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ABSTRACT

Let a2 (G), v (G) and v (G) be the 2-independence number, the domination number,
and the connected domination number of a graph G respectively. Then az (G) £ 7(G) <
ve (G). In this paper, we present a simple heuristic for Minimum Connected Dominating
Set in graphs. When running on a graph G excluding K, (the complete graph of order
m) as a minor, the heuristic produces a connected dominating set of cardinality at most
Taz (G) — 4 if m = 3, or at most (m ";_l) +S) a3 (G) — 5 if m > 4. In particular,
if running on a planar graph G, the heuristic outputs a connected dominating set of
cardinality at most 15a3 (G) — 5.

Keywords: connected dominating set, 2-independent set, minor, approximation algo-
rithm

1. Introduction

A dominating set (DS) of a graph G = (V, E) is a subset U C V such that each
node not in U has a neighbor in U, and a connected dominating set (CDS) is a domi-
nating set which also induces a connected subgraph. The Minimum Dominating Set
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(MDS) problem, and the Minimum Connected Dominating Set (MCDS) problem
seek, for a given graph G, a least-cardinality DS and a least-cardinality CDS, respec-
tively. MCDS in general graphs is known to be NP-hard [8]. In addition, Guha and
Khuller [9] gave an approximation preserving reduction from the set-cover problem
[7] to MCDS, which implied that for any fixed 0 < € < 1, no polynomial-time al-
gorithm can find a CDS in general graphs within (1 —€) H (A) times the minimum
unless NP C DTIME [nOUegleem)] (10}, where A is the maximum degree and H is
the harmonic function. They also presented two greedy heuristics for MCDS with
approximation ratios of 2H (A) + 2 and InA + 3 respectively.

Although MCDS in general graphs is hard to approximate, the restriction to
certain special graph classes admits much better approximation results. MCDS in
planar graphs remains NP-hard even for planar graphs that are regular of degree 4
[8]. The related problem, MDS in planar graphs, is also NP-hard even for planar
graphs with maximum vertex degree 3 and planar graphs that are regular of degree
4 [8]. It is well-known that MDS in planar graphs possesses a polynomial-time
approximation scheme (PTAS) based on the shifting strategy [2]. That is, there
is a polynomial-time approximation algorithm with approximation factor 1 + ¢,
where ¢ is a constant arbitrarily close to 0. Thus, it is immediate to conclude that
MCDS in planar graphs can be approximated within a factor 3 + ¢ for any € > 0 in
polynomial time. However, the degree of the polynomial grows with 1/¢ and hence,
the approximation scheme is hardly practical. Furthermore, the shifting strategy
and dynamic programming requires expensive distributed implementation.

Recently, MCDS in unit disk graphs has generated much interest due to its
relevance to wireless ad hoc networks. MCDS in unit-disk graphs is still NP-hard
[5]. But MCDS in unit-disk graphs possesses a PTAS [4]. However, such PTAS
is not suitable for practical applications such as distributed construction of virtual
backbone in wireless ad hoc networks [3]. A simple 10-approximation algorithm for
MCDS in unit-disk graphs was first proposed in [11]. An improved 8-approximation
algorithm for MCDS in unit-disk graphs together with efficient distributed imple-
mentation was recently developed in [12]. Other centralized algorithms with ap-
proximation ratios less than 8 can be found in [1].

In this paper, we present a simple heuristic for MCDS in general graphs. When
running on graphs excluding K, (the complete graph of order m) as a minor, the
heuristic has an approximation ratio of at most 7 if m = 3, or at most ﬂ"zl——ll +9
if m > 4. In particular, if running on a planar graphs, the heuristic has an approx-
imation ratio of at most 15. Because of its simplicity, our heuristic is expected to
admit efficient distributed implementation, which will be the subject of our further
study.

The remaining of this paper is organized as follows. In Section 2, we introduce
some related graph-theoretic concepts and parameters. In Section 3, we describe
our heuristic for MCDS in general graphs. In Section 4, we provide an upper bound
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on the cardinality of the CDS output by our heuristic. Finally, we conclude this
paper in Section 5.

