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ABSTRACT

We study the problem of separating n points in the plane, no two of which have the same
z- or y-coordinate, using a minimum number of vertical and horizontal lines avoiding
the points, so that each cell of the subdivision contains at most one point. Extending
previous NP-hardness results due to Freimer et al. we prove that this problem and some
variants of it are APX-hard. We give a 2-approximation algorithm for this problem, and
a d-approximation algorithm for the d-dimensional variant, in which the points are to be
separated using axis-parallel hyperplanes. To this end, we reduce the point separation
problem to the rectangle stabbing problem studied by Gaur et al. Their approximation
algorithm uses LP-rounding. We present an alternative LP-rounding procedure which
also works for the rectangle stabbing problem. We show that the integrality ratio of the
LP is exactly 2.
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1. Introduction

Let P be a set of n points in the plane, no two of which have the same z- or y-
coordinate. We consider the problem of finding a minimum set of axis-parallel lines
that do not pass through any of the given points, such that each cell of the result-
ing subdivision contains at most one point. In other words, for each pair of points
there is a line in our set which separates the two points. We refer to this problem
as the separation problem SEPARATION. Its natural extension to higher dimensions,
called the multi-modal sensor allocation problem in Ref. [11], asks for a minimum
cardinality set of axis-parallel hyperplanes which separate n given points. It has
applications to fault-tolerant multi-modal sensor fusion in the context of embed-
ded sensor networks.!! The problem appears to be closely related to other prob-
lems of separating points or hitting objects studied in the computational geometry
literature.!»3:4,8,:9,10,12

The point separation problem appears to have been studied for the first time by
Freimer, Mitchell and C. Piatko,® under the name point shattering problem; they
considered both the general case — when the points can be separated by arbitrary
lines, and the special case — when only axis-parallel lines are used. They have
shown that both variants are NP-hard, and have left the problem of obtaining good
approximation algorithms as open for further research.’

Our paper is organized as follows. In Section 2 we present two LP-based ap-
proximation algorithms with ratio 2 in the plane,® respectively d in R?: the first is
obtained by casting the separation problem as a special case of the rectangle stab-
bing problem.”® The second uses a different rounding procedure. We show that
the second algorithm also works for the rectangle stabbing problem, with the same
ratio, 2.

In Section 2.1, we show that, for any € > 0, there are examples in the plane hav-
ing integrality ratio at least 2 — ¢ for SEPARATION, and hence also for RECTANGLE
STABBING.P Since the integrality ratio is 2, it means one cannot prove a constant
approximation ratio less than 2 based only on the value of the linear program as a
lower bound on the optimum value.

In Section 3, we show (under standard assumptions) that SEPARATION is in fact
hard to approximate beyond a certain threshold (see Theorem 3).

A natural variant of the above point separation problem is a colored version:
the points are colored, and one has to find a minimum set of axis-parallel lines,
such that the set of points in each cell of the resulting subdivision, if nonempty, is
monochromatic. Clearly having each point colored by a different color is equivalent
to the original problem. Thus when the numbers of colors is part of the input this
problem is also NP-hard. We prove that it remains so for any number % of colors,

2An approximation algorithm with ratio r outputs a separating set of lines of size at most r-OPT,
where OPT is the size of an optimal separating set.

bThe integrality ratio (gap) of a minimization integer program is the supremum over instances of
the ratio of the value of the integer program to the value of its linear program relaxation.
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k > 2. This version also extends to higher dimensions, as the original problem does.
Both our algorithms can be used to obtain a 2-approximate solution for the colored
version in the plane, or d-approximate solutions for the colored version in R?.

2. Algorithms for Separation

In this section we prove

Theorem 1. There ezists a 2-approzimation algorithm for SEPARATION.

Without loss of generality, we can restrict the set of vertical or horizontal sepa-
rating lines to a set £ of 2(n — 1) canonical lines, one for each pair of horizontally
consecutive points, and one for each pair of vertically consecutive points (say, at
the average coordinate value of two consecutive points).

We first give two lower bounds on OPT, the size of an optimal solution. Consider
the complete geometric graph G = (V, E) whose vertex set is the set P of n points.
We say that two edges of G are independent if there is no vertical or horizontal line
that intersects both in their interior. Let I be a maximum independent set of edges
of G. Then clearly OPT > |I|, since each edge of I requires a distinct separating
line.

