~ O along 12, C lies above 13, and as B ~ c~ along 12, C 
lies below 13. Thus by continuity, there exists a position of  B on 12 such that C lies 
on 13, and thus the &ABC is a desired equilateral triangle. [] 

Lemma 4.6. Suppose that dq,d-'2 and ~ are a consistent triple of  directions. Then 
there is full Steiner tree T of  the form 

'L 
;/ 

/ WI' 
~" d d 2 d l  

such that P(T)  & a critical set. 

Proof. Let Ii, 12 and 13 be three rays as in Lemma 4.5. We choose a fixed point A 
on ll, and we let B be an arbitrary point on 12. Let zS~4BC be the equilateral triangle 
along the side of  13. Let E be the intersection of  13 and the line through C which is 
parallel to ll (see Fig. 9). 
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12 12 13 

Fig. 8. 

273 

11 

12 C 

Fig. 9. 
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A D 

B C 

Fig. 10. 

Then by Lemma 4.4, as B --~ O along 12, C lies above 13 and as B --~ c~ along 12, 
C lies below 13 and ]ICEI] -~ e~. Thus by continuity, there exists a position of  B on 

12 such that C lies below 13 and ]]CEII = PAll. Now let D be the point such that 

E D  = BO.  Then by symmetry, the triangle ZL4CD is also an equilateral triangle (see 

Fig. 10). 
Thus the quadrilateral { A , B , C , D }  is the desired critical set. [] 
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Lemma 4.7. Suppose that dq,d2 and ~ are a consistent triple o f  directions. Then 

there exist a sequence of  full  Steiner trees {S~} of  the form 

d', 

*" d I d3 

such that as ~ --~ C¢o, {S~} converges to a tree S and {P(S~)} converges to a critical 

set. 

Proof. By Lemma 4.5, there is a critical set H = {A,B,C,D,E} with a degenerate 

Steiner tree tree S (see Fig. 11). 
Let c~ be an arbitrary real positive number and c~0 = 0. Let C r be the point such that 

C'C is in the direction of d~ and IIC'CII -- ~. Let H~ and S~ be as shown in Fig. 12. 

Then as ~ ~ ~0,{S~} converges to the tree S and {P(S~)} converges to the critical set 
H. This proves the lemma. [] 

Proof of Theorem 4.1. W.l.o.g., suppose that G has at least one interior region with 
counterclockwise boundary. Let dq, d2 and d~ be the vectors conjugate to the directions 

of edges of  an interior region of G with counterclockwise boundary. Then dl, d2 and 

A E 

B C D 

Fig. 11. 

A E 

C' 

A E 

C' 
D 

Fig. 12. H~ and S=. 
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d~ are a cons is tent  triple o f  di rect ions  in the dual norm.  Also it is obvious  that  w h e n  

n ~< 5, g and t are unique  under  i somorph i sm and g* -~ t, t* -~ g. So by  L e m m a s  4 . 4 -  

4.6, Conjec ture  4.2 is true for all critical s tructures with at mos t  5 vertices.  Thus  by 

L e m m a  4.3, for n = 3,4,  and 5, 

p~(D)  = pn(D*).  
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