2. Preliminaries

Let G = (V, E) be a graph. We sometimes write V (G) instead of V and E (G)
instead of E. For U C V, we use G [U] to denote the subgraph of G induced by
U. A subset U C V is a dominating set (DS) of G if each node not in U has
a neighbor in U. A subset U C V is a connected dominating set (CDS) of G
if it is a DS of G and G [U] is connected. The domination number, denoted by
v(G), and the connected domination number, denoted by <. (G), are the smallest
cardinalities of a dominating set and a connected dominating set, respectively. The
distance distg (u,v) in G of two vertices u,v € V (G) is the length of a shortest
path between u and v in G. The distance between a vertex v and a set U C V (G)
is min,cy distg (u,v). The distance between two subsets U and W of V (G) is
min, ey wew diste (v, w). A vertex set U C V (G) is a k-independent set (k-IS)
of G if the distance between any pair of vertices in U is greater than k. The
k-independence number of G,denoted by aj (G), is the largest cardinality of a k-
IS. Note that a 1-IS is a usual IS and @, (G) is the usual independence number
a (G). The parameters v (G) ,v. (G) , @ (G) and az (G) are related by the following
inequalities [6].

Y(G) £ 7(G) <3 (G)-2
7.(G) < 2a(G)-1;
a(G) £ 7(G)2a(G).

To see why ap (G) <+ (G), let U C V (G) be a maximum 2-IS of G. Foreachu € U,
let N [u] denote the closed neighborhood of u in G. Then the closed neighborhoods
N (u) for all u € U are pairwise disjoint. Thus each DS of G must contain at least
one vertex from each N [u]. This implies that v (G) > az (G).

A contraction of an edge (u,v) in G is made by identifying u and v with a
new vertex whose neighborhood is the union of the neighborhoods of u and v (with
resulting multiple edges and self-loops deleted). A contraction of G is a graph
obtained from G by a sequence of edge contractions. A graph H is a minor of G if
H is the contraction of a subgraph of G. G is H-free if G has no minor isomorphic
to H. For example, by Kuratowski’s theorem, a graph is planar if and only if it is
both K5 and K3 3-free. In this paper, we focus on Kp,-free graphs. Our algorithm
would find a CDS of size at most

(m(m—l)

5 +5)02(G)*5
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of a Ky,-free graph G for any m > 4. This implies that if G is K,,-free for some
m > 4, then
m(m— 1)

1.(G) < (—2 “ 5) oz (G) - 5.
In particular, for a planar graph G,

e (G) < 1502 (G) - 5.

3. Algorithm Description

We first give a brief overview on our algorithm design. Our algorithm is pre-
sented as a color-marking process. All vertices are white initially, and will be marked
with either black or gray eventually. In the end, all black vertices form a CDS and
all gray vertices are dominatees. A white vertex remains white until either it is
selected as a dominator, in which case it is marked black, or one of its neighbors
is marked black, in which case it is marked gray. A gray vertex may b= remarked
black in the future. But once a vertex is marked black, it will stay black. The
color-marking process proceeds in iterative phases. Each phase produces additional
black nodes, which together with the black nodes from the previous phases, induce a
connected subgraph. When a node is marked black, all its non-black neighbors will
receive a time-stamp which is equal to the current phase number. New time-stamp
does not overwrite old time-stamps, if there is any. Thus, a gray vertex may have
multiple time-stamps. At the end of a phase k, each white vertex, if there is any
left, has a gray neighbor with time-stamp j for every 1 < j < k.

For the simplicity of description, we introduce some new terms and notations.
Given a coloring marking of all vertices of G, the residue graph is the graph obtained
from G by first removing all black vertices and those gray vertices without white
neighbors, and then removing edges between gray vertices. Thus, each vertex of a
residue graph is either white or gray, and each connected component of a residue
graph must have at least one white vertex.

Consider a connected graph H and a positive integer k which satisfy the following
properties: Each vertex of H is either white or gray and at least one vertex is white.
If k = 1, then all vertices are white; and otherwise, every white vertex is adjacent
to a gray vertex stamped with j for every 1 < j < k— 1. Such pair (H, k) is referred
to as a residue pair. A restricted 2-connected dominating set (R2CDS) for a residue
pair (H, k) is a subset of vertices U of H such that

e H[U] is connected;

e every white vertex not in U, if there is any, is at a distance of exactly two
from U;
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e and for every 1 < j < k—1, U contains at least one gray vertex stamped with
s

We propose a simple procedure, called R2CDS(H, k), which takes as input a
residue pair (H, k) and outputs a R2CDS U for (H, k). All vertices in U are marked
black, and all vertices dominated by U are marked gray and stamped with k. Given
a vertex v and a positive integer k, we use MarkStamp(v, k) to denote the basic
operation which marks v black and all white neighbors of v gray, and stamps all
non-black neighbors of v with k. The procedure R2CDS(H, k) consists of four steps:

1. Initialization: If k > 2, let aj =0forj=1,---,k— 1.

2. Sorting: Build a spanning arborescence T of H rooted at a white vertex. For
each node v of H, assign a rank (¢ (v),v) where £ (v) is the level of node v in
T. Sort all white vertices in the increasing lexicographic order of ranks. Let
vy, 19, -+, v denote the ordering.