Write [ = OPT. The maximum number of cells induced by I horizontal and
vertical lines is attained when the lines are divided evenly into vertical and hor-
izontal. Since each point requires a distinct cell of the arrangement of [ lines, we
have (|1/2] +1)([1/2] + 1) > n, which implies that for all sets of n points,

OPT > [2/n] - 2.

In the rectangle stabbing problem,”® we are given a set of (nondegenerate) axis-

parallel rectangles in the plane, with the objective of stabbing all the rectangles with
the minimum number of axis-parallel lines (a rectangle is said to be stabbed by line
¢ if ¢ intersects its interior). Gaur, Ibaraki and Krishnamurti have recently given
a 2-approximation algorithm for this problem.” Let us first see how the separation
problem can be cast as a rectangle stabbing problem. For each pair of points u,v €
P, consider the rectangle R, whose diagonal is uv. Then separating all the points
in P is equivalent to stabbing all rectangles R,,, with u,v € P. Note also that it
is enough to restrict ourselves to empty rectangles, i.e., those that do not contain
other points of P: stabbing all empty rectangles R, guarantees that all rectangles
are stabbed. However, in general this restriction may be not significant, as it is easy
to construct examples with (n?) empty rectangles determined by the n points.

Let R be the collection of rectangles in the rectangle stabbing problem. A set
L of canonical lines is selected first, as in the separation problem. The natural IP
(integer program) with variables ar, for L € L, is

minimize E ay,
Lel
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subject to Z ar>1 YVReR (1)
L stabs R
ar € {0,1} VL e L. (2)

The linear programming relaxation of IP is obtained by replacing the constraints
(2) by
ar >0 VL eL.

Denote by LP the value of the above linear program. The algorithm of Gaur et
al. solves the linear program and classifies rectangles as horizontal or vertical (with
ties broken arbitrarily), depending on whether

1
ap > — or Z L>

2
horizontal L: L stabs R vertical L: L stabs R

l\Dl'—ﬂ

It then solves optimally the problem of stabbing the horizontal rectangles by
vertical lines, by solving the corresponding linear programs LPgy and LPy. The
solutions of these two linear programs are integral, a property that follows from the
total unimodularity of their constraint matrices. Putting together the two sets of
lines results in a 2-approximation algorithm, using again the total unimodularity
property. Instead of solving LPy and LPy, one can solve directly the corresponding
stabbing problems using the greedy algorithm, since these become interval stabbing
problems on the line.

The formulation of the integer and linear programs for the separation problem
is analogous. The IP with variables ay, for L € £, is

minimize E ay,

LeL
subject to Z ar, >1 Yu,v € Pju#w, (3)
L separates uv
arp €{0,1} VLe L. (4)

The linear programming relaxation of IP is obtained by replacing the constraints
(4) by
ar, >0 VLEeL.

The 2-approximate solution is obtained in the same way.

We now provide a new, conceptually simpler, LP-based algorithm, that only
solves the linear program above and directly rounds the solution. Sort the horizontal
lines Ly, Lo, ... Ln 1 in order of their y-coordinates. Pick line L; if and only if
the interval ( i1 aLt?Zz—l ar, ] contains a multiple of 0.5. There are at most
25°7 ' ay, multiples of 0.5 in the interval (0, 377} 1 0L ] and therefore the number
of horizontal lines picked does not exceed 2 21_1 ar;. Apply a similar procedure

to the vertical lines Ll, Lz, ey L,,_; sorted in order of their z-coordinates. Hence
the number of lines picked cannot exceed twice the value of the LP.
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Now we show that we obtain a valid integral solution. Let P and @ be two points
and let ip (ig, respectively) be the index in the sorted order of the first horizontal
line after P (Q, respectively) with the convention that if P has the highest y-
coordinate, then ip = n. Similarly, we define jp and jg in reference to vertical lines.
Assume ip < iq and jp < Jjo—the other three cases are symmetnc Constraint (3)
gives 127 Y ip Yap, +Y00 i a—k > 1, and therefore Zk_z L, > 3or Sie j; ag, >
1 . Assume the first inequality holds, the other case being symmetnc Then there is
a multiple of 0.5 in the interval (Zk:l oL, , Zk=1 aLk] and therefore one of the
lines L;,, Lip41,...,Lig—1 is selected by the algorithm and separates P and Q.

