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In this paper, we study the connectivity of wireless ad hoc networks that are composed

of unreliable nodes and links by investigating the distribution of the number of isolated
nodes. We assume that a wireless ad hoc network consists of n nodes distributed indepen-
dently and uniformly in a unit-area disk or square. All nodes have the same maximum
transmission radius rn, and two nodes have a link if their distance is at most rn. Nodes

are active independently with probability 0 < p1 ≤ 1, and links are up independently
with probability 0 < p2 ≤ 1. Nodes are said isolated if they do not have any links to

active nodes. We show that if rn =
√

lnn+ξ
πp1p2n

for some constant ξ, then the total num-

ber of isolated nodes (or isolated active nodes, respectively) is asymptotically Poisson

with mean e−ξ (or p1e−ξ, respectively). In addition, in the secure wireless networks that
adopt m-composite key predistribution schemes, a node is said isolated if it does not have
a secure link. Let p denote the probability of the event that two neighbor nodes have a

secure link. If all nodes have the same maximum transmission radius rn =
√

lnn+ξ
πpn

, the

total number of isolated nodes is asymptotically Poisson with mean e−ξ.
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1. Introduction

A wireless ad hoc network is composed of a collection of wireless devices distributed

over a geographic region. A communication session is established either through a

single-hop radio transmission if the communication parties are close enough, or

through relaying by intermediate devices otherwise. Due to the nonnecessity of a

fixed infrastructure, wireless ad hoc networks can be flexibly deployed at low cost

for various missions.

In many applications, wireless sensors are deployed in a large volume in the sen-

sor field. They can be deployed by dropping from a plane or delivered in a missile.

Specific applications include environmental monitoring, habitat monitoring, and in-

trusion detection. In environmental monitoring, temperature, heat, pressure, sound,

or light can be constantly monitored, helping scientists in the task of detecting spe-

cific events. In habitat monitoring, biologists can get the observation data gathered

from sensors and try avoiding disturbing the nature. The wireless sensor networks

deployed over a battlefield or secured region can propagate messages to the outside

in case there are intruders. In the applications above, a great quantity of sensors is

usually needed. The sheer large number of devices deployed in potentially harsh en-

vironments often makes deterministic device placement impractical. Consequently,

random deployment is often the only viable option.

To model a randomly deployed wireless ad hoc network, it is natural to rep-

resent the ad hoc devices by a finite random point process over the deployment

region [1,2,3,4,5]. In addition, due to the short transmission range of radio links,

two wireless devices can build a communication link only if they are within each

other’s transmission range. Assume all devices have the same transmission radius r,

then the induced network topology is a r-disk graph in which two nodes are joined

by an edge if and only if their distance is at most r. This is a variant of the model

proposed by Gilbert [6] and referred as a random geometric graph.

The connectivity of a wireless ad hoc network is a fundamental requirement.

The connectivity of random geometric graphs has been studied by Dette and Henze

[7], Penrose [8], and others [1,9,10,5]. For a uniform n-point process over a unit-area

square, Dette and Henze [7] showed that for any constant ξ, the

(√
lnn+ξ
πn

)
-disk

graph has no isolated nodes with probability exp
(
−e−ξ

)
asymptotically. Later,

Penrose [8] established that if a random geometric graph induced by a uniform

point process or Poisson point process has no isolated nodes, then it is almost surely

connected. Besides the overall connectivity, some applications concern about if there

exists a giant connected component. Continuum percolation [11] is a useful theorem

in analyzing threshold phenomena. Ammari and Das [12] focused on percolation in

coverage and connectivity in three-dimensional space and found out whether the
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network provides long-distance multihop communication.

However, in a realistic system, nodes may become inactive due to internal break-

down or being in the monitoring state, and links may be down due to harsh environ-

ment or barriers between nodes. The inactive nodes and down links cannot take part

in routing/relaying and thus may affect the connectivity. Recently, Franceschetti

and Meester [13] used the Chen-Stein method of Poisson approximation to find

the critical time at which isolated nodes begin to appear in the system as its size

tends to infinity in networks where nodes are connected randomly and can fail at

random times. Wan and Yi et al. [10,5] showed that if every node independently

breaks down with the same probability p, the network is connected with probability

exp
(
−pe−ξ

)
asymptotically. In this paper, based on the work in [5], we study the

connectivity of a wireless network with unreliable nodes and links by investigating

the number of isolated nodes. We assume nodes are active independently with the

same probability p1 and links are up independently with the same probability p2.