3. Coloring and Stamping: MarkStamp(v;, k). For i = 2,.--,s, if v; is white
and has no gray neighbors stamped with k, proceed as follows:

(a) Set I =1, u; = v;. Repeat the following iteration until w; is black: If
k > 2 and w is gray, set a; = 1 for each stamp j < k of w;. If u; has a
neighbor black, set uy41 to any such neighbor; otherwise, if u; has a gray
neighbor stamped with k, set u;4; to any such neighbor; otherwise, set
up41 to its parent in T'. Set [ to | + 1.

(b) Repeat the following iteration until | = 1: Set [ to [ — 1 and invoke
MarkStamp(u, k).

4. Post-processing: If k > 2, perform the following processing. For j = 1,.--, k—
1, if a; = 0 choose a neighbor u of v; stamped with j, set a; = 1 for each
stamp ¢t < k of u, and then MarkStamp(u, k).

The k — 1 boolean variables a; for j = 1,---,k— 1 indicates whether the R2CDS
U contains at least one gray vertex stamped with j for j =1, -,k — 1 (the third
bullet of the properties of U). They are initialized to zero in the first step. Whenever
a gray vertex with stamp j is marked black within step 3 or step 4, a; is set to one.
Step 4 ensures all these boolean variables are one eventually, so that the third bullet
is satisfied.

The For-loop in step 3 guarantees that in the end, every white vertex is adjacent
to a gray vertex stamped with k, and thus is exactly two hops away from some black
vertex. So the second bullet of the properties of U is satisfied.

The inner loop in step 3(a) establishes a path from a white vertex v; without gray
neighbors stamped with k& to some black vertex. The inner loop in step 3(b) marks
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all vertices of the path black and marks/stamps the other vertices dominated by
them. This ensures the connectedness of the black vertices, so that the first bullet
of the properties of U is satisfied. The path (excluding the black vertex) consists of
either three or four vertices. Indeed, u, is v;, and since v; is white and has no gray
neighbors stamped with k, us is always set fo the parent of v;. Depending on the
color of ug, the other vertices are selected as follows:

1. In the first case, ug is white. Then uy must have a gray neighbor stamped
with k as early as when usy is examined, for otherwise, it would have been
marked black. Thus, uz is a gray neighbor of u; stamped with k. The path
thus consists of the three vertices u;, 1y and us.

2. In the second case, ug is gray. Then every stamp of us is less than k. If up has
a gray neighbor stamped with k, then uj is one of such gray neighbors, and
the path just consists of the three vertices u;, up and uz. So we assume us
is not adjacent to any gray neighbor stamped with k. As uy is not adjacent
to any black vertex (for otherwise, ua would have the stamp k), u3 is set to
the parent of us. Since no gray vertices with stamps less than k are adjacent
in H, uz must be white. Then u3 must have a gray neighbor stamped with k&
as early as when us is examined, for otherwise, uz would have been marked
black. Thus, u4 is set to one of such gray neighbors, and the path just consists
of the four vertices uy, us, ug and ug.

In summary, the path consists of either three vertices or four vertices. And if
the path consists of four vertices, then k must be greater than one and at least one
a; is set to one for some 1 < j < k —1 in step 3(a).

Now we are ready to describe our heuristic, denoted by CDS(G), for finding a
CDS of G. Initially, & = 0 and all vertices of G have white colors. Repeat the
following iteration while there are some white vertices left:

e Let k =k + 1 and Gy denote the residue graph.

e For each connected component H of Gy, apply R2CDS(H, k).

Let B denote the set of black vertices marked by CDS(G). It is easy to see that
B is a CDS of G. In the next section, we will provide an upper bound on |B| if the
graph G is free of K,,,-minor for some m > 3.

