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Abstract The paper addresses the relay node placement problem in two-tiered wireless

sensor networks. Given a set of sensor nodes in Euclidean plane, our objective is to place

minimum number of relay nodes to forward data packets from sensor nodes to the sink, such

that: 1) the network is connected, 2) the network is 2-connected. For case one, we propose a

(6 + ε)-approximation algorithm for any ε >0 with polynomial running time when ε is fixed.

For case two, we propose two approximation algorithms with (24 + ε) and (6/T + 12 + ε),

respectively, where T is the ratio of the number of relay nodes placed in case one to the

number of sensors. We further extend the results to the cases where communication radiuses

of sensor nodes and relay nodes are different from each other.

Keywords Sensor networks . Fault-tolerant . Relay node placement . Approximation

algorithms

1. Introduction and related work

Sensor network is a new family of wireless networks which is different from traditional

wireless networks like cellular networks and Mobile Ad-hoc Networks (MANETs). A sensor

network is composed of a large number of sensor nodes that can be deployed on the ground, in

the air, in vehicles, inside buildings or even on bodies. Sensor networks are widely deployed
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in environment monitoring, biomedical observation, surveillance, security and so on Chong

and Kumar (2003), Akyildiz et al., (2002).

The traffic in wireless sensor networks is of a statistical nature as compared to the multi-

media rich data in cellular networks and MANETs. Furthermore, unlike the cellular networks

and MANETs where there is unlimited energy supply in base stations or by batteries that can

be replaced as needed, nodes in sensor networks have very limited energy supply and their

batteries cannot usually be replaced due to special environments (Rentala et al., xxxx). Since

sensors’ energy cannot support long range communication to reach a sink which is generally

far away from the data source, multi-hop wireless connectivity is required to forward data to

the remote sink. It is a key problem regarding how to gather data packets from sensor nodes

to the sink in applications.

The two-tiered network architecture was proposed in Gupta and Younis (2003a, 2003b).

They employed relay nodes as gateways that are more powerful than sensor nodes in terms of

energy storage, computing and communication capabilities. The network is partitioned into

a set of clusters. The relay nodes act as cluster heads and they are connected with each other

to perform the data forwarding task. (In the following, relay node, gateway and cluster-head

refer to the same thing in the two-tiered sensor networks.) Each cluster has only one cluster-

head and each sensor belongs to at least one cluster, such that sensor nodes can switch to

backup cluster heads when current communication fails. In each cluster, sensor nodes collect

raw data and report to the cluster-head. The cluster-head analyzes the raw data, extracts useful

information, and then generates outgoing packets with much smaller total size to the sink

through multi-hop path (Pan et al., 2003a, 2003b). Topology control in two-tiered wireless

sensor networks has been discussed in Pan et al. (2003b). The objective of the paper is to

maximize the topological lifetime of the network, where the topological lifetime is defined as

the lifetime of a network with regard to a given mission and the placement of sensor nodes,

application nodes and base-stations. The authors proposed approaches to maximize the topo-

logical lifetime by arranging the base-stations location and the relay allocation. Similar to

the works in Gupta and Younis (2003a, 2003b), two-tiered wireless sensor network architec-

ture was proposed in Kottapalli et al. (2003) as a solution for structural health monitoring.

The communication protocols used in the lower-tier (in clusters) and in the upper-tier (inter-

clusters) were both described. Analysis in Kottapalli et al. (2003) showed that the maximum

total number of sensor nodes that a network can handle is about 2000∼4000 under current

wireless data rates of 10Mbps.

Since a large number of nodes cooperate with each other in the network, fault-tolerance is

one of important issues in wireless sensor networks. Communication faults in sensor networks

can be caused by hardware damage, energy depletion, harsh environment conditions and

malicious attacks. A fault in transmitter can cause the relay nodes to stop transmitting tasks

to the sensors as well as relaying the data to the sink. Data sent by the sensors will be lost if

the receiver of a relay node fails. So, a communication link failure to a sensor requires the

sensor to be re-allocated to other cluster-head within communication range. If faults occur

in inter-cluster-heads, the two corresponding cluster-head should be re-connected by another

multi-hop path. That is, in order to handle general communication faults, there should be at

least two node-disjoint paths between each pair of relay nodes in the network.