It is referred to as a Bernoulli model. In this model, depending on the meaning of

the ”inactive” nodes, we may have two types of network connectivity: (1) all active

nodes form a connected network; and (2) all active nodes form a connected network

and each inactive node is with up-links to active nodes. In both cases, a node is said

isolated, if it doesn’t have an up-link to an active nodes. The inexistence of isolated

nodes is a prerequisite for connectivity. We shall prove that the number of isolated

nodes has an asymptotic Poisson distribution.

In addition, the work described above is extended for secure wireless networks

with m-composite key predistribution schemes [14,15,16]. In many applications, a

wireless sensor network is composed of low cost devices. Due to the limited capacity,

traditional security schemes and key management algorithms are too complicated

and not feasible for such a system. The m-composite key predistribution schemes

are proposed to offer security for randomly-deployed wireless sensor networks. In

the previous schemes, K distinct keys are randomly chosen from the key space to

form the key pool. A key ring is a k-element subset of the key pool. Before being

deployed, each node randomly loads a key ring into its memory. Two nodes within

each other’s transmission range have a secure link if their key rings have at least

m common keys. Only secure links can participate in the communication. Hence,

the secure wireless network is the graph in which two nodes have an edge if their

distance is at most r and have at least m common keys in their key rings. A secure

wireless network is said to be connected if all nodes form a connected network by

secure links. A node is said isolated, if it doesn’t have a secure link. Similarly, we

shall prove that the number of isolated nodes in the secure wireless network has an

asymptotic Poisson distribution.

The model proposed in this paper is quite basic and it can still have different

variants. From this fundamental model, some behaviors of the network can be known

well. The insight should serve a baseline when facing those more complicated models.

The explicit formulas given in this work allow scientists or engineers, based on the

knowledge of the network, to control the expected number of isolated nodes by
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tuning the node density or even transmission power. Thus, the desired level of

connectivity can be expected.

In what follows, all integrals considered will be Lebesgue integrals. For any set

S and positive integer k, the k-fold Cartesian product of S is denoted by Sk. The

disk of radius r centered at x is denoted by B (x, r). The special unit-area disk or

square centered at the origin is denoted by Ω. The symbols o and ∼ always refer to

the limit n → ∞. To avoid trivialities, we tacitly assume n to be sufficiently large

if necessary. For the simplicity of notation, the dependence of sets and random

variables on n will be frequently suppressed.

The rest of this paper is organized as follows. In Section 2, the main results of

this paper are given. In Section 3, we present several useful lemmas. In Section 4, we

derive the distribution of the number of isolated nodes. In Section 5, under various

network scenarios, simulation results are given to show the trend of convergency of

our asymptotics. Section 6 is the conclusion.

2. Main Results

The approach used in this paper is based on the method developed in [5]. We

assume that a wireless ad hoc network is represented by a uniform n-point process

over Ω. All nodes are associated with the maximal transmission radius rn, which

is a function of n, and two nodes have a link if the distance between them is at

most rn. For the sake of simplicity, in what follows, the dependency on n will be

frequently suppressed.

In the Bernoulli model, nodes are active independently with probability p1 for

0 < p1 ≤ 1, and links are up independently with probability p2 for 0 < p2 ≤ 1.

Here p1 and p2 can be constants or functions of n. A node is said isolated if it does

not have an up-link with an active node. We have the following theorem about the

total number of isolated (active) nodes.

Theorem 2.1. Suppose that limn→∞ p1p2 lnn = ∞ and nodes have the same max-

imum transmission radius r =
√

lnn+ξ
np1p2π

for some constant ξ. Then the total number

of isolated nodes is asymptotically Poisson with mean e−ξ, and the total number of

isolated active nodes is also asymptotically Poisson with mean p1e
−ξ.

This work can be extended for secure wireless networks which adopt m-

composite key predistribution schemes. In the m-composite key predistribution

scheme, the key pool contains K distinct keys, which are randomly chosen from

the key space, and a key ring is composed of k distinct keys drawn from the key

pool. Before being deployed, each node randomly loads a key ring into its memory.

After being deployed, two nodes within each other’s transmission range have a se-

cure link if their key rings have at least m common keys. A node is said isolated if

it does not have a secure link.