4. Performance Analysis

The main theorem of this section is given below.
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Theorem 1 Suppose that G is free of K,,-minor for some m > 3. If m =3, then
|B| < Taz (G) — 4.

Ifm> 4, then

IB| < (ﬂ";—_ﬂ +5) a3 (G) - 5.

By Kuratowski’s theorem, a planar graph has no Ks-minor. So we have the
following corollary of Theorem 1.

Corollary 1 If G is a planar graph, then

|B| < 1602 (G) — 5.

Since

a3 (G) £7(G) £ (G),

Theorem 1 implies that when running on graphs excluding K,,, (the complete graph
of order m) as a minor, our heuristic has an approximation ratio of at most 7 if
m = 3, or at most mz;l)- + 5 if m > 4. In particular, if running on a planar
graphs, our heuristic has an approximation ratio of at most 15. The remaining of
this secticn is dedicated to the proof for Theorem 1.

Let H be a graph in which every vertex is either white or gray and there is at
least one white vertex. A restricted 2-independent set (R2IS) is a 2-IS of H which
consists of only white vertices. The restricted 2-independence number of H, denoted
by o4 (H), is the largest cardinality of a R2IS of H. Obviously, o) (H) < as (H).
The next lemma presents the “monotonic™ properties of the residue graphs.

Lemma 1 Suppose that CDS(G) runs in | iterations. Then

G = G12Gy2---DGy
az(G) = ay(G1) 2 a5(Ga) 2+ 2 a5 (GY).

Proof. It is obvious that G; = G and o (G1) = a2 (G). Fix a k between 1
and [ — 1. We prove that Gx1 C Gy, and o (Gry1) < b (Gk).

We first show that V (Gr+1) C V (Gi). Note that all white vertices of Gri1
must be have been white in the previous iteration and thus are white vertices of
Gy as well. In addition, all gray vertices of G.+; which are white in the previous
iteration must be white vertices of Gi. So it is sufficient to show that each gray
vertex of Gy41 which is also gray in the previous iteration is also a vertex of Gj.
Let v be a gray vertex of G4 which is also gray in the previous iteration. Then v
has a white neighbor, denoted by u, in Gg..i. Since u is also a white vertex of G,
v must be also a gray vertex of Gy.
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Next, we show that E(G41) C E(Gx). Consider any edge uv of G;;. Then
at least one of its endpoints is white. By symmetry, assume v is white. If u is also
white, then the edge uv also appears in Gg. If u is gray, then u is either white or
gray in Gj. In either case, the edge uv appears in Gy.

Finally, we show that af (Gr+1) < ab (Gk). Let wi and w; be any pair of white
nodes of Gpy1. As G4y is a subgraph of Gy,

distg,,, (w1, w2) > distg, (wi,ws).
We claim that, however, if distg, (w1, ws) < 2, then
distg, ,, (w1, wy) = distg, (wi,wa).

The claim is true if distg, (w1,w2) = 1. So we assume that distg, (w1, w2) = 2.
Then distg,,, (wi,wz) > 2. Let v be a common neighbor of w; and wy in Gg.
Then v must remain as a vertex of Gy, for otherwise, v would have been marked
black in the previous iteration and both w; and wp would have become gray in
Gi41- Thus, distg,,, (wi,w2) = 2. So our claim is true. From the claim, we
conclude that if distg, ,, (w1, w2) > 2, then distg, (wy,w2) > 2. This implies that
a3 (Gr41) < 3 (Gi)- s

The lemma below gives an upper bound on the total number of iterations if the
graph G is free of K,,-minor.

Lemma 2 If G is free of K.,-minor for some m > 3, then CDS(G) runs in at most
m — 1 iterations.

Proof. We prove the lemma by contradiction. Assume that G is free of K-
minor but CDS(G) runs in at least m iterations. Let H}, be an arbitrary connected
component of G,,. By Lemma 1, for each 1 < k < m—1, Gy has a unique connected
component, denoted by H}, which contains H;, as a subgraph. Obviously,

H{ DH; D---DH,.

For each 1 < k < m, let B}, be the black vertices of H; marked by the procedure
R2CDS(H{, k). Then for any 1 <4 < j < m, B} and B} are disjoint and separated
by one hop. Since each B} is connected, the m sets By, B3,---, By, give rise to a
K n-minor in G, which is a contradiction. o

The next lemma provides an upper bound on the number of black vertices output
by the procedure R2CDS(H, k).