An intuitive objective of relay node placement is to place the minimum number of relay

nodes to make the network connected, such that each sensor is covered by some relay nodes

and all data packets can be gathered to the sink through these relay nodes (node a is covered

by node b means that node a is within the communication range of node b). E. Biagioni et al.
investigated placement problem of sensors in Biagioni and Sasaki (2003). Three parameters

were considered in the placement of sensors: resilience to single node failure, coverage
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of area of interest and minimizing the number of sensors. The authors showed that the

choice of placement depends on sampling distance and communication radius. Different

from the placement of sensor nodes, the placement problem of relay nodes in two-tiered

sensor networks was discussed in Hao et al. (2004). The problem is to place the minimum

number of relay nodes such that 1) each sensor node can communicate with at least two relay

nodes and 2) the network of the relay nodes is 2-connected. An approximation algorithm

was proposed and ratio was proved within O(Dlogn), where n is the number of sensor nodes

in the network, and D the diameter of the network. Obviously, the proposed ratio is not a

constant, which is a function of the size of input.

In this paper, we propose three approximation algorithms for the minimum relay-node

placement problem (MRP in short). We discuss two cases of the MRP: 1) the network is

connected and 2) the network is 2-connected. We proposed a (6 + ε)-approximation algorithm

for case one. We further proposed a (24 + ε)-approximation algorithm and a (6/T + 12 + ε)-

approximation algorithm for case two, respectively, for any ε > 0, where T is the ratio of

the number of relay nodes placed to the number of sensors in case one.

2. System model and problem specification

We first describe the MRP in two tiered wireless sensor networks, and then give a formal

formulation of the problem.

Given a set of sensor nodes that are randomly distributed in a region and their location,

in order to gather data packets from sensor nodes to the sink, we need to place some relay

nodes to forward the data packets, such that each sensor node is covered by at least one relay

node. Since sensor nodes have limited computing and communication capability, especially

very limited energy resource, we assume that sensor nodes only report data packets to relay

nodes within their communication range but not participate in data forwarding. That is, there

is no direct link between any pair of sensor nodes. We further assume that all sensor nodes

and all relay nodes have the same communication radius. The problem is to

1) place the minimum number of relay nodes in the region, such that the network (including

sensor nodes and relay nodes) is connected;

2) place the minimum number of relay nodes in the region, such that there exists at least two

node-disjoint paths between any pair of nodes (sensor nodes or relay nodes). That is, the

whole network is 2-connected.

There are several major differences between our problem and the problem addressed in

Hao et al. (2004). Firstly, the network of sensor nodes was assumed to be 2-connected in

Hao et al. (2004), we do not need this assumption. Secondly, sensor nodes also participate

forwarding of data packets in Hao et al. (2004) while they are not in our problem. Note that

sensor nodes have very limited energy resource and computing capability. If they participate in

data forwarding, it may cause early depletion of sensors, and make the network disconnected.

Finally, placement of relay nodes in Hao et al. (2004) only makes the network of relay nodes

2-connected, but we make the whole network 2-connected. Since our problem is more general

than that in Hao et al. (2004), our solution is also applicable to the problem in Hao et al.

(2004).

Now, we formally give the definition of the MRP problem.

Definition. Minimum Relay-node Placement problem (MRP): Given a set of sensor nodes S
in a region and a uniform communication radius d, the problem is to place a set of relay nodes
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R, such that 1) the whole network G is connected and 2) G is 2-connected. The objective of

the problem is to:

Minimize|R|,

where |R| denotes the number of relay nodes in R.

We first give a (6 + ε)-approximation solution for the case one of MRP (MRP-1 in short),

and then propose a (24 + ε)-approximation and a (6/T + 12 + ε)-approximation solutions

for MRP-2 by adding some relay nodes to make the network 2-connected.

3. Solution to MRP-1

Our solution is based on two foundational works. The first is the covering with disks problem.

Given a set of points in the plane, the problem is to identify the minimum set of disks with

prescribed radius to cover all the points. In Hochbaum and Maass (1985), a polynomial time

approximation scheme (PTAS) for this problem was proposed. That is, for any given error

ε ≥ 0, the ratio of the solution found by the scheme to the optimal solution is not larger than

(1 + ε). The running time is polynomial when ε is fixed. We call the scheme min-disk-cover
scheme. Different from covering with disks problem, MRP requires not only covering all

sensor nodes, but also requires connection of the network, such that data packets can be

gathered to the sink.