Since LP < OPT, the approximation ratio is at most 2. It is easy to see that
this algorithm works for the rectangle stabbing problem as well, with the same ratio
of 2.

We finally remark that both algorithms can be used to solve the colored version
of the separation problem in the plane with the same ratio of 2: write constraints
only for the set of bichromatic edges, i.e., those whose endpoints have different
colors.

2.1. Integrality ratio

The main result of this section is that the integrality ratio is exactly 2. As a warm-
up we show (Lemma 1) an infinite sequence of simple examples in the plane having
integrality ratio 3/2, for both the rectangle stabbing and the separation problem.
It is enough to do this for SEPARATION (as a special case of the rectangle stabbing
problem).

Lemma 1. The integrality ratio of the linear program is 3/2 on a set of examples
with arbitrarily large optimal values of the integer program.

Proof. Consider the five-point configuration in Fig. 1 (left), that we call an X.

The points can be fractionally separated with weights 1/2 on each of the four
canonical lines shown in the figure. Thus LP < 4/2 = 2. Using the trivial lower
bound (1) (or by inspection) gives OPT > [2v/5] —2 = 3, and it is easy to see that
this is tight.

By repeating the X diagonally k times, such that two adjacent X’s share one
point, we obtain a configuration with 4k + 1 points, as in Fig. 1 (right), for k¥ = 3.
One can think of the points as being placed on an (infinite) chessboard. Observe
that in each row or column of the board the points have increasing z- and y-
coordinates. Again, the points can be fractionally separated with weights 1/2 on
each of the canonical lines shown in the figure. Thus LP < 4k/2 = 2k. To separate
the points of each X requires three lines, and since the points have increasing z-
and y-coordinates in each row or column, no line used to separate one X is of any
help in separating other X’s; thus OPT > 3k. It is easy to see that 3k lines are
also enough, and the lemma follows. O
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Fig. 1. A class of examples with integrality ratio 3/2.

We now state and prove the main result of this section. Let Z7 p be the optimal
value of the LP relaxation and Zjp be the optimal value of the IP. Note that the
proof of Theorem 1 gives Zjp < 27} p. We have

Theorem 2. For every € > 0 there is an instance of SEPARATION such that Zip >
(2—€)Z; p, where both Z} p and Zip can be arbitrarily large.

Proof. Let ¢ > 0. Using a probabilistic argument we show that there are in-
stances such that

1
Zip <2+ 59 (5)

Zip> (4~ 56 (©)

for all sufficiently large integers ¢. As 4— e > (2—€)(2+3¢), and since Z}p < 27} p,
the two inequalities above imply the theorem.

We fix a parameter £ > 200/e. Let ¢ > k be sufficiently large. Our instances
have points in [0, g+1) x [0, g+1). There are n = [¢°/*] pairs of points P; and Q; (so
the number of points is 2n, not n) obtained as follows: independently and uniformly
at random pick zp, and yp, to be multiples of 1/k in [0,q). Add 1/(2k) + 1/(3ki)
to both zp, and yp,. Also, for every ¢, independently choose I; uniformly at random
from the set {1/k,2/k,...,(k—1)/k} and set g, = zp, +1; and yo, = yp, + (1 —1;).
It is easy to see that no two points have the same z-coordinate and no two points
have the same y-coordinate.

Now we construct the LP solution. Sort the 2n points by z-coordinate; they
define exactly 2n — 1 canonical vertical lines. If two consecutive points in the sorted
order above have z-coordinates z' < z, the variable in the LP associated with
vertical line L has value ay, = z" — '. Similarly, using y-coordinates, we define a
fraction «y, for every canonical horizontal line L.
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In addition, we sometimes increase the fractions to give a valid LP solution as
described below. Notice that the initial values of ay ensure that the separating
constraints (3) are satisfied for u,v if there is an i € {1,2,...,n} such that u =
Pi,v = Q;. However, for points from different pairs some constraints might be
violated. Call a pair (4, j) of indexes, 1 < ¢ < j < n, bad if any of ||P; — Pj|1, || P —
Qjll1, 11Qi — Pjl1, [|Qs — Qjl1 is less than 1. For every bad pair of indexes (i, j),
we increase ay, to 1 for three vertical lines. These three vertical lines are chosen
from £ such that any two horizontally consecutive points from {P;, Q;, P;,Q;} are
separated by one of the three lines, and we obtain a valid LP solution.

