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Abstract Minimum m-connected k-dominating set problem is as follows: Given a
graph G = (V ,E) and two natural numbers m and k, find a subset S ⊆ V of minimal
size such that every vertex in V \ S is adjacent to at least k vertices in S and the in-
duced graph of S is m-connected. In this paper we study this problem with unit disc
graphs and small m, which is motivated by the design of fault-tolerant virtual back-
bone for wireless sensor networks. We propose two approximation algorithms with
constant performance ratios for m ≤ 2. We also discuss how to design approximation
algorithms for the problem with arbitrarily large m.

Keywords k-dominating set · m-connectivity · Unit disc graph · Approximation
algorithm · Wireless sensor networks

1 Introduction

A Wireless Sensor Network (WSN) consists of wireless nodes (transceivers) with-
out any underlying physical infrastructure. In order to enable data transmission in
such networks, all the wireless nodes need to frequently flooding control messages
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thus causing a lot of redundancy, contentions and collisions. To support various net-
work functions such as multi-hop communication and area monitoring, some wireless
nodes are selected to form a virtual backbone, which could be considered and used
as the routing infrastructure of WSNs. In many existing schemes (e.g., Alzoubi et al.
2002) virtual backbone nodes form a Connected Dominating Set (CDS) of the WSN.
With virtual backbones, routing messages are only exchanged between the backbone
nodes, instead of being broadcasted to all the nodes. Prior work (e.g., Sinha et al.
2001) has demonstrated that virtual backbones could dramatically reduce routing
overhead.

In WSNs, a node may fail due to accidental damage or energy depletion and a
wireless link may fade away during node movement. Thus it is desirable to have
several sensors monitor the same target, and let each sensor report via different routes
to avoid losing an important event. Hence, how to construct a fault tolerant virtual
backbone that continues to function when some nodes break down is an important
research problem (Bredin et al. 2005; Koskinen et al. 2005; Kuhn et al. 2006).

As usual, we assume in this paper that all nodes have the same transmission range
(scaled to 1). Under such an assumption, a WSN can be modeled as a Unit Disc
Graph (UDG) that consists of all nodes in the WSN and there exists an edge between
two nodes if the distance between them is at most 1. Fault tolerant virtual backbone
problem can be formalized as a combinatorial optimization problem: Given a UDG
G = (V ,E) and two nonnegative integers m and k, find a subset of nodes S ⊆ V of
minimum size that satisfies the following two conditions:

(i) each node u in V \ S is dominated by at least k nodes in S;
(ii) S is m-connected, that is, there are at least m disjoint paths between each pair of

nodes in S, i.e., G is still connected by removing any m − 1 nodes.

Every node in S is called a backbone node and every set S satisfying (i–ii) is
called m-connected k-dominating set, which is simply denoted by (m, k)-CDS, and
the problem is called minimum m-connected k-dominating set problem (in UDGs).

In this paper, we will first study the minimum m-connected k-dominating set prob-
lem for m = 1,2, which is important for fault tolerant virtual backbone problem in
WSNs. Clearly, when m = 1 and k = 1 the problem is reduced to minimum connected
dominating set problem, which is a well-known NP-hard problem (Garey and John-
son 1979). We will propose two centralized approximation algorithms for computing
m-connected k-dominating sets for m = 1,2. We will also discuss how to design
approximation algorithms for the problem with arbitrarily large 3 ≤ m ≤ k.

The remainder of this paper is organized as follows: We first give some definitions
in Sect. 2 and then present some related works in Sect. 3. In Sect. 4 we present
our algorithms with theoretical analysis on guaranteed performances. In Sect. 5 we
conclude the paper with remarks on future work.

2 Preliminaries

Let G be a graph with vertex-set V (G) and edge-set E(G). For any vertex v ∈ V ,
the neighborhood of v is defined by N(v) ≡ {u ∈ V (G) : uv ∈ E(G)} and the closed
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neighborhood of v is defined by N [v] ≡ {u ∈ V (G) : uv ∈ E(G)} ∪ {v}, i.e., N [v] =
N(v) ∪ {v}. The minimum degree of vertices in V (G) is denoted by δ(G).