The other problem is the Steiner tree problem with minimum number of Steiner points
(STP-MSP). Given a set of terminals in the Euclidean plane, the problem is to find a Steiner

tree such that each edge in the tree has length at most d and the number of Steiner points

is minimized. Du et al. proposed a 2.5-approximation algorithm for the STP-MSP (Du et

al. 2001). We call the algorithm STP-MSP algorithm. In our problem, sensor nodes do not

relay messages for other nodes. So STP-MSP algorithm cannot be used to MRP problem

directly.

Based on the min-disk-cover scheme and the STP-MSP algorithm, our solution for MRP-1

is composed in two steps. In step one, for any give error ε ≥ 0, we use min-disk-cover scheme

to find a set of relay nodes that cover all sensor nodes. Note that the network of these relay

nodes may not be connected if distance between them is larger than d. In order to connect

these relay nodes, more relay nodes are needed. In step two, we run the STP-MSP algorithm

and place additional relay nodes to get a Steiner tree. Finally, the Steiner tree and the

sensor nodes form the connected network we desire. The algorithm is formally presented as

follows.

(6 + ε)-approximation algorithm for MRP-1
Input: S, a set of sensor nodes with locations.

ε, any given error which is larger than 0.

d, the communication radius of sensor nodes and relay nodes.

Output: G, a connected network including sensor nodes and relay nodes.

1. Place a set of relay nodes R1 by using the min-disk-cover scheme, such that for ∀s ∈
S, ∃ r ∈ R1, and r covers s.

2. Place a set of additional relay nodes R2 by using R1 as an input of STP-MSP and

running the STP-MSP algorithm, such that G is connected.

3. Output G and the position of each relay node.
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Fig. 1 Communication circle of
sensor s

Let R denote the set of all relay nodes we place in the above algorithm. Without loss of

generality, we assume R1 ∩ R2 = �, i.e., R = R1 + R2 (or R1 ∪ R2). Then the total number

of relay nodes we place is |R1 + R2|. In the following theorem, we show that the algorithm

for MRP-1 has ratio (6 + ε) for any ε > 0.

Theorem 1. Let R be our solution to MRP-1 and Ropt be the optimal solution to MRP-1.
Then |R|

|Ropt | ≤ (6 + ε).

Proof: Let Ropt
1 denote the minimum set of relay nodes that cover S. Obviously, we have

|Ropt
1 | ≤ |Ropt|. Since R1 is the solution of PTAS to covering with disks problem, we

have

|R1| ≤ (1 + ε)|Ropt
1 |. (1)

Let Ropt
2 denote the minimum set of relay nodes that makes R1 connected. Since R2 is the

2.5-approximation solution to STP-MSP problem, we have

|R2| ≤ 2.5|Ropt
2 |. (2)

In order to find out the relationship between Ropt
2 and Ropt, we consider each relay node

r ∈ R1. For any r ∈ R1, there must be at least one sensor node s which is covered by r
(Otherwise, we can remove this useless r from R1). We consider the communication circle

of s (See Fig.1). Note that for ∀s ∈ S, ∃ v ∈ Ropt, such that both r and v can cover s. That is,

relay nodes r and v are both in the communication circle of sensor s. So we have d(r ,v) ≤ 2d,

where d(r ,v) is the Euclidean distance between r and v. If we place another relay node u in the

middle point of line v → r , we have d(u,v) = d(r ,u) ≤ d. That is, node v can communicate

with node r via node u.

For any relay node r ∈ R1, we place another relay node according to the above description,

such that Ropt can communicate with every relay node in R1. That is, Ropt and these added

relay nodes make R1 connected. Note that Ropt
2 is the minimum set of relay nodes that makes

R1 connected, and the number of added relay nodes is equal to |R1|. So we have

|Ropt
2 | ≤ |Ropt| + |R1|. (3)
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According to (1),(2),(3), the total number of relay nodes placed by the algorithm to

MRP-1 is:

|R1| + |R2| ≤ (1 + ε)|Ropt
1 | + 2.5(|Ropt| + |R1|)

≤ (1 + ε)|Ropt
1 | + 2.5(|Ropt| + (1 + ε)|Ropt|)

≤ 6|Ropt| + 3.5ε|Ropt|

Note that ε is an arbitrary positive number.