Thus the value of the LP solution is at most 2(g+ 1) + 3b, where b is the number
of bad pairs of indexes. The probability of a pair’s being bad is at most (5 - 5)/q?,
as the pair can be bad only if ||zp,| — |zp; || < 2 and ||yp.] — lyp; || < 2, and
the random variables |zp, |, |yp, ], lzp;], and |yp,;] are independent and uniformly
distributed in the set {0,1,...,¢—1}. Thus the expected value of b satisfies E[b] <
n?25/¢q* < 50¢*/2. By Markov’s inequality, with probability at least 1/2 we have
b < 100¢'/? and in this case we have Z} p < 2q + 2+ 3(100¢'/2) = 2q + 2 + 300,/.
For sufficiently large ¢ we have 2 + 300,/g < (¢/2)q, and then Equation (5) holds
with probability at least 1/2.

Consider now the potential integral solutions (a potential integral solution is a
set of horizontal and vertical lines) of value (i.e., size) less than (4 — }€)q. In fact,
we consider only integral solutions required to separate only P; from Q; for every
t=1,2,...,q, and show that there is a configuration of points from our probability
space such that all such potential integral solutions fail to separate at least one
such pair (P;, Q;).

We can assume without loss of generality that the lines used by such integral
solutions have coordinates j - (1/k), j being a positive integer, since any line with
coordinate in the interval ((j —1)-(1/k),j-(1/k)) can be replaced by one with
coordinate j-(1/k) and all the previously separated pairs (P;, Q;) are still separated.
Moreover we assume j < kg, as cutting at a coordinate larger than ¢ is not needed,
since the largest possible zp, or yp, is (gk — 1)/k + 1/(2k) + 1/(3k) < q. There are
in total at most 2kg such lines (both vertical and horizontal), and thus the total
number of potential integer solutions of value at most 4¢ — 1 is at most

49—1 2kq
> ( . ) < 4q(2kq)"77 < (4kq)*T = et (4k0), (7)
=0

Let us fix now a potential integral solution of size r < (4 — 2e)g. If r < g, we
add more lines (at coordinates j-(1/k) for some j’s) to the solution until 7 > q. Let
r1 be the number of vertical lines and 7, be the number of horizontal lines used;
r =11 + 2. Together with the four lines, horizontal and vertical, at coordinates 0
and g, the lines of the solution divide the [0, ¢] % [0, ¢] square into rectangles. Let ¢
be the number of rectangles and note that

(r+2)% (8)

N

t<(r+1D(r2+1) <
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where the second inequality follows from (r; + 1)+ (ro +1) =7 + 2.

Label the rectangles R;, R, ..., R; in some order. For 1 = 1,2,...,t, let w; be
the (horizontal) width of R; and h; be its (vertical) height. The sum of the @;’s
and h;’s is at least g(r — 2), as every line used (except those at coordinate ¢) by the
integral solution has length ¢ and contributes to either the w;’s of the rectangles
above it, if the line is horizontal, or to the h;’s of the rectangles to its right, if the
line is vertical.

Let w; = kw; € N and h; = kh; € N. Thus

t t

S(hi+w) =k (ki + @) > Klg(r — 2)]. 9)

i=1 i=1

We will need later the following inequality:
1
ka(r —2) = (k+ 1) 7(r +2)° > ar, (10)

which we now prove for sufficiently large ¢ based on the facts that £ > 200/¢ and
g <1 < (4 - }e)q. Indeed, (10) is equivalent to

gkr —2k—1) > (k+1)i~(r+2)2. (11)

As k > 4 and r > ¢ can be assumed to be large, and using r < (4 — %e)q, it is
enough to show that

r(kr =2k —7) > (1 —¢/8)(k+1)(r + 2)°. (12)

On the left-hand side of (12) the coefficient of 72 is k —1 > k+ 1 — ke/8 — ¢/8 =
(k +1)(1 — ¢/8) (using k > 200/¢), which is the coefficient of 72 on the right-hand
side. Thus for sufficiently large r, (12) holds, implying (10).

Claim 2.1. The total number of possible placements for the pair (Pj,Q;) in which
both P; and Q; are in the same rectangle R; for some i € {1,2,...,t} is at least
S (wi+hi —k—1).