A subset U ⊆ V is called an independent set of G if all vertices in U are pairwise
non-adjacent, and it is further called a Maximal Independent Set (MIS) if each vertex
V \ U is adjacent to at least one vertex in U .

A dominating set of a graph G = (V ,E) is a subset S ⊆ V such that each vertex
in V \S is adjacent to at least one vertex in S. A dominating set is called a Connected
Dominating Set (CDS) if it also induces a connected subgraph. A k-dominating set
S ⊆ V of G is a set of vertices such that each vertex u ∈ V is either in S or has at
least k neighbors in S.

A cut-vertex of a connected graph G is a vertex v such that the graph G \ {v} is
disconnected. A block is a maximal connected subgraph having no cut-vertex (so a
graph is a block if and only if it is either 2-connected or equal to K1 or K2). The
block-cut-vertex graph of G is a graph H where V (H) consists of all cut-vertices of
G and all blocks of G, with a cut-vertex v adjacent to a block G0 if v is a vertex of
G0. The block-cut-vertex graph is always a forest. A 2-connected graph is a graph
without cut-vertices. Clearly, a block with more than three vertices is a 2-connected
component. A leaf block of a connected graph G is a block with only one cut-vertex.

3 Related work

Lots of efforts have been made to design approximation algorithms for the minimum
connected dominating set problem in UDGs. Wan et al. (2004) proposed a two-phase
distributed algorithm for the problem that has an approximation performance ratio
of 8. The algorithm first constructs a spanning tree, and then at the first phase, each
vertex in a tree is examined to find an MIS and all the vertices in the MIS are colored
black. At the second phase, more vertices are added (color blue) to connect those
black vertices. Recently, Li et al. (2005) proposed another two-phase distributed al-
gorithm with a better approximation ratio of (4.8 + ln 5). At the first phase, an MIS is
computed as in (Wan et al. 2004). At the second phase, based on the property that any
vertex in a UDG is adjacent to at most 5 independent vertices, a Steiner tree algorithm
is used to connect vertices in the MIS.

Dai and Wu (2006) addressed the problem of constructing k-connected k-
dominating virtual backbones. They proposed three localized algorithms, two of
them, k-gossip algorithm and color-based (k, k)-CDS algorithm, are random ones,
while the other, k-coverage condition algorithm, is a deterministic one. In k-gossip
algorithm, each vertex decides its own backbone status with a probability based on the
network size, deploying area size, transmission range, and k. In color-based (k, k)-
CDS algorithm, each vertex randomly selects one of the k colors such that the net-
work is divided into k-disjoint subsets based on vertex colors. For each subset of
vertices, a CDS is constructed and (k, k)-CDS is the union of k CDS’s. k-coverage
condition algorithm only works in very dense networks and no upper bound on the
size of returned backbone is obtained.

More recently, Wang et al. (2007) proposed a 64-approximation algorithm for
the minimum (2,1)-CDS problem. The basic idea of this centralized algorithm is
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as follows: (1) Construct a small-sized CDS C as a starting point of the backbone;
(2) iteratively augment the backbone by adding new vertices to connect a leaf block
in the backbone to other block (or blocks); (3) the augmentation process stops when
all backbone nodes are in the same block, i.e., the backbone nodes are 2-connected.
The augmentation process stops in at most |C|−1 steps and each step at most 8 nodes
are added.

Most recently, in work (Shang et al. 2007) we studied minimum m-connected k-
tuple dominating set problem. Give a graph G = (V ,E), a subset S ⊆ V is called a
m-connected k-tuple dominating set if it satisfies condition (ii) and every vertex in
V is dominated by at least k vertices in S. Clearly, m-connected k-tuple domination
is stronger than m-connected k-domination in the sense that every m-connected k-
tuple dominating set is a m-connected k-dominating set. We proposed two algorithms
for the cases of m = 1 and m = 2 with performance ratios less than (6 + ln 5

2 (k −
1) + 5

k
) and (6 + ln 5

2 (k − 1) + 25
k

), respectively. In this paper we will show that the
m-connected k-domination version admits approximation algorithms with smaller
performance ratios.