Lemma 3 The number of black vertices output by the procedure R2CDS(H, k) is
at most 3c5 (H) — 2 if k=1, and at most 4ab (H) +k—4 if k > 2.
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Proof. Let vy,vg,--+,vs be the ordering of the white vertices of H produced
by Step 2 of the procedure R2CDS(H, k). Let I be the set of integers 4 in {2,---, s}
such that when v; is examined in the for-loop of Step 3, v; is white and has no gray
neighbors stamped with k. It is obvious that {v; : i € {1} U I} form a R2IS of H.
Thus, _

1+|I| < ah (H).

Next, we count the number of vertices marked black during each iteration i with
i € I in the for-loop of Step 3. Fix an i € I. From the explanation after the
procedure R2CDS(H, k) in the previous section, either three or four vertices are
marked black during iteration 7. In addition, if four vertices are marked black in
this iteration, then k must be greater than one and at least one a; is set to one for
some 1 <j<k-1.

Finally, we count the total number of black vertices. Note that v; is always
marked black. If for each i € I, the iteration ¢ of the for-loop at Step 3 marks
exactly three vertices black, then Step 4 marks at most k& — 1 additional vertices
black. So the total number of black vertices is at most

143/ +k=1 = 3A+|I))+k-3
< 3ay(H)+k-3.

If for some i € I, the iteration ¢ of the for-loop at Step 3 marks four vertices black,
then k& > 1 and Step 4 marks at most k — 2 additional vertices black. So the total
number of black vertices is at most

1+4|I+k-2

A(1+|I))+k-5
4o (H) + k — 5.

1A

Thus, if & = 1, the total number of black vertices is at most
3ah (H)+1-3=38ay(H)—2.
If k > 2, the total number of black vertices is at most

max {3} (H) + k — 3, 4} (H) + k — 5}
<4 oh(H)+k-4

O

The next lemma gives upper bounds on the number of black vertices produces
in each iteration of CDS(G).

Lemma 4 Let By be the set of black vertices produced in the k-th iteration of
CDS(G). Then

Byl < 302(G) -2,
|Ba| < 4a2(G) -2,
IBs| < 4o2(G) -1,
IBe| < kaa(G),k>4.
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Proof. ;From Lemma 3, |B;| < 3a2(G) — 2. So we assume that k > 1.
Suppose that Gy has ¢ connected components, denoted by Hy,,---, Hy;. Since
each connected component contains at least one white vertex,

t
1<t <Y af (Hes) = o5 (Gy).

i=1
For each 1 < i < t, let Bg; be the vertices of Hi; marked by the procedure
R2CDS(Hy,i, k). Then
By = B U -+ U Byy;
and by Lemma 3,
|Bi.il < 4 (Hgs) +k—4
foreach 1 <i<t. Thus, if k=2 or 3,

t ¢
DBl <45 o (Hig) + (k- 4)t

|Bx| =
=1 =1
= 4a; (Gg) +(k—4)t
< 4ay(G)+(k—4).
k>4,
i i
IBel = Y |Bral <4 ah (Hiy) + (k- 4)t
=1 i=1
< 4ay (Ge) + (k —4) 0 (G) = kay (Gi)
< ka2 (G).

O

Now we are ready to give the proof of Theorem 1. By Lemma 2, the total
number of iterations is at most m — 1. If m = 3, then by Lemma 4
|B| < (322 (G) — 2) + (422 (G) — 2) < Ta2 (G) — 4.
If m = 4, then by Lemma 4,
IB] < (T02(G) —4) + (402 (G) - 1)

= 11a3(G)-5
(WJr 5) a2 (G) - 5.
If m > 4, by Lemma 4,
m—1
IBl < (1laz(G)—5)+ »_ kas(G)
k=4

m(m —

: 1) —s)ag(a)

(Mw) a2 (G) 5.

= 11052(G)—5+(
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This completes the proof of Theorem 1.

5. Conclusion

In this paper, we present a simple heuristic for MCDS in graphs. When running
on a graph G excluding K, (the complete graph of order m) as a minor, the
heuristic produces a CDS of cardinality at most 7ay (G) — 4 if m = 3, or at most

(ﬂ’%’_—ll + 5) a3 (G) — 5 if m > 4. In particular, if running on a planar graph G,
the heuristic outputs a CDS of cardinality at most 15a; (G) — 5. We are currently
developing an efficient distributed implementation of this heuristic.
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