Proof. It is enough to consider only rectangles satisfying w; + h; > k + 1, and
from now one we discuss only such rectangles. Every i such that w; + h; > k+1
can be classified into exactly one of these four sets:

A: Those with 1 < w; < kand 1 < h; <k.
B: Those with w; > k and h; < k.
C: Those with w; < k and h; > k.
D: Those with w; > k and h; > k.

Note that rectangles R; with w; = 1 and w; + h; > k+ 1 are in C and rectangles
with h; =1 and w; + h; > k+ 1 are in B.

First fix a rectangle R; from A. Recall that w; + h; > k+ 1, 1 < w; < k,
and 1 < h; < k, i.e., the width @; and height h; of R; are at most 1. (Informally,
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this is the “general” case.) We claim that at least w; + h; — k — 1 of the potential
placements of (P}, Q;) result in both P;’s and Q;’s being in R;. Indeed, place P; in
the 1/k x 1/k square sharing the lower left corner with the lower left corner of R;
(such a placement exists for every j since 1/(2k) 4+ 1/(3kj) < 1/k). Then @Q; with
zQ; = zp; + (w; — 1)/k and yg,; = yp; + (k — (w; — 1))/k (indeed (zq, — zp;) +
(yg; —yp;) = 1) is also in R;, as h; — 1 > k — (w; — 1). Furthermore, P; and Q;
are in the rectangle as well if they are both translated upward by a/k, where a is
any integer in the set {1,2,...,w; + h; —k —2},asa+ [k — (w; = 1)] < h; — 1. In
total, we have found w; + h; — k — 1 placements.

Consider two consecutive vertical lines of the potential integral solution at hor-
izontal distance greater than 1, and let G be the set of i € AUBUC U D such that
R; borders both these lines. All such rectangles R; have the same w; > k, which
we denote by w. All such rectangles are in B U D. Let Zg be the set of potential
placements of (P;,Q;) with P; and Q; both inside some rectangle R; with i € G
and having zq, — zp; = (k- 1)/k.

We now prove that there are at least ) ;. (hi — 1)(w; — k4 1) such placements
of (P;,Q;). Indeed, if the lower left corner of R; has coordinates (z;,y;), then for
all integers a, b satisfying 0 < a < w; —k+1 and 0 < b < h; — 1, placing P; in the
1/k x 1/k square with lower left corner at (z; + a/k,y; + b/k) results in P;’s and
Q;’s being in the rectangle R;, as the reader can verify by adding and comparing
numbers. It follows that [Zg| > > ;cq(hi — 1)(w — k + 1).

Using ;. hi = kg, we have |Zg| > (w — k + 1)(kg — |G]). As this potential
solution has r < (4 — %e)q < 4q — 1 horizontal lines, |G| < 4q, and therefore
|Zg] > (w—k+1)g(k—4) = (w—k—1)g(k —4) +2q(k — 4). Since k > 8, we obtain

|Za| > 4q(w—k—1)+kg> (w=k—1D|G|+ D> _hi=) (wi+hi —k—1). (13)
i€G i€G

Notice that each rectangle of B U D appears for some two consecutive vertical
lines at horizontal distance exceeding 1.

Consider now two consecutive horizontal lines of the potential integral solution
at vertical distance greater than 1, and let G be the set of i € AUBUC U D such
that R; borders both these lines. All such rectangles R; have the same h; > k, which
we denote by h. All such rectangles are in CUD. Let Zg be the the set of potential
placements of (P;,Q;) with P; and @Q; both inside some rectangle R; with ¢ € G
and having yq, —yp, = (k — 1)/k. Analogously to the above argument, we have

1Za| > > (wi+ b — k= 1). (14)
€@
Notice that each rectangle of C'UD appears for some two consecutive horizontal
lines at vertical distance exceeding 1.
For rectangles in D, the two sets of placements given above are disjoint: in the
first set, g, — zp; = (k —1)/k, and in the second, z¢, — zp, = 1/k.
Since each rectangle of B appears exactly once for some consecutive vertical pair
of lines, each rectangle of C' appears exactly once for some consecutive horizontal
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pair of lines, and each rectangle of D appears exactly once in both, the total number
of placements we have found is at least