4 Approximation algorithms

We first prove the following lemma, which will be used in our performance analysis
of proposed algorithms.

Lemma 1 Let G = (V ,E) be a UDG and a natural number k such that δ(G) ≥
k − 1. Let D∗

k be a minimum k-dominating set of G and S an MIS of G. Then |S| ≤
max{ 5

k
,1}|D∗

k |.

Proof Let S0 = S ∩ D∗
k , X = S \ S0 and Y = D∗

k \ S0. It is clear that X and Y are
two disjoint subsets. For all u ∈ X, let cu = |N(u) ∩ Y |. As D∗

k is a k-dominating set
of G, cu ≥ k for each u ∈ X, and then we have

∑
u∈X cu ≥ k|X|. For each v ∈ Y , let

dv = |N(v) ∩ X|. As G is a UDG, for each v ∈ Y , there are at most 5 independent
vertices in its neighborhood and dv ≤ 5. Hence we have 5|Y | ≥ ∑

v∈Y dv . Moreover,
∑

u∈X cu = |{uv ∈ E : u ∈ X,v ∈ Y }| = ∑
v∈Y dv , we have |X| ≤ 5

k
|Y |. Thus |S| =

|X| + |S0| ≤ 5
k
|D∗

k \ S0| + |S0| ≤ max{ 5
k
,1}|D∗

k |, which proves the lemma. �

Note that in the above lemma, if S is an independent set of G satisfying that
S ∩ D∗

k = ∅, then we have |S| ≤ 5
k
|D∗

k |.

4.1 Algorithm for Computing (1, k)-CDS

To design an approximation algorithm for minimum m-connected k-dominating set
problem for m ≥ 1 and k ≥ 2, in this subsection we will start with the simplest case
of m = 1. The basic idea of our algorithm for this case is as follows: First produce a
CDS using method proposed in (Wan et al. 2004), and then sequentially produce an
MIS (k − 1) times such that all vertices in V \ DA are k-dominated by vertices in set
DA. The algorithm is more formally presented as follows.
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Algorithm A for computing (1, k)-CDS

1. Choose an MIS I1 of G and a set C such that I1 ∪ C is a CDS.
2. for i := 2 to k

3. Construct an MIS Ii in G \ I1 ∪ · · · ∪ Ii−1
4. end-for
5. DA := I1 ∪ · · · ∪ Ik ∪ C

6. return DA

Theorem 1 Algorithm A is an approximation algorithm for the minimum connected
k-dominating set problem with performance ratios (5 + 5

k
) for k ≤ 5 and 7 for k > 5.

Proof Suppose that Algorithm A, given graph G = (V ,E) and a natural number
k ≥ 1, returns DA = I1 ∪ · · · ∪ Ik ∪ C. Let D∗

k be a minimum k-dominating set of
G. We will show that DA is a connected k-dominating set of G. For all u ∈ G \ DA,
at the i-th iteration, u is not in Ii and thus it is dominated by one vertex of Ii . At the
end, u is dominated by at least k different vertices of I1 ∪ · · · ∪ Ik . By the first step
of Algorithm A, C ∪ I1 is a CDS and thus I1 ∪ · · · ∪ Ik ∪ C is connected. Therefore,
DA is a connected k-dominating set of G.

Let Si = Ii ∩ D∗
k for i = 1,2, . . . , k. By the rule of Algorithm A, we have each

Ii \ Si is an independent set and (Ii \ Si) ∩ D∗
k = ∅. Thus it follows from the remark

given after Lemma 1 that |Ii \ Si | ≤ 5
k
|D∗

k \ Si |. To estimate the approximation ratio,
we have

|I1 ∪ · · · ∪ Ik| =
k∑

i=1

|Si | +
k∑

i=1

|Ii \ Si | ≤
k∑

i=1

|Si | +
k∑

i=1

5

k
|D∗

k \ Si |

=
(

1 − 5

k

) k∑

i=1

|Si | + 5|D∗
k |.