That is,
|R|

|Ropt| = |R1| + |R2|
|Ropt| ≤ (6 + ε).

�

4. Solution to MRP-2

MRP-2 requires the network is 2-connected. It means that when one relay node fails, the

network is still connected and data packet gathering operation can be carried out.

Let T denote the ratio of the number of relay nodes place in MRP-1 to the number of

sensors. That is,T = |R|
|S| . We first propose a (24 + ε)-approximation algorithm for general

case of MRP-2, then improve the ratio to ( 6
T + 12 + ε) if T >1/2.

4.1. (24 + ε)-approximation

Based on the solution R to MRP-1, our main idea is to add some backup nodes to the

communication circle of each relay node r in R, such that the whole network is 2-connected.

We first study the features these backup nodes should have. For ∀r ∈ R,

C1. The backup nodes should cover all nodes in the communication circle of r . The first

purpose of this condition is to make any node in the circle can switch to one of the

backup nodes when r is out of service. The other purpose is to make at least one of

the backup nodes communicate with outside when r is out of service. The first is for

collecting messages purpose and the second is for forwarding messages purpose.

C2. The backup nodes in the communication circle of r should communicate with each other.

This is because that condition 1 only guarantees there exist at least one backup node

can communicate with outside, but some other nodes in the circle may not communicate

with outside if r is out of service. That is, the purpose of this condition is to make all

nodes in the circle can communicate with outside.

We call the above two features 2-connected conditions. Are these two conditions suffi-

cient? The following lemma shows that for each relay node r in R, if the backup nodes in the

communication circle of r satisfy the 2-connected conditions, the network is 2-connected.

Lemma 1. Let R
′
denote the set of backup nodes in all communication circles of R. For ∀r ∈

R, if the backup nodes in the communication circle of r satisfy the 2-connected conditions,
then the resulting network S + R + R

′
is 2-connected.

Proof: For ∀v ∈ S + R + R
′
, we assume v fails. There are three cases: v ∈ S, v ∈ R or

v ∈ R
′
. We prove the lemma case by case.
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Fig. 2 Adding backup nodes to
the communication circle of r

If v ∈ S, note that sensor nodes only report data packets to its cluster-head but not partic-

ipate the data forwarding task, the network is connected.

If v ∈ R
′
, since R is the solution to MRP-1 and the network S + R is connected, there is

no need to use backup nodes in this case.

If v ∈ R, according to the 2-connected conditions, all nodes in the communication circle

of v are covered by backup nodes and can send their data packets to the outside. So the

network is connected.

Since v is an arbitrary node inS + R + R
′
, Lemma 1 is proved. �

According to Lemma 1, our algorithm is to add minimum number of backup nodes to

the communication circle of each r ∈ R, such that the backup nodes satisfy the 2-connected

conditions. For the condition C1, obviously, adding two backup nodes can not cover

the communication circle of r . That is, at least three backup nodes are needed in each

communication circle. Based on R, our algorithm for MRP-2 is to add three backup nodes

in the communication circle of each relay node in R, such that the network is 2-connected.

The algorithm is formally presented as follows.

(24 + ε)-approximation algorithm for MRP-2
Input: S, a set of sensor nodes with locations.

ε, any given error which is larger than 0.

d, the communication radius of sensor nodes and relay nodes.

Output: G, a 2-connected network including sensor nodes and relay nodes.

1. Run the (6 + ε)-approximation algorithm for MRP-1 and get a set of relay nodes R,

such that S + R is connected.

2. Add three backup nodes in the communication circle of each r ∈ R. The three backup

nodes are placed on the three vertices of an equilateral triangle with length d . The center

of the equilateral triangle is in r . See Fig. 2, where a,b,c are backup nodes. We denote

the set of all backup nodes in this step byR
′
.

3. Output G and positions of relay nodes in R + R
′

The following theorem claims the correctness of the algorithm.

Theorem 2. The set of backup nodes R
′
in the algorithm satisfy the 2-connected conditions

and the final network S + R + R
′
is 2-connected.