Let qi denote the probability of the event that two key rings have exactly i

common keys. If two key rings have exactly i common keys, the second one contains
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i keys from the k keys of the first one and k− i keys from the remaining K−k keys

not of the first one. Therefore,

qi =

(
k
i

)(
K−k
k−i

)(
K
k

) .

Let p denote the probability of the event that two nodes (or key rings) have at least

m common keys and q denote the probability of the event that two key rings have

at most m− 1 common keys. Then,

q = q0 + q1 + · · ·+ qm−1

p = 1− q
(2.1)

We have the following theorem about the total number of isolated nodes in the

secure wireless network.

Theorem 2.2. In m-composite key predistribution schemes, let p be given by Eq.

(2.1). If limn→∞ p lnn = ∞ and nodes have the same maximum transmission ra-

dius r =
√

lnn+ξ
πpn for some constant ξ, then the total number of isolated nodes is

asymptotically Poisson with mean e−ξ.

3. Preliminaries

We adopt notations and terminologies used in [5]. Let r be the transmission radius

of the nodes. For any finite set of nodes {x1, · · · , xk} in Ω, we use Gr (x1, · · · , xk)

to denote the r-disk graph over {x1, · · · , xk} in which there is an edge between

two nodes if and only if their distance is at most r. For any positive integers k

and m with 1 ≤ m ≤ k, let Ckm denote the set of (x1, · · · , xk) ∈ Ωk satisfying

that G2r (x1, · · · , xk) has exactly m connected components. For any set S ⊆ Ω and

r > 0, the r-neighborhood of S is the set
∪

x∈S B (x, r) ∩Ω. Recall that the disk of

radius r centered at x is denoted by B (x, r). We use νr (S) to denote the area of

the r-neighborhood of S, and sometimes by slightly abusing the notation, to denote

the r-neighborhood of S itself.

In the rest of this section, we give the limits of several integrals. Similar lemmas

can be found in [5], but here they are introduced with some extensions.

Lemma 3.1. If limn→∞ p lnn = ∞ and r =
√

lnn+ξ
πpn for some constant ξ, then

n

∫
Ω

e−npνr(x)dx ∼ e−ξ,

n

∫
Ω

(1− pνr (x))
n−1

dx ∼ e−ξ.

Lemma 3.2. If limn→∞ p lnn = ∞ and r =
√

lnn+ξ
πpn for some constant ξ, then for
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any fixed integer k ≥ 2,

nk

∫
Ck1

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi = o (1) ,

nk

∫
Ck1

(1− pνr (x1, x2, · · · , xk))
n−k

k∏
i=1

dxi = o (1) .

Lemma 3.3. Let limn→∞ p lnn = ∞ and r =
√

lnn+ξ
πpn for some constant ξ. Then

for any fixed integers 2 ≤ m < k,

nk

∫
Ckm

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi = o (1) ,

nk

∫
Ckm

(1− pνr (x1, x2, · · · , xk))
n−k

k∏
i=1

dxi = o (1) .

Lemma 3.4. Let limn→∞ p lnn = ∞ and r =
√

lnn+ξ
πpn for some constant ξ. Then

for any fixed integer k ≥ 2,

nk

∫
Ckk

e−npνr(x1,x2,··· ,xk)
k∏

i=1

dxi ∼ e−kξ,

nk

∫
Ckk

(1− pνr (x1, x2, · · · , xk))
n−k

k∏
i=1

dxi ∼ e−kξ.

In short, Lemma 3.1 to 3.4 are for estimating the probability of existence of

isolated nodes under different kind of spacial distribution. Since the proof of Lemma

3.1, 3.2, 3.3 and 3.4 are similar to those in [5], to avoid triviality, we skip the proofs

and readers can refer to [5] to develop the proofs.

4. Asymptotic Distribution of The Number of Isolated Nodes

Theorem 2.1 and 2.2 will be proved using Brun’s sieve, which is an implication of

the Bonferroni inequalities, in the form described in [17].

Theorem 4.1. Let B1, · · · , Bn be events and Y be the number of Bi that hold.

Suppose that for any set {i1, · · · , ik} ⊆ {1, · · · , n} ,

Pr (Bi1 ∧ · · · ∧Bik) = Pr (B1 ∧ · · · ∧Bk) ,

and there is a constant µ so that for any fixed k,

nk Pr (B1 ∧ · · · ∧Bk) ∼ µk.