D (wi+hi—k—1)+

i€A
Swithi—k-1)+> (withi—k—1)+2> (wi+h—k-1)|,
i€B ieC i€D
thus completing the proof of Claim 2.1 (since ) ;. p(w;i + hi — k —1) > 0). O

We continue with the proof of Theorem 2. From the previous claim, the total
number of placements for the pair (Pj,Q;), where both P; and @; are in the same
rectangle of the potential integral solution, is at least

t
Y (withi —k—1) > kq(r —2) — (k + 1)t

> kar =) = (b4 D) [0+ 2] 20 2

where the first inequality follows from Equation (9), the second inequality follows
from Equation (8), the third inequality from Equation (10), and the last inequality
from our assumption that r > gq.

As there are in total (kq)(kq)(k — 1) < k3¢® ways to select the coordinates of
the pair (P;,Q;), we obtain that the probability that P;,Q; are separated by the
given collection of lines, i.e., do not fall together in the same rectangle given by the
potential integral solution, is at most 1 — ¢2/(k3¢%) < e~'/¥°. Given that there are
n = [¢°/*] pairs, we obtain that the probability that this fixed integral solution is
valid for a set of points, i.e., P; is separated from @Q; for all j, is at most

(e V/Fyn = = Ta/ "1/ (15)

Given that the total number of potential integral solutions is bounded by
ea!n(4k9) (Equation (7)), for ¢ so large that ¢°/*/k® > 4qin(4kq) + 1, the prob-
ability that some pair is not separated by any potential integral solution of cost at
most (4 — 1€)q is strictly bigger than 1— 1/e. Hence, the probability that (6) holds
exceeds 1 — 1/e. We showed earlier that (5) holds with probability at least 1/2.
Because (1—1/e)+1/2 > 1, it follows that there is a placement of points satisfying
both (5) and (6).

3. Hardness Results
In this section we prove:
Theorem 3. SEPARATION is APX-hard, that is, assuming P # NP, there is an

absolute constant es > 0 such that no polynomial-time algorithm has approximation
ratio at most 1 + €g.
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The decision version of SEPARATION has been shown to be NP-complete.® Our
APX-hardness reduction is similar to that in Ref. [5] and is inspired by the reduction
from Proposition 6.2 of Ref. [8], which uses the satisfiability problem 3-SAT.

The mazimum 3-satisfiability problem MAX-3SAT is that of finding, in a 3CNF
Boolean formula (in which each clause has exactly three literals), a truth value
assignment which satisfies the maximum number of clauses. For each fixed k, define
Max-3SAT(k) to be the restriction of MAX-3SAT to Boolean formulae in which each
variable occurs at most &k times. Theorem 4 below is immediate from Theorems 29.7,
29.11, and Corollary 29.8 in Ref. [13].

Theorem 4 (Ref. [13]). Assuming P # NP, there is an absolute constant epr > 0
such that no polynomial time algorithm for MAX-3SAT(5) satisfies at least (1 —
em)m clauses for every formula ¢ with m clauses which is satisfiable.

To prove the approximation hardness stated in Theorem 3, we use the following
reduction from MAX-3SAT(k) to SEPARATION. The input to 3-SAT is a Boolean
formula ¢ in 3CNF form. Let ¢ have n variables and m clauses. The reduction
constructs a set Py of 4n + 12m + 2 points in the plane, no two of which have
the same z- or y-coordinate. The construction is illustrated in Figure 2 for ¢ =
t+y+2)(T+7+2)(T+7Y+7Z). Here n = 4 and m = 3; the three clauses are
denoted Cl, Cs, Cs.

There are three types of points: variable points, clause points and control points.
The control points come in pairs, have increasing y-coordinates when scanned from
left to right, and are denoted qi, . . ., qant2m+2- For 1 < i < n+1, the pair g2;_1, ¢2;
“forces” a horizontal line (which is more useful than the vertical line separating the
pair), and for n + 2 < i < 2n+ m + 1, the pair go;-1,q2; “forces” a vertical line.
We call these lines grid lines, and we denote by h the lowest horizontal grid line.
There are three variable points for each variable, and nine clause points for each
clause. The nine points of each clause C' are made up of six points that appear in
the rows of the variables that appear in C' (above the horizontal line h), and three
points below h. We have a pair of points in the grid cell given by each variable-
clause pair (z,C), where the variable z appears in C; thus six points per clause
above line h. The three points of each variable require two separating lines. Every
optimal solution can be assumed to use exactly one vertical line, as one vertical
line also separates two control points and a second one is not needed. The choice
of the higher (resp., lower) horizontal line corresponds to setting the variable to
true (resp., false). If z appears unnegated in C, the pair of points is separated by
the higher horizontal line, whereas if  appears negated in C, the pair of points is
separated by the lower horizontal line.