Proof: In the following proof, we use circle x denote the communication circle of relay node

x . We will prove the 2-connected conditions are satisfied one by one. �
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First, it is not difficult to see that the three new circles can cover the circle r . That is to say,

any node in circle r is also in one of the three circles. See Fig. 2, since triangle abc is an

equilateral triangle, we have

∠ear = ∠eac + ∠car = 60◦ + 30◦ = 90◦,

d(e, a) = d,

then d(e, r ) > d.

It means that the circle a crosses the circle c on point e, which is outside the circle r . Likewise,

points of intersection of circle r and circle b, circle c are both outside the circle r . So all

nodes in the circle r can be covered by the union of circle a, circle b and circle c. The first

condition C1 is satisfied.

Second, since edge length of each equilateral triangle is d , which equals the communication

radius of relay nodes. That means the three backup nodes can communicate with each other.

It satisfies the condition C2.

Associated with the Lemma 1, Theorem 2 is proved.

The following theorem states that the ratio of the above algorithm to MRP-2 is at most

(24 + ε).

Theorem 3. Let R + R′: our solution to MRP-2, R2−opt : the optimal solution to MRP-2, we

have |R+R
′ |

|R2−opt | ≤ (24 + ε).

Proof: Note that for each communication circle of relay node in R, we add three relay

nodes. We have |R ′ | = 3|R|. So the total number of relay nodes we used to make the network

2-connected is: �

|R + R
′ | = |R| + |R ′ | = 4|R|

≤ 4(6 + ε)|Ropt|
≤ 4(6 + ε)|R2−opt |
= 24|R2−opt | + 4ε|R2−opt |

Note that ε is an arbitrary positive number.

That is,
|R + R

′ |
|R2−opt | ≤ (24 + ε)

In the next section, we will show that the ratio can be improved if T > 1/2.

4.2. (6/T +12 + ε)-approximation

In this section, we show that if T > 1/2, a better result which has ratio (6/T + 12 + ε) can

be achieved by directly adding some relay nodes to the connected tree which is induced by

the solution to MRP-1.

After placing relay nodes by running the algorithm for MRP-1, the network is formed as

a connected tree. Our main idea is to place backup nodes on each link of the tree to make the

network 2-connected. The algorithm is formally presented as follows.
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Fig. 3 Adding backup nodes a,
b on the links of v

( 6
T + 12 + ε)-approximation algorithm for MRP-2

Input: S, a set of sensor nodes with locations.

ε, any given error which is larger than 0.

d, the communication radius of sensor nodes and relay nodes.

Output: G, a 2-connected network including sensor nodes and relay nodes.

1. get a set of relay nodes R by running the (6 + ε)-approximation algorithm for MRP-1,

such that the tree S + R is connected.

2. Add one backup node in the middle point of each link in the tree. We denote the set of

all backup nodes in this step byR
′′
.

3. Output G and positions of relay nodes in R + R
′′
.

The following theorem claims the correctness of the algorithm.

Theorem 4. The final network S + R + R
′
is 2-connected.

Proof: To prove the theorem, we need to prove for ∀v ∈ S + R + R
′
, if v fails, the resulting

network is still connected. There are three cases: v ∈ S, v ∈ R or v ∈ R
′′
. We prove the

theorem case by case. �

If v ∈ S, note that sensor nodes only report data packets to its cluster-head but not partic-

ipate the data forwarding task, the network is still connected.

If v ∈ R
′′
, since R is the solution to MRP-1 and the network S + R is connected, there is

no need to use backup relay nodes in this case.

If v ∈ R, since v is a relay node, without loss of generality, we assume v forwards data

packets from node u to node w (see Fig. 3, a,b are backup nodes). According to the above

approximation algorithm, we have

d(a, v) = d(b, v) = 1

2
d,

then d(a, b) ≤ d.

That is, the backup nodes a and b can communicate with each other. So the data packets

can be forwarded to w via u → a → b → w. The network is connected.

Since v is an arbitrary node inS + R + R
′
, Theorem 4 is proved.

The following theorem states that the ratio of the solution to MRP-2 can be improved to

( 6
T + 12 + ε) if T > 1/2.

Theorem 5. Let R + R
′′
: our solution to MRP-2, R2−opt : the optimal solution to MRP-2,

we have |R+R
′′ |

|R2−opt | ≤ ( 6
T + 12 + ε).

