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Abstract A wireless sensor network usually consists of a large number of
sensor nodes deployed in a field. One of the major communication operations
is to broadcast a message from one node to the rest of the others. In this
paper, we adopt the conflict-free communication model and study how to
compute a transmission schedule that determines when and where a node
should forward the message so that all nodes could receive the message in
minimum time. We give two approximation algorithms for this NP-hard
problem that have better theoretically guaranteed performances than the
existing algorithms. The proposed approach could be applied to some other
similar problems.

Keywords broadcast schedule, approximation algorithm, wireless sensor
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1 Introduction

Wireless sensor networks (WSNs) find a wide range of applications in mili-
tary surveillance, emergency disaster relief and environmental monitoring. In
general, the message sent by a sensor (sender) can reach any of its neighboring
nodes within the transmission range of this sender. However, this may cause
conflict (when two nodes send their messages at the same time, any node
within their transmission range can receive none from them). With the help of
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novel techniques [8,10,14], nowadays sensors can use multi-channel to avoid
collision. Thus, in this paper, we assume that the sender and the receiver
are assigned the same channel for message transmission between them while
their neighboring nodes use different channels for message transmissions.

A communication session in a WSN is achieved either through a single-
hop transmission if the communication parties are close enough, or through
relaying by intermediate nodes otherwise. One of the key communication
operations in WSNs is to broadcast a message from a source node to all other
nodes. Some of them impose stringent requirements on the communication
time (such as battlefield communications).

Motivated by various applications of time-efficient broadcast, we study in
this paper the minimum broadcast schedule (MBS) problem in WSNs: Given
a set of sensor nodes with a distinguished source node s all deployed in a
plane, s needs to broadcast a message to all other nodes, the goal is to find
a sending-receiving schedule such that the message from s reaches all other
nodes in minimum time. This problem was proved to be NP-hard [15], that
means it is unlikely to find an optimal schedule in polynomial time, thus we
have to put our efforts on designing an efficient algorithm that could find a
good approximation of the optimal schedule.

The remainder of this paper is organized as follows. In Section 2, we
introduce some related works and summarize our contribution, and then in
Section 3, we specify the minimum broadcast schedule problem and give two
preliminary results. In Section 4, we propose an algorithm for computing a
broadcast tree, and in Section 5, we propose two algorithms for scheduling
transmission on the broadcast tree. In Section 6, we conclude the paper with
a discussion on how to extend the obtained results in this paper to other
similar problems and remark on future work.

2 Related works and our contribution

Pelc [9] surveyed results concerning the minimal broadcasting time problem
under different communication scenarios and presented several fast broad-
casting algorithms. He emphasized on the trade-off between the time of
broadcasting and the amount of knowledge of the network available to the
nodes.

Ravi [11] studied the minimum broadcast schedule problem under wired
telephone networks, which is a well-known NP-complete problem [7]. He
presented an O( log2 n

log log n )-approximation algorithm for the problem by using
the poise of the graph, where n is the number of nodes in the graph. There are
some recent works [2–4] on this problem in general directed and undirected
graphs, but all proposed approximation algorithms do not have constant
performance ratios.

Closely related to our work in this paper, Gandhi et al. [6] studied the
problem of minimum latency broadcasting in wireless ad hoc networks where
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nodes may have different transmission ranges. They also adopted the conflict-
free transmission model, and gave an O(1)-approximation algorithm for the
problem.

In contrast to the work of Ref. [6], we assume in this paper that
every sensor node has the capability of forwarding a message to exactly one
of its neighbors without interference in message sending and receiving at
other neighbors in the same round. In addition, different from the work of
Refs. [6,11], we assume the uniform transmission range of all sensor nodes.

Most recently, Zhu et al. [15] studied exactly the same problem. They
proved that this problem is NP-hard and gave a 41-approximation algorithm.
Later, Zhu et al. [16] proposed a 15-approximation algorithm by using a
geometric partition technique. In this paper, we improve their results even
further by proposing two algorithms with performance ratios no worse than
12 and about 3 (in some cases), respectively. We adopt an approach that
uses dominating set and ranked tree as well as geometric partition, which
turns out to be applicable for some other similar problems.