The first 4n + 4 control points form spine 1, and the 3m clause points below

h form spine 2. The segments go;11q2i+2, for © = 0,...,2n + m, are called control
edges. The segments g2;g2i+1, fori =1,...,n,and i =n+2,...,2n+ 1, are called
variable edges. The segments ¢2;qoi+1, for i = 2n+2,...,2n + m, are called clause

edges. We denote by a,b, c,d the four canonical vertical lines which could be used
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Fig. 2. The point set Py corresponding to ¢ = (t+y+%)(Z+7+2)(T+7F+72). The solution (i.e. set
of separating lines) corresponding to the truth assignment t = 1,z = 1,y = 0,z = 1 is shown;
the grid lines are solid, while the other separating lines are dashed. (The colors of the points
only have meaning when discussing the colored version of the separation problem at the end of
Sec. 3.)

to separate the three pairs and the triplet of a clause. They are shown in the figure
for the clause Cs.

Clearly, constructing P, can be accomplished in polynomial time. We first de-
termine the number of lines used when the input Boolean formula is satisfiable.

Claim 3.1. If ¢ is satisfiable then Py can be separated using 4n + 3m + 2 lines.

Proof. Let 7 be an assignment which satisfies ¢. Use the (n + 1) + (n + 1) +
(m—1) = 2n+m+1 grid lines to separate the pairs of control points g2;_1, g2;; add
a vertical line to separate gan+292n+3.- We have thus used 2n+m+2 lines so far. If a
variable is set true by 7, use the higher of the two horizontal lines for that variable;
otherwise use the lower horizontal line. For each variable, add a vertical line which
separates the remaining pair of points. These lines also cut all variable edges. Thus,
using 2n more lines, all variable points are separated; this yields 4n + m + 2 lines
so far.
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Note now that for each clause, at least one of the three pairs of points above
h must be already separated, otherwise by construction, all literals in that clause
would be set to false and the clause would not be satisfied, a contradiction. One can
now check that the remaining two pairs of points above h and the three points below
h can be separated using exactly two vertical lines per clause (at least two such
lines are necessary to separate the three points below h). Overall, 4dn+m+2+2m =
4n 4+ 3m + 2 lines have been used. ]

Note that separating the points of spine 1 requires at least 4n+3 lines. Similarly,
at least 3m — 1 lines are necessary to separate the points of spine 2. Moreover, none
of these lines can be shared, so at least 4n + 3m + 2 lines are necessary to separate
Py. Denote by p = 4n + 3m + 2 the exact number of lines needed to separate Py,
when ¢ is satisfiable.

Assume that there exists a polynomial-time approximation algorithm for SEPA-
RATION with performance ratio at most 1+€ for some € > 0. The assumed algorithm
gives a solution (set of lines) S having at most (1 + €)p lines. We first transform S
to S’ without any increase in cost, where S’ is a solution that fulfills the following
two conditions: (z) S’ contains the grid lines, and (i) S’ uses exactly two vertical
lines per clause (i.e., for separating its nine clause points).

To achieve (7), switch any of the vertical lines cutting the first n+1 control edges
to horizontal ones, and any of the horizontal lines cutting the other n + m control
edges to vertical ones; note that the result is still a solution (i.e., separates the
points). Similarly, switch any of the vertical lines cutting the first n variable edges
to horizontal ones, and any of the horizontal lines cutting the remaining variable
edges to vertical ones; note that the result is still a solution in which the triplet of
each variable is separated by at least one horizontal and at least one vertical line.

We further transform the solution so as to satisfy (iz). We observe that at most
ep clauses are separated vertically by three vertical lines (while each other uses
exactly two vertical lines, the minimum required), otherwise one could separate Py
with fewer than p lines, a contradiction. For each such clause, switch one of the
three vertical lines to horizontal, so that the resulting three lines still separate the
nine points of the clause. There are four cases, two of which are symmetric. If the
three lines are a, b, ¢, switch b; if the three lines are a, b, d, switch b, etc.