Proof: Since we place a node on each link in the tree which contains |R + S| nodes in total,

we have
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Fig. 4 Communication circles of
sensor node s, relay nodes u
and v

|R ′′ | ≤ |R + S| ≤ |R| + |R|/T,

then |R + R
′′ | ≤ 2|R| + |R|/T ≤

(
2 + 1

T

)
×

(
6 + ε

)
|Ropt|

≤
(

6

T
+ 12 +

(
2 + 1

T

)
ε

)
|R2−opt |.

Note that ε is an arbitrary positive number.

That is,
|R + R

′′ |
|R2−opt | ≤

(
6

T
+ 12 + ε

)
. �

5. Extension results

In the above discussions, we assume that sensor nodes and relay nodes have the same trans-

mission radius. This assumption may not be true in cases where the communication capability

of sensor nodes is very limited. In general speaking, the transmission radius of sensor nodes

is much smaller than that of relay nodes. Let d and D denote the transmission radius of sensor

nodes and relay nodes, respectively. We can prove that the algorithm proposed in section 3

performs ratio (1 + 2.5
⌈

2d
D

⌉ + ε) to this extension of MRP-1.

Theorem 6. Let R be our solution to extension of MRP-1, and Ropt be the optimal solution
to extension of MRP-1. Then |R|

|Ropt | ≤ (1 + 2.5
⌈

2d
D

⌉ + ε).

Proof: Similar to the proof of Theorem 1, we have

|R1| ≤ (1 + ε)|Ropt
1 |, |R2| ≤ 2.5|Ropt

2 |.

We consider each relay node r ∈ R1. For any r ∈ R1, there must be at least one sensor

node s which is covered by r (Otherwise, we can remove this useless r from R1). We consider

the communication circle of s (See Fig. 4). Note that for ∀s ∈ S, ∃ v ∈ Ropt, such that v can

cover s. That is, relay nodes r and v are both in the communication circle of sensor s. Thus,

d(r, v) ≤ 2d. So we place at most (
⌈

2d
D

⌉ −1) relay nodes on the line vr, such that node v

can communicate with node r via these (
⌈

2d
D

⌉ −1) relay nodes. That is, Ropt and these added
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relay nodes make R1 connected. Note that Ropt
2 is the minimum set of relay nodes that makes

R1 connected, and the number of added relay nodes is equal to (
⌈

2d
D

⌉ −1)|R1|. So we have

|Ropt
2 | ≤ |Ropt| +

(⌈
2d

D

⌉
− 1

)
|R1|.

Thus,

|R1| + |R2| ≤ (1 + ε)|Ropt
1 | + 2.5

(
|Ropt| +

(⌈
2d

D

⌉
− 1

)
R1|

)
.

≤
((

1 + 2.5

⌈
2d

D

⌉)
+ ε

)
|Ropt|.

Similarly, the algorithm proposed in section 4.1 performs ratio ((4 + 10
⌈

2d
D

⌉
) + ε) for

the extension of MRP-2. �

6. Conclusions

The fault-tolerant relay node placement problem in two-tiered wireless sensor networks was

studied in the paper. A sensor network in two-tiered architecture consists of sensor nodes that

collect information from the area of interest, and relay nodes that forward information to the

sink. Given a set of sensor nodes in a Euclidean plane, we assume communication radiuses

of sensor nodes and relay nodes are same. Our objective is to place minimum number of

relay nodes, such that 1) the network is connected and 2) the network is 2-connected.

We proposed an approximation algorithm for the problem one. Given an arbitrary positive

number ε, the approximation of the algorithm is bounded by (6 + ε) and the running time

is polynomial when ε is fixed. For the problem two, we proposed a (24 + ε)-approximation

algorithm. We further showed the approximation can be improved to (6/T + 12 + ε) for

the case T > 1/2, where T is the ratio of the number of relay nodes placed in problem

one to the number of sensors. For the cases where communication radiuses of sensor nodes

and relay nodes are different, we further extended the results to ((1 + 2.5
⌈

2d
D

⌉
) + ε) and

((4 + 10
⌈

2d
D

⌉
) + ε) for MRP-1 and MRP-2, respectively, where d is the transmission radius

of sensor nodes and D is the transmission radius of relay nodes.
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