3 Problem formulation and preliminary results

A wireless sensor network that consists of sensors with uniform transmission
range deployed in the Euclidean plane could be modelled as a unit disk graph
G = (V, E), that is, there is an edge uv ∈ E if and only if the Euclidean
distance ‖uv‖ between two nodes u and v in V is at most one. A transmission
schedule can be represented by {(S1, R1), (S2, R2), . . . , (St, Rt)} where each
Si (resp. Ri) is the set of nodes that forward (resp. receive) messages in the
i-th round, i = 1, 2, . . . , t, and all nodes in V receive the message within t
rounds. Note that every (Si, Ri) gives implicitly a one-to-one correspondence
between Si and Ri in a way that each u ∈ Si corresponds to its receiver v ∈
Ri. The value t is called the time of schedule {(S1, R1), (S2, R2), . . . , (St, Rt)}.
Note that as each node u ∈ Si must be in an Rj for some j < i since u cannot
forward the message before it receives the message from a node in Sj , the
schedule can be represented by a weighted directed tree rooted at source node
s and spanning all nodes in V as follows: arc (u, v) with weight of natural
number i specifies that at the i-th round node u forwards the message to
node v.

Fig. 1(a) shows a simple instance of the minimum broadcast schedule
problem in unit disk graphs. Graph G consists of eight nodes including the
one specified as the source node s. Fig. 1(b) gives a schedule of time 3 as
follows:

{(S1, R1), (S2, R2), (S3, R3)} = {({s}, {v3}), ({s, v3}, {v1, v6}),
({s, v1, v3, v6}, {v2, v4, v5, v7})}.

In the first round, source node s sends the message to node v3. In the
second round, s sends the message to v1, while v3 forwards the message to v6



78 Weiping SHANG et al.

(a) (b)

Fig. 1 An instance of MBS problem in unit disk graphs

at the same round. Although node v1 is in the transmission range of node
v3, no collision occurs at node v1 since it is assumed that the communication
between s and v1 and the communication between v3 and v6 use different
frequencies, respectively. In the third round, s sends the message to v2, v1

to v4, v3 to v5, and v6 to v7, respectively, all in the same round.
For any node v ∈ V (G), the neighborhood of v is defined by

NG(v) ≡ {u ∈ V (G) : uv ∈ E(G)}.
The depth of a node v is the length dG(s, v) of the shortest path in G between
v and s (in terms of the hops), and the radius of G with respect to s, denoted
by dG, is the maximum distance of all the nodes from s, i.e.,

dG = max{dG(s, v) : v ∈ G}.
Clearly, dG can be determined by conducting a standard breath-first-search
(BFS) on G. For 0 � i � dG, the level Li of G consists of all nodes of depth
i.

A subset U ⊆ V (G) is called an independent set of G if all nodes in U
are pairwise non-adjacent, and it is further called a maximal independent set
(MIS) if each node V (G)\U is adjacent to at least one node in U. In addition,
a dominating set of a graph G = (V, E) is a subset S ⊆ V (G) such that each
node in V (G) \ S is adjacent to at least one node in S. A dominating set
is called a connected dominating set (CDS) if it also induces a connected
subgraph.

The following two lemmas each gives a lower bound on the time of an
optimal broadcast schedule, which can be easily established by estimating
multicasting time in a telephone network [1].

Lemma 1 Given a graph G = (V, E) and a source node s ∈ V, any broadcast
schedule requires at least max{dG, log2 |V |} rounds.

Lemma 2 Suppose that H is a complete subgraph of G and v is a node in
V (H). Then there exists a spanning tree TV (H) of H such that v can broadcast
the message to all other nodes in H along the tree TV (H) within �log2 |V (H)|�
rounds.
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4 Algorithm for computing broadcast tree

The basic idea of our approximation algorithms for the MBS problem in unit
disk graphs is to first construct a broadcast tree TD as shown in Fig. 1(b), and
then schedule transmissions on this tree. We will describe how to implement
the first stage in this section and then the second stage in the next section.
In the following, we first prove a lemma that will be used in the design and
analysis of our algorithms.

Lemma 3 Let G = (V, E) be a unit disk graph. Then any v ∈ V can
broadcast the message to all its neighbors within t rounds with

t � max
{

max
1�i�5

{i + �log2	|NG(v)|/i
�}, 5 + �log2(1 + 	|NG(v)|/6
)�}. (1)

Proof By the definition of the unit disk graphs, all nodes in NG(v) lie in the
unit disk of v. Now, we design a broadcast schedule for {v} ∪ NG(v) which
uses at most t rounds with the upper bound specified in the lemma.

It works as follows (refer to Fig. 2).

Fig. 2 Disk partition

At first, partition the unit disk centered at v into 6 equal sectors S1, S2,
. . . , S6. Suppose that each sector Si contains ni number of nodes in NG(v).
Assume, without loss of generality, that n1 � n2 � · · · � n6 (relabeling Si if
necessary). Then we have

ni � 	|NG(v)|/i
, 1 � i � 6,

and the nodes in each sector induce a complete graph. In the i-th round for
1 � i � 5, v forwards the message to a node vi in Si. Then by Lemma 2, vi

finishes the broadcast task in at most �log2 ni� rounds. And after the 5-th
round, v finishes the broadcast task of sector S6 in at most �log2(1 + n6)�
rounds. Taking the maximum of finishing times in all six rounds leads to
inequality (1). �
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The following two corollaries immediately follow from Lemma 3.