Then Y is also asymptotically Poisson with mean µ.
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4.1. Networks with Bernoulli Nodes and Links

In the Bernoulli model, in order to apply Theorem 4.1, let Bi be the event that

Xi is isolated for 1 ≤ i ≤ n and Y be the number of Bi that hold. Then Y is

exactly the number of isolated nodes. Similarly, let B′
i be the event that Xi is

isolated and active for 1 ≤ i ≤ n and Y ′ be the number of such B′
i events that

hold. Then Y ′ is exactly the number of isolated active nodes. Obviously, for any set

{i1, · · · , ik} ⊆ {1, · · · , n} ,

Pr (Bi1 ∧ · · · ∧Bik) = Pr (B1 ∧ · · · ∧Bk) ,

Pr
(
B′

i1 ∧ · · · ∧B′
ik

)
= Pr (B′

1 ∧ · · · ∧B′
k) .

In addition,

Pr (B′
1 ∧ · · · ∧B′

k) = (p1)
k
Pr (B1 ∧ · · · ∧Bk) .

Thus, in order to prove Theorem 2.1, it suffices to show that if r =
√

lnn+ξ
πp1p2n

for

some constant ξ, then for any fixed k,

nk Pr (B1 ∧ · · · ∧Bk) ∼ e−kξ. (4.1)

The proof of this asymptotic equality will use the following two lemmas. For

convenience, let q1 = 1− p1 and q2 = 1− p2.

Lemma 4.2. For any x ∈ Ω,

Pr (B1 | X1 = x) = (1− p1p2νr (x))
n−1

.

Proof. For any x ∈ Ω, let N1 and N2 denote the number of active nodes and

the number of inactive nodes of X2, · · · , Xn within νr (X1) respectively. There are

exactly N1 links between X1 and those N1 active nodes. If X1 is isolated, all of

those N1 links must be down. So

Pr (B1 | N1 = i,N2 = j)

= Pr

(
all links of X1 to active

nodes are down

∣∣∣∣N1 = i,

N2 = j

)
= (q2)

i
,

and

Pr (N1 = i,N2 = j | X1 = x)

=

(
n− 1

i, j

)
(1− νr (x))

n−1−i−j

· (p1νr (x))i (q1νr (x))j .
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Thus,

Pr (B1 | X1 = x)

=
n−1∑

i+j=0

Pr (B1 | N1 = i,N2 = j) ·
Pr (N1 = i,N2 = j | X1 = x)

=
n−1∑

i+j=0

(q2)
i (n−1

i,j

)
(1− νr (x))

n−1−i−j ·
(p1νr (x))

i
(q1νr (x))

j

= (1− p1p2νr (x))
n−1

.

Therefore, the lemma is proved.

Lemma 4.3. For any k ≥ 2 and (x1, · · · , xk) ∈ Ωk,

Pr (B1 ∧ · · · ∧Bk | Xi = xi, 1 ≤ i ≤ k)

≤ (1− p1p2νr (x1, · · · , xk))
n−k

.

In addition, the equality is achieved for (x1, · · · , xk) ∈ Ckk.

Proof. For any (x1, · · · , xk) ∈ Ωk, letN1 andN2 be the number of active nodes and

the number of inactive nodes of Xk+1, · · · , Xn within νr (X1, · · · , Xk) respectively.

There are at least N1 links between X1, · · · , Xk and those N1 active nodes. If

X1, · · · , Xk are isolated, all of those links must be down. So

Pr (B1 ∧ · · · ∧Bk |N1 = i,N2 = j )

= Pr

(
links of X1, · · · , Xk to

active nodes are down

∣∣∣∣N1 = i,

N2 = j

)
≤ (q2)

i
.