Moreover,
∑k

i=1 |Si | ≤ |D∗
k |. Hence we have |I1 ∪ · · · ∪ Ik| ≤ 5|D∗

k | for k ≤ 5 and
|I1 ∪ · · · ∪ Ik| ≤ 6|D∗

k | for k > 5.
In the end, let C be the set constructed from the first step of Algorithm A. By

using the argument for the proof of Lemma 10 in (Wan et al. 2004), we can deduce
|C| ≤ |I1|. Hence it follows from Lemma 1 that |C| ≤ max{ 5

k
,1}|D∗

k |, and the size
of connected k-dominating set DA is upper bounded by (5 + 5

k
)|D∗

k | for k ≤ 5 and
7|D∗

k | for k > 5. The size of the optimal solution of connected k-dominating set is at
least |D∗

k |. The proof is then finished. �

4.2 Algorithm for computing (2, k)-CDS

In this subsection, we will study how to design an approximation algorithm for the
minimum two-connected k-dominating set problem using Algorithm A for comput-
ing (1, k)-CDS. Similar to the method proposed in (Wang et al. 2007), our algorithm
essentially consists of following four steps:
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Step 1. Apply Algorithm A to construct a connected k-dominating set DA.
Step 2. Compute all the blocks in DA by computing the 2-connected components

through the depth first search.
Step 3. Produce the shortest path in the original graph such that it can connect a leaf

block in DA with other part of DA but does not contain any vertices in DA

except the two endpoints. Then add all intermediate vertices in this path to
DA.

Step 4. Repeat Step 2 and Step 3 until DA is 2-connected.

In Step 2, we can apply the standard algorithm proposed in (Tarjan 1972) to compute
all blocks in DA, denote the number of blocks in DA by ComputeBlock(DA). The
algorithm is more formally presented as follows:

Algorithm B for computing a 2-connected k-dominating set (k ≥ 2)

1. Produce a connected k-dominating set DA using Algorithm A

2. DB := DA and B := ComputeBlocks(DB )
3. while B > 1 do
4. Choose a leaf block L

5. for vertex v ∈ L that is not a cut-vertex do
6. for vertex u ∈ V \ L do
7. Construct G′ from G by deleting all vertices in DB except u and v

8. Puv := shortestPath(G′;v,u) and P := P ∪ Puv

9. end-for
10. end-for
11. Pij := the shortest path in P

12. DB := DB ∪ {the intermediate vertices in Pij }
13. ComputeBlocks(DB )
14. end-while
15. return DB

Lemma 2 For k ≥ 2, at most two new vertices are added into DB at each augmenting
step.

Proof Suppose that L is a leaf block of DB and w is the cut-vertex. Consider two
vertices u and v in DB with u ∈ L \ {w} and v ∈ V \ L, let Puv be the shortest
path that connects u and v. We claim that Puv has at most two intermediate vertices.
Suppose, by contradiction, that Puv contains u,u1, u2, . . . , ul, v, where l ≥ 3. Since
each vertex ui has at least 2 neighbors in DB and N(ui) ∩ DB ⊆ L or N(ui) ∩ DB ⊆
(V \ L) ∪ {w}, N(u1) ∩ DB ⊆ L. If N(u2) ∩ DB ⊆ L, u2 must have a neighbor s in
L\{w}, then the path between sv has a shorter distance than Puv . Otherwise N(u2)∩
DB ⊆ (V \ L) ∪ {w}, u2 must have a neighbor s in V \ L, then the path between us

has a shorter distance than Puv , which contradicts that Puv has the shortest distance.
The proof is then finished. �

Lemma 3 The number of cut-vertices in the connected k-dominating set DA by Al-
gorithm A is no bigger than the number of vertices in I1 ∪ C generated at the first
step of Algorithm A.
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Proof Let S = I1 ∪ C be the connected domination set produced at the first step of
Algorithm A. We will show that no vertex in DA \ S is a cut-vertex. For any two
vertices u,v ∈ S, there is a path Puv between them that contains only vertices in S.
Since any vertex in DA \ S is dominated by at least one vertex in S, Hence, for any
two vertices u,v ∈ DA, there is a path Puv between them that contains only vertices
in S ∪ {u,v}. Hence any vertex in DA \ S is not a cut-vertex. The proof is then
finished. �

Theorem 2 Algorithm B is an approximation algorithm for the minimum 2-
connected k-dominating set problem with performance ratios (5 + 25

k
) for 2 ≤ k ≤ 5

and 11 for k > 5.