Corollary 1 Let G = (V, E) be a unit disk graph and v be a node in V with
|NG(v)| = 20. Then v can finish broadcasting the message to all its neighbors
within 7 rounds.

Corollary 2 Let G = (V, E) be a unit disk graph and U ⊂ V be a dominat-
ing set of G. If all nodes in U have received the message, then the broadcast
from nodes in U to all nodes in V \U could be finished in at most (4+log2 |V |)
rounds.

Now we describe how to construct a dominating tree TD. The node-set
V (TD) ⊂ V of broadcast tree TD is the union of an independent set U and a
set of other nodes which constitutes a CDS of G. The algorithm consists of
the following three steps (see Fig. 3 and its pseudocode below).

(a) (b)

Fig. 3 Computing broadcast tree. (a) Steps 1 and 2; (b) Step 3

Step 1 Construct a BFS tree TBFS of G rooted at source node s, and
compute the depths of all nodes in TBFS and the radius dG of G. For each
0 � i � dG, denote each level of TBFS by

Li(TBFS) = {v : distTBFS(s, v) = i},

where distance distTBFS(s, v) is defined as the number of edges in the path of
TBFS from s to v. The sets Li(TBFS) for 0 � i � dG form a partition of V.
Note that dG is also equal to the radius of G with respect to s.

Step 2 Construct an MIS U of G level by level as follows. For each 0 � i �
dG, a node w ∈ Li is added to U if and only if no node in current U dominates
w. The initial U is set to be an empty set, the final U is an MIS. Since an MIS
is also a dominating set, every node in U is called a dominator. In particular,
s is a dominator. Let Ui = U ∩Li. For each 1 � i � dG− 1, let Ci be the set
of parents of the nodes in Ui+1. The parents of the dominators other than s
can connect all dominators and thus are referred to as connectors. Note that
U0 = {s} and U1 = ∅. Denote by

U = {s} ∪ U2 ∪ · · · ∪ UdG , C = C1 ∪ · · · ∪CdG−1

the sets of all dominators and connectors, respectively.
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Step 3 Modify TBFS into a dominating tree TD with node-set V (TD) =
U ∪ C by changing the parents of only those connectors whose parents are
not dominators as follows. By the method of selecting dominators, each
connector has a neighboring dominator at the same or the upper level. If
the parent of a connector is not a dominator, we replace its parent by a
neighboring dominator at the same or the upper level.

In Fig. 3(a), TBFS consists of solid links (dashed links belong to E(G)
but not E(TBFS)), U and C contain the black and grey nodes, respectively.
Fig. 3(b) shows the dominating tree TD. Note that although node u is the
parent of connector w in TBFS, it is a connector, so dominator v is relabeled
as the parent of w in TD. Moreover, it has the following two properties (refer
to Fig. 4).

(i) The parent of a dominator other than the root s is a connector.
(ii) If u ∈ Ui, then its parent is any one of its neighbors in Ci−1, and if

u ∈ Ci, then its parent is any one of its neighbors in Ui−1 ∪ Ui.

Fig. 4 Properties of dominating tree

Algorithm A (for computing dominating tree)
1. TBFS ← BFS tree in G rooted at s with depth dG

2. U ← ∅, S ← V

3. for i← 1 to dG do
4. Choose a node w ∈ S ∩ Li

5. U ← U ∪ {w} and S ← S \ (N(w) ∪ {w})
6. end for
7. for i← 1 to dG do
8. Ui ← U ∩ Li

9. for each w ∈ Ui do
10. p(w)← any node in Li−1 ∩N(w)
11. Ci ← {p(w) : w ∈ Ui+1}
12. for each w ∈ Ci do
13. p(w)← any node in (Ui−1 ∪ Ui) ∩N(w)
14. end-for
15. end-for
16. end-for
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17. VD ← ∪dG

i=1(Ui ∪ Ci) and ED ← {(u, v) | u = p(v)}
18. return TD = (VD, ED)

The following lemma gives a useful property of the dominating tree TD.

Lemma 4 Let TD be the dominating tree produced by Algorithm A. Then
each dominator has at most twenty children and each connector has at most
four children in TD.