Thus,

Pr (B1 ∧ · · · ∧Bk | Xi = xi, 1 ≤ i ≤ k)

=
n−k∑

i+j=0

Pr (B1 ∧ · · · ∧Bk | N1 = i,N2 = j) ·
Pr (N1 = i,N2 = j | Xi = xi for 1 ≤ i ≤ k)

≤
n−k∑

i+j=0

(q2)
i (n−k

i,j

)
(1− νr (x1, · · · , xk))

n−k−i−j ·
(p1νr (x1, · · · , xk))

i
(q1νr (x1, · · · , xk))

j

= (1− p1p2νr (x1, · · · , xk))
n−k

.
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For any (x1, · · · , xk) ∈ Ckk,

Pr (B1 ∧ · · · ∧Bk | Xi = xi, 1 ≤ i ≤ k)

= Pr

(
∀1 ≤ i ≤ k, Xi has no up-links

to active nodes in Xk+1, · · · , Xn

)

=
n−k∑

m1+···+mk=0

Pr


∀1 ≤ i ≤ k, νr (xi) contains

mi active nodes, m′
i inactive

nodes, and links of Xi to

active nodes are down


=

n−k∑
m1+···+mk+
m′

1+···+m′
k=0

(
n− k

m1, · · · ,mk,m′
1, · · · ,m′

k

)

·
k∏

i=1

(q2p1νr (xi))
mi

k∏
i=1

(q1νr (xi))
m′

i

· (1− νr (x1, · · · , xk))
n−k−

k∑
i=1

(mi+m′
i)

= (1− p1p2νr (x1, · · · , xk))
n−k

.

Therefore, the lemma is proved.

Now we are ready to prove the asymptotic equality (4.1). From Lemma 4.2 and

3.1,

nPr (B1) = n

∫
Ω

(1− p1p2vr (x))
n−1

dx ∼ e−ξ.

So the asymptotic equality (4.1) is true for k = 1. Now we fix k ≥ 2. From Lemma

4.3, 3.2 and 3.3,

nk Pr
(
B1 ∧ · · · ∧Bk and (X1, · · · , Xk) ∈ Ωk \ Ckk

)
≤ nk

∫
Ωk\Ckk

(1− p1p2νr (x1, · · · , xk))
n−k

k∏
i=1

dxi

= o (1) .

From Lemma 4.3 and 3.4,

nk Pr (B1 ∧ · · · ∧Bk and (X1, · · · , Xk) ∈ Ckk)

= nk

∫
Ckk

(1− p1p2νr (x1, · · · , xk))
n−k

k∏
i=1

dxi

∼ e−kξ.

Thus, the asymptotic equality (4.1) is also true for any fixed k ≥ 2. This completes

the proof of Theorem 2.1.
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We have applied Theorem 4.1 (Brun’s sieve) to show the total number of (active)

isolated nodes is asymptotically Poisson in the Bernoulli model. Now we switch to

the secure wireless networks.

4.2. Secure Wireless Networks

In secure wireless networks, in order to apply Theorem 4.1, let Bi be the event that

Xi is isolated for 1 ≤ i ≤ n and Y be the number of such Bi events that hold. Then

Y is exactly the number of isolated nodes. Obviously, for any set {i1, · · · , ik} ⊆
{1, · · · , n} ,

Pr (Bi1 ∧ · · · ∧Bik) = Pr (B1 ∧ · · · ∧Bk) .

Thus, in order to prove Theorem 2.2, it suffices to show that if r =
√

lnn+ξ
πpn for

some constant ξ, then for any fixed k,

nk Pr (B1 ∧ · · · ∧Bk) ∼ e−kξ. (4.2)

The proof of this asymptotic equality will use the following two lemmas. For

convenience, let q = 1−p. (Here p is the probability of the event that two key rings

have at least m common keys.)

Lemma 4.4. For any x ∈ Ω,

Pr (B1 | X1 = x) = (1− pνr (x))
n−1

.

Proof. For any x ∈ Ω, let N denote the number of nodes of X2, · · · , Xn within

νr (X1). If X1 is isolated, all X1’s neighbors may have at most m − 1 keys that

are also in the key ring of X1. For X1’s neighbors, the event is independent and

identical. Thus,

Pr (B1 | X1 = x)

=

n−1∑
i=0

Pr (X1 is isolated | N = i) ·
Pr (N = i | X1 = x)

=

n−1∑
i=0

qi
(
n− 1

i

)
(1− νr (x))

n−1−i
νr (x)

i

= (1− νr (x) + qνr (x))
n−1

= (1− pνr (x))
n−1

.

Therefore, the lemma is proved.

Lemma 4.5. For any k ≥ 2 and (x1, · · · , xk) ∈ Ωk,

Pr (B1 ∧ · · · ∧Bk | Xi = xi, 1 ≤ i ≤ k)

≤ (1− pνr (x1, · · · , xk))
n−k

.
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In addition, the equality is achieved for (x1, · · · , xk) ∈ Ckk.