Proof Let D∗
k and Dopt be the optimal k-dominating set and 2-connected k-

dominating set, respectively. It is clearly that |D∗
k | ≤ |Dopt |. After S is constructed

in the first step of Algorithm A, by Lemmas 2-3, the algorithm terminates in at
most |C| + |I1| steps, and in each step at most two vertices are added. Since
|C| + |I1| ≤ 2|I1| ≤ 2 max{ 5

k
,1}|D∗

k |, we have |DB | ≤ |DA| + 4 max{ 5
k
,1}|D∗

k |. It
follows from Theorem 1 that |DA| ≤ (5 + 5

k
)|D∗

k | for k ≤ 5 and |DA| ≤ 7|D∗
k | for

k > 5. Hence we obtain |DB | ≤ (5 + 25
k

)|Dopt | for 2 ≤ k ≤ 5 and |DB | ≤ 11|Dopt |
for k > 5, which complete the proof. �

4.3 Algorithm for computing (m, k)-CDS

It turns out very difficult to design an approximation algorithm for the minimum m-
connected k-dominating set problem for general m and k. In this subsection we will
show that how to design such an algorithm assuming that we have algorithm A(m,m)

for the case of m = k. The basic idea of our algorithm for the case of k > m is as
follows: Obtain a (m,m)-CDS by using A(m,m). After that sequentially choose an
MIS (k − m) times. The algorithm is more formally presented as follows.

Algorithm C for computing (m, k)-CDS

1. Produce an (m,m)-CDS S of G using algorithm A(m,m)

2. for i := 1 to k − m

3. Construct an MIS Ii in G \ S ∪ I1 ∪ · · · ∪ Ii−1
4. end-for
5. DC := I1 ∪ · · · ∪ Ik−m ∪ S

6. return DC

Theorem 3 If there exists an α-approximation algorithm A(m,m) for the case of
m = k, then there exists an (α + 6)-approximation algorithm for the case of k > m.

Proof We first show that DC is a (m, k)-CDS of G. For all u ∈ G \ DC , u is not
in S and thus it is dominated by at least m vertices of S. And at the i-th iteration,
u is not in Ii and thus it is dominated by one vertex of Ii for i = 1, . . . , k − m. At
the end, u is dominated by at least k different vertices of DC . To show that DC is
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m-connected, suppose that there exists a set X of (m − 1) vertices in DC such that
the induced subgraph D is disconnected by removing the (m − 1) vertices. For S

is a (m,m)-CDS, S \ X is a connected dominating set. So, DC \ X is connected, a
contradiction! Hence DC is a (m, k)-CDS of G.

Let Dopt be an optimal solution to the minimum m-connected k-dominating set
problem. It is clear that |S| ≤ α|Dopt |, and |I1 ∪ · · · ∪ Ik−m| ≤ 6|Dopt | by using sim-
ilar argument of Theorem 1. This shows that Algorithm C has performance ratio no
bigger than (α + 6) for k > m. The proof is then finished. �

5 Conclusion

In this paper we have studied the minimum m-connected k-dominating set problem
in unit disc graphs. We have proposed two approximation algorithms with constant
performance ratios for m ≤ 2. We are unable to design such an algorithm for m ≥ 3,
but our study shows that we just need to focus on the case of m = k in further study.

As the proposed algorithms in this paper are centralized ones, it is interesting to
know if they can be extended to the distributed and localized methods, which are
more applicable for the data transmission in wireless sensor networks. In addition,
the performance analysis of the proposed algorithms is based on some geometrical
properties of unit disc graphs, so it is a great challenge to study this problem in general
case.
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