Proof Let v be a dominator. By the way of choosing dominators and
connectors, it is clear that the number of v’s children in dominating tree
TD is no more than the number of dominators lying in the disk of radius 2
centered at v, and all dominators are independent. By the corollary of the
well-known Wegner Theorem [13] on finite circle packings, the area of the
convex hull of any k � 2 non-overlapping unit-diameter circular disks is at
least √

3 (k − 1)
2

+
(1

2
−
√

3
4

)⌈√
12k − 3− 3

⌉
+

π

4
.

Consider now the disk of radius 2 centered at v, and let S be the domina-
tors contained in this disk including v. Then the set of unit-diameter disks
centered at the nodes in S are disjoint and their convex hulls are contained
in the disk of radius 2.5 centered at v. By Wegner Theorem, we have

√|S| (k − 1)
2

+
(1

2
−
√

3
4

)⌈√
12|S| − 3− 3

⌉
+

π

4
<

25
4

π. (2)

A straightforward calculation yields a solution to inequality (2) with |S| � 21.
Hence, v has at most twenty children. Moreover, each connector in Ci has at
most four neighboring dominators in Ui+1 since each node is adjacent with at
most five dominators, and at least one dominator is in Ui ∪ Ui−1. The proof
is then finished. �

Denote by dTD and Δ(TD) the radius of the dominating tree TD with
respect to s and the maximum degree of nodes in TD, respectively. By the
way of constructing the tree and Lemma 4, we have

dTD � 2dG, Δ(TD) � 21.

Moreover, MIS U lies in the disk of radius dG centered at s. From the
definition of unit disk graphs, U consists of pairwise disjoint unit-diameter
disks inside a disk of radius (dG + 0.5) centered at s. By the folklore area
argument, we have

|U | � (dG + 0.5)2π
0.52π

= (2dG + 1)2, (3)

and the number of connectors is no more than the dominators. Hence, from
inequality (3) and |C| � |U |, we obtain

|V (TD)| = |U ∪ C| � 2(2dG + 1)2. (4)
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5 Algorithms for computing broadcast schedule

In this section, we will propose two algorithms to compute transmission
schedules by using dominating tree TD. They both consist of the following
two phases (see Fig. 4):
Phase 1 Broadcast the message from source node s to all nodes in V (TD).
Phase 2 Forward the message from the dominating set U to other nodes
in V \ V (TD) by applying the method described in Lemma 3.
The only difference between them lies in Phase 1. We will describe how they
implement Phase 1 in the following subsections separately.

5.1 Dominating set based method

This scheduling method works as follows (in Phase 1). For each i = 0, 1, . . . ,
dG, schedule the message transmissions from all nodes in Ui to their children
(note that s ∈ U0), and from Ci to Ui+1 by applying the method described
in Lemma 3.

Lemma 5 Dominating set based method produces a schedule that could
finish the broadcast from s to all nodes in V (TD) within (11dG− 18) rounds.

Proof By the way of selecting dominators, each connector is adjacent to
some dominator in the previous or the same level. Thus, all connectors in a
level must have received the message from the dominators in the same level.
By the way of selecting connectors and their transmission scheduling, the
dominators at a level must have received the message after all connectors
at the previous level have completed their transmissions. Therefore, the
algorithm is correct.

By Lemma 4, each dominator has at most twenty children and each
connector has at most four children. So in each level the message trans-
mission from dominators to their children can be finished in 7 rounds and 4
rounds from connectors to their children by Corollary 1. Note that there are
no connectors in levels 0, dG and no dominators in level 1. A straightforward
calculation yields that the time of the broadcast schedule is at most

11dG − (7 + 4 + 7) = 11dG − 18. �
Theorem 1 Given any unit disk graph G = (V, E) with any node s ∈ V,
the dominating set based algorithm could produce a broadcast schedule from
s whose time is at most 12 times that of the optimal broadcast schedule.

Proof By Lemma 5, Phase 1 can be finished within (11dG−18) rounds, and
by Corollary 2, Phase 2 can be finished within (4 + log2 |V |) rounds. So the
total time is at most (11dG + log2 |V |). Note, however, that the time of an
optimal broadcast schedule is at least max{dG, log2 |V |}. Thus the theorem
holds. �
5.2 Ranked tree based method

This method adopts a standard definition of the node ranks in a rooted
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tree used earlier in the context of radio communication in known topology
networks in Ref. [5]. The rank of the nodes is constructed level-by-level in a
bottom-up manner (see Fig. 5). Initially, every leaf node v has rank (v) = 1.
A non-leaf node determines its rank according to the rank of its children as
follows. Given the ranks of the children of a node v, say r1, r2, . . . , rk, let

rmax = max{ri : i = 1, 2, . . . , k}.