Proof. For any (x1, · · · , xk) ∈ Ωk, let N denote the number of nodes of

Xk+1, · · · , Xn within νr (X1, · · · , Xk). Each of those N nodes is neighbor to

at least one of X1, · · · , Xk, but the link is not secured. Therefore, we have

Pr (B1 ∧ · · · ∧Bk | N = i) ≤ qi. Thus,

Pr (B1 ∧ · · · ∧Bk | Xi = xi, 1 ≤ i ≤ k)

=

n−k∑
i=0

Pr (B1 ∧ · · · ∧Bk | N = i) ·
Pr (N = i | Xi = xi for 1 ≤ i ≤ k)

≤
n−k∑
i=0

qi
(
n−k
i

)
(1− vr (x1, · · · , xk))

n−k−i

vr (x1, · · · , xk)
i

= (1− vr (x1, · · · , xk) + qvr (x1, · · · , xk))
n−k

= (1− pvr (x1, · · · , xk))
n−k

.

For any (x1, · · · , xk) ∈ Ckk, each of those N nodes has exactly one neighbor among

X1, · · · , Xk. Therefore, we have Pr (B1 ∧ · · · ∧Bk | N = i) = qi and

Pr (B1 ∧ · · · ∧Bk | Xi = xi, 1 ≤ i ≤ k)

= (1− pνr (x1, · · · , xk))
n−k

.

Therefore, the lemma is proved.

The asymptotic equality (4.2) can be proved by applying the same argument

used for the Bernoulli model but replacing Lemma 4.2 and 4.3 by Lemma 4.4 and

4.5. Thus, we complete the proof of Theorem 2.2.

5. Network Scenarios and Simulation Results

For the sake of convenience, we introduce an acronym CTR, the critical transmission

radius. For an instance of point sets, the smallest transmission radius r such that

the induced r-disk graph over the point set has no isolated nodes is called the CTR

for no isolated nodes; the smallest transmission radius r such that the induced r-

disk graph over the point set is connected is called the CTR for connectivity. For

random point processes, CTRs are random variables.

In the general case, the inexistence of isolated nodes in wireless ad hoc networks

is a necessary condition (but not sufficient) for network connectivity. That is to

say, the CTR for connectivity is at least as large as the CTR for no isolated nodes.

But in large-scale randomly deployed wireless ad hoc networks, the two CTRs are

asymptotically the same in probability. In this section, the difference between the

two CTRs and our theoretical CTR will be investigated by running extensive sim-

ulations over different network sizes.
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Table 1. The average CTRs of native random geometric graph model.

n Riso Rcon Rth DRiso DRcon

100 0.1469 0.1612 0.1277 0.1508 0.2627

400 0.0821 0.0872 0.0721 0.1395 0.2107

1600 0.0443 0.0462 0.0397 0.1163 0.1632

In our simulation, the locations of wireless ad hoc devices are generated by a

uniform point process over a unit-area disk or square with node density n = 100,

n = 400, and n = 1600, and 800 sets of random points are generated for each case.

The cumulative distribution functions of CTRs will be illustrated. In these figures

(including Fig. 3, 4, and 5), the x-axis represents the transmission radius, and the

y-axis represents the probability. In each figure, there are three sets of curves, from

left to right, for n = 1600, n = 400, and n = 100, respectively. In each set of

curves, the blue curve is the c.d.f. of the theoretical CTR for no isolated nodes, the

black one is of the CTR for no isolated nodes, and the red one is of the CTR for

connectivity. For convenience, let Riso be the CTR for no isolated nodes, Rcon be

the CTR for connectivity, and Rth be the theoretical CTR. To show the difference

between the theoretical values and simulation outcomes, we calculate the inaccuracy

by following formulas

DRiso =
Riso −Rth

Riso
and DRcon =

Rcon −Rth

Rcon
.

5.1. Native Models

For comparison, we first consider the network model in which neither node failure

nor link failure occurs. This is exactly a special case with p1 = 1 and p2 = 1, and

actually, this is also the most popular model discussed in literature. Table 1 shows

average CTRs, and we can see that the average CTRs converge in percentage as the

network size increases. The DRiso and DRiso should be close to 0 as n approaches

infinity. However, the gap may be associated with the boundary effect. The sensor

nodes near the boundary have a higher chance of having fewer neighbors.