We call S’ the resulting solution. Note that at most ep variables are cut twice
horizontally, as p lines are needed just to separate the points of the two spines, and
a second horizontal line cutting a variable does not help with separating the points
of the spines. We now construct a truth value assignment 7: for each variable, if it is
cut horizontally by the higher line, set it to true, if it is cut horizontally by the lower
line, set it to false, and if it is cut horizontally by two lines set it arbitrarily (say, to
true). The at-most-ep variables that are cut twice horizontally appear in at most 5ep
clauses (cf. the definition of MAX-3SAT(5)). Let C be any of the remaining clauses.
We claim that 7 makes C true. One of the three pairs of points of C above h must
be separated by a horizontal line (otherwise only two vertical lines would separate
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the three pairs above h, a contradiction). By construction, the literal corresponding
to the pair of points that is cut horizontally is true, hence C' is true.

Therefore, the number of satisfied clauses is at least m—>5ep. Since we can assume
that m > n/3 + 1, we have m — 5ep > m — 5¢(12m + 3m) = (1 — 75¢)m. Setting
em = 75¢, the result follows from Theorem 4. That is, we can take es = epr/75,
and the proof of Theorem 3 is complete.

We can use the same reduction to show that the separation problem with colored
points is APX-hard. The points are colored as in Figure 2. The 2-coloring used has
the property that all the edges specified in the above proof are bichromatic. We
thus have

Corollary 1. The separation problem in the plane with colored points is APX-hard.

4. Remarks
4.1. A dual problem

Our covering LP for the separation problem suggests the following dual edge packing
problem. Given a (non-necessarily planar) graph G = (V, E) with a straight-line
embedding in the plane, find a maximum set of independent edges of G, where two
edges are said to be independent if they cannot be stabbed by a common vertical
or horizontal line. A 4-approximation algorithm of Bar-Yehuda et al.? for finding a
maximum independent set of rectangles in the plane—where two rectangles are said
to be independent if they cannot be stabbed by a common vertical or horizontal
line—gives a 4-approximation for this problem, by considering the set of rectangles
{Ryy | wv € E}. They use rounding of the dual of the LP, and thus their result
combined with Ref. [7] shows that the optimal rectangle packing and the optimal
rectangle stabbing are within a constant factor of each other.

Even the simple case when E(G) is the edge set of a convex polygon P does
not seem trivial. A 1/2-approximation algorithm is the following: divide P into its
upper and lower chains, U and L, respectively. Find an optimal solution for both
U and L, and choose the one with the larger number of edges. Finding an optimal
solution for U (or L) amounts to finding a maximal independent set of intervals on
a line, and it is thus solvable in polynomial time. It is easy to see that the result is
at least half of the optimal.

4.2. Higher dimensions

Following Ref. [7], it is now straightforward to observe that both our algorithms
yield a d-approximation for the separation problem in R?. This holds for the colored
version as well. One has to replace 1/2 with 1/d in the corresponding places. In
the first phase, after solving the linear program, edges are classified into d types,
depending on the coordinate for which the sum of fractional weights is at least 1/d.
In the second phase, the first algorithm solves d linear programs (as in Ref. [7]),
or solves d interval stabbing problems on the line (as in Section 2). The second
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algorithm cycles through all coordinates and, for each coordinate, goes through
the hyperplanes in order, and chooses a hyperplane if and only if the running sum
interval for that hyperplane includes a multiple of 1/d.

4.3. Concluding remarks

Several interesting questions regarding the separation problem in the plane remain,
such as: Is it possible to improve the approximation ratio? Do special cases, e.g.,
points in convex position, admit better approximation ratios, or even exact solu-
tions? One can potentially strengthen the LP by adding constraints. For example, a
“stronger” LP could also require that each triplet of points is fractionally separated
by at least 2. However, our probabilistic construction from Theorem 2 has also a ra-
tio of at least 2 — € for the stronger LP. In the proof, one must define the “bad” pairs
of indexes to be those with any of ||P; — Pj||1,||P; — Qjl|1, [|Q: — Pjl|1, [|Qi — Q;l]1
less than 2. This will increase only by a constant factor the expected number of
bad pairs, and the proof with the adjusted constants can be used.
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