If v has a unique child whose rank is r, then the rank of node v is set to
rank(v) = r. Otherwise, there are at least two children with the rank r, in
which case the rank of node v is set to rank (v) = r +1. Note that the largest
rank rmax in the tree is upper bounded by �log2 |V (TD)|�.

Fig. 5 A ranked tree

Now, we describe how to broadcast from source node s to all nodes in
V (TD) within (dTD + 7rmax) rounds.
Step 1 For two integers i and j, let

ti,j = i + 7(rmax − j).

For each 0 � i < dTD and 0 � j � rmax, let Vi,j denote the set of nodes in
the i-th level with rank j, and N(Vi,j) the set of their children. In addition,
denote by N1(Vi,j) the set of children with rank j and N2(Vi,j) the set of
children with rank smaller than j.

Step 2 A session Si,j forwards the message from Vi,j to N(Vi,j) as follows:
Vi,j forwards the message to N1(Vi,j) at the round of

ti,j = i + 7(rmax − j)
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and then Vi,j forwards the message to N2(Vi,j) at round of (ti,j + k) for each
1 � k � 7 by using the method described in Lemma 3.

Lemma 6 Ranked tree based method produces a schedule that could finish
broadcast from source node s to all nodes in V (TD) within (2dG+14 log2(2dG+
1) + 7) rounds.

Proof By Corollary 1, for each node in dominating tree TD has at most
20 children, it can forward the message to all its children within 7 rounds.
So each session Si,j could start at the ti,j-th round and finish before the
(ti,j + 7)-th round. If j = 0, then Si,j either does not do any transmission or
could finish transmissions only on the ti,j-th round.

We claim that each Si,j finishes before the tk,0-th round with k = dTD .
Note that ti,j strictly increases with i and decreases with j. If j > 0, then
Si,j finishes no later than the round

ti,j + 7 = ti,j−1 < tk,0.

If j = 0, then Si,j finishes no later than the round ti,j � tk,0. Thus our claim
is true. Consequently, the time required is at most

tk,0 = k + 7rmax.

Because of dTD � 2dG and inequality (3), we have

|V (TD)| � 2(2dG + 1)2

and rmax in the tree is bounded above by �log2 |V (TD)|�, we have

tk,0 � 2dG + 7 log2 2(2dG + 1)2. �

Using Lemma 6, along with the same argument for the proof of Theorem
1, we can easily prove the following theorem.

Theorem 2 Given any unit disk graph G = (V, E) with any node s ∈ V,
ranked tree based algorithm could produce a broadcast schedule from s within

2dG + 14 log2(2dG + 1) + log2 |V |+ 11

rounds.

Note that in Theorem 2, when dG or log2 |V | is sufficiently large, we
could deduce that the broadcast time of the obtained schedule is no more
than about three times that of an optimal schedule.

6 Conclusion

In this paper, we have proposed two approximation algorithms for the MBS
problem in unit disk graphs using the techniques of dominating set and ranked



86 Weiping SHANG et al.

tree, respectively. In the following, we will describe how this approach can be
extended to the multicast version of the problem: the message at source node
s needs to be multicasted to only a subset M ⊂ V of given graph G = (V, E).

Let dM be the maximum depth of the nodes in M. Clearly, dM is also a
lower bound on the minimum time for multicast schedule from s to all nodes
in M. Let T be the shortest-path tree from s to all nodes in M. In other
words, T is the minimal subtree of BFS spanning all nodes in {s} ∪M. Let
GM be the subgraph of G induced by V (T ). Then a schedule for broadcast in
GM is a multicast to M. So we can apply either of our two algorithms on GM .
We first construct a dominating tree TM in GM . The scheduling consists of
two phases. In the first phase, the message is multicasted from s to nodes in
V (TM ). In the second phase, the message is multicasted from V (TM ) to other
nodes in M \ V (TM ). The time required in the first phase by each algorithm
is a function of the maximum depth only, and the time in the second phase
is at most (4 + log2 |M |) rounds. Hence, the same approximation ratio could
be achieved for multicast version.

Moreover, the approach adopted in this paper could also be used to study
the minimum convergecast problem in WSNs that studies how fast a sink
node could collect data from all other nodes. This is studied in a separate
paper [12].

The two scheduling algorithms proposed in this paper both are central-
ized. They assume that each sensor node knows not only its own geometric
position but also the global knowledge of all other nodes’ geometric positions.
Moreover, it is also assumed implicitly that transmission time of all nodes
could be controlled in synchronous rounds by a global clock. However, these
assumptions may not be satisfied in some applications of WSNs. In these
cases, distributed or localized algorithms are desired. This is worthy of study
in the future.
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