5.2. Networks with Bernoulli Nodes

Next, we consider the network with unreliable nodes but with reliable links, i.e.,

p1 < 1 and p2 = 1. This is the same model discussed in [10,5] in which nodes may

break down with probability 1− p1 independently after deployed.

In addition, we consider another scenario. Each node independently has proba-

bility p1 to stay in waking mode, and probability 1 − p1 in sleeping mode. Nodes

only do jobs in waking mode, such as sending/receiving data, or being a member of

the virtual backbone and relaying packet for other nodes. In sleeping mode, they do
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Table 2. The average CTRs of the Bernoulli node model.

p1 = 0.8 (active/inactive), p2 = 1

n Riso Rcon Rth DRiso DRcon

100 0.1617 0.1795 0.1396 0.1587 0.2860

400 0.0895 0.0955 0.0792 0.1304 0.2069

1600 0.0492 0.0513 0.0437 0.1235 0.1722

p1 = 0.8 (awake/sleeping), p2 = 1

n Riso Rcon Rth DRiso DRcon

100 0.1662 0.1815 0.1427 0.1642 0.2715

400 0.0918 0.0972 0.0806 0.1393 0.2070

1600 0.0501 0.0519 0.0444 0.1295 0.1698

nothing but monitor a particular broadcasting channel, e.g. beacons in ZigBee net-

works. Moreover, nodes in sleeping mode need to have at least one waking neighbor

to prevent being isolated from the network. For such networks, a node is called iso-

lated if it does not have waking neighbors, and a network is connected if all waking

nodes form a connected network and every sleeping node has at least one waking

neighbor. Note that CTRs here can be contributed by a listening link between a

pair of waking and sleeping nodes.

The average CTRs for Riso, Rcon, and Rth corresponding to previous two net-

work scenarios are listed in Table 2. Beside a unit-area disk, we also run simulations

for random point sets over a unit-area square. Basically, the results are similar to

the results of random point sets over a unit-area disk. Due to the similarity and the

constraint on the number of figures and tables, we do not give related simulation

data here.

5.3. Networks with Bernoulli Nodes and Links

In the real world, wireless signals may be blocked and reflected by geographic barri-

ers as well as buildings and interfered by other signals. Thus, communication links

may not be available anytime. So, besides unreliable nodes, we consider networks

with unreliable links. Assume nodes may break down independently with probabil-

ity 1−p1, and links may be down independently with probability 1−p2. Fig. 1 and

2 are instances of networks with 200 nodes in a unit-area disk with p1 = 0.8 and

p2 = 0.8.

Black nodes represent well-functioned devices, and white nodes represent failed

ones. The edges denoted by solid lines between black nodes are up-links, and the

edges denoted by dash lines are down links. In Fig. 1, ab with length 0.097235 is the

longest edge and corresponds to the CTR such that every black node has at least

one solid edge. In Fig. 2, ab with length 0.135864 is the longest edge and corresponds

to the CTR such that black nodes and solid edges form a connected graph. Fig. 3
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b
a

Fig. 1. A network with unreliable nodes and links in which p1 = 0.8 is the probability for nodes

being well-functioned and p2 = 0.8 is the probability for links being up. 200 nodes are deployed
in a unit-area disk. The edge ab marked by red line is corresponding to the CTR for no isolated
nodes. The figure is plotted with r = ∥a− b∥ = 0.097235.

b

a

Fig. 2. A network with unreliable nodes and links in which p1 = 0.8 is the probability for nodes
being well-functioned and p2 = 0.8 is the probability for links being up. 200 nodes are deployed
in a unit-area disk. The edge ab marked by red line is corresponding to the CTR for connectivity.
The figure is plotted with r = ∥a− b∥ = 0.135864.

illustrates the c.d.f. of CTRs corresponding to p1 = 0.9 and p2 = 0.8.

In addition, we consider another scenario in which every node independently

stays in waking mode with probability p1 and in sleeping mode with probability

1 − p1, instead of breaking down. For such networks, a node is isolated if it does
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Fig. 3. The c.d.f. of CTRs of networks composed of Bernoulli nodes (well-functioned/breaking down
mode) with p1 = 0.9 and Bernoulli links with p2 = 0.8. Nodes are distributed over a unit-area
disk.

not have any solid edge connecting to black node, and a network is connected if all

black nodes and solid edges form a connected graph and every white node has at

least one solid edge. Fig. 4 illustrates the c.d.f. of CTRs corresponding to p1 = 0.9

and p2 = 0.8.
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Fig. 4. The c.d.f. of CTRs of networks composed of Bernoulli nodes (awake/sleeping mode) with
p1 = 0.9 and Bernoulli links with p2 = 0.8. Nodes are distributed over a unit-area disk.

The average CTRs for Riso, Rcon, and Rth corresponding to previous two net-

work scenarios are listed in Table 3.

As the network size increases, qualitatively, we see the c.d.f. curves become closer

to each other in Fig. 3 and 4, and in addition, quantitatively, we see that the average

CTRs converge in percentage in Table 3.
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Table 3. The average CTRs of the Bernoulli node and link model.

p1 = 0.9 (active/inactive), p2 = 0.8 (Fig. 3)

n Riso Rcon Rth DRiso DRcon

100 0.1704 0.1823 0.1489 0.1443 0.2242

400 0.0963 0.0991 0.0842 0.1433 0.1769

1600 0.0522 0.0532 0.0465 0.1230 0.1450

p1 = 0.9 (awake/sleeping), p2 = 0.8 (Fig. 4)

n Riso Rcon Rth DRiso DRcon

100 0.1765 0.1856 0.1505 0.1732 0.2335

400 0.0964 0.0991 0.0849 0.1355 0.1673

1600 0.0525 0.0534 0.0468 0.1230 0.1407

5.4. Secure Wireless Networks

The last simulation result is for the m-composite key predistribution scheme. In

secure networks with key pool size K and key ring size k, at least m common keys

are required for each pair of nodes to establish secured links. In the simulation, we

use K = 40 and k = 10. For simplicity, we assume all nodes are active, i.e., p1 = 1.

Fig. 5 illustrates the c.d.f. of CTRs corresponding to m = 2. Table 4 shows average

CTRs for Riso, Rcon, Rth corresponding to K = 40, k = 10, and m = 2. Note that

p = 0.795771 for K = 40, k = 10, and m = 2.

p (%)
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Fig. 5. The c.d.f. of CTRs of secured networks composed of nodes distributed over a unit-area disk
with K = 40, k = 10, and m = 2. The corresponding p is 0.795771.
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Table 4. The average CTRs corresponding to K = 40, k = 10, and m = 1 and 2, respectively.

K = 40, k = 10,m = 1

n Riso Rcon Rth DRiso DRcon

100 0.1482 0.1627 0.1300 0.1397 0.2515

400 0.0824 0.0874 0.0734 0.1234 0.1918

1600 0.0449 0.0467 0.0404 0.1103 0.1557

K = 40, k = 10,m = 2 (Fig. 5)

n Riso Rcon Rth DRiso DRcon

100 0.1580 0.1698 0.1431 0.1042 0.1862

400 0.0879 0.0915 0.0808 0.0883 0.1328

1600 0.0482 0.0493 0.0445 0.0831 0.1088

6. Conclusions

In this paper, the connectivity of wireless networks in which nodes and links are

not reliable was investigated by the distribution of the number of isolated nodes in

the networks. We assume a wireless network is composed of a collection of wireless

sensors represented by a uniform n-point process over the unit-area disk or square.

In the Bernoulli model, nodes are active independently with probability 0 < p1 ≤ 1,

and links are up independently with probability 0 < p2 ≤ 1. We show that, if all

nodes have the same transmission radius rn =
√

lnn+ξ
πp1p2n

for some constant ξ, then

the total number of isolated nodes is asymptotically Poisson with mean e−ξ and

the total number of isolated active nodes is also asymptotically Poisson with mean

p1e
−ξ. In the m-composite key predistribution schemes, let p denote the probability

of the event that two neighbor nodes have a secure link. We show that, if all nodes

have the same transmission radius rn =
√

lnn+ξ
πpn for some constant ξ, then the total

number of isolated nodes is asymptotically Poisson with mean e−ξ. The convergence

of the asymptotic CTR was verified by extensive simulations. The average and

c.d.f. of CTRs were investigated under different network scenarios. The problem

whether or not the inexistence of isolated nodes almost surely implies connectivity

of networks is still open.
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