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Traditionally the routing in optical parallel interconnect is based on an
embedded virtual topology. However, one important fact that has been
neglected in the past is that the wavelength assignment to transceivers
actually creates additional (logical) links not present in the virtual topology.
Such a side-effect can be utilized to significantly reduce the number of hops
between a pair of processors. This observation leads to the concept of super
topology. This paper considers the hypercube as the embedded virtual topol-
ogy. The ideas contained here are easily applicable to optical parallel inter-
connects employing other virtual topologies as well. We present a general
framework for embedding a regular topology, the structure of the super
topology, the optimal routing algorithm, the distance between any pair of
processors and the diameter in the super topology. � 2001 Academic Press
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1. INTRODUCTION

Optical passive star couplers [6, 8] provide a simple medium to connect pro-
cessors in a parallel system or networking terminals in a local or metropolitan area
network [11]. Figure 1 shows a typical wavelength division multiplexing (WDM)
optical parallel interconnect in which each processor is connected to the star
coupler via a pair of unidirectional fibers. Each processor has a set of transmitters
and receivers. Each transmitter (receiver) is tuned to a specific wavelength channel
from which it transmits (receives) light signals into (from) an optical fiber. The light
signals entering the star coupler are evenly divided among all the output ports. A
transmission from one processor to another processor is accomplished by tuning a
transmitter of the sending processor and a receiver of the receiving processor to the
same wavelength. Transmissions with different wavelength channels can take place

doi:10.1006�jpdc.2001.1750, available online at http:��www.idealibrary.com on

1209 0743-7315�01 �35.00
Copyright � 2001 by Academic Press

All rights of reproduction in any form reserved.



FIG. 1. An N-node optical parallel interconnect based on passive star coupler.

simultaneously. If the number of wavelength channels is less than the number of
transmitters (or receivers), the wavelength channels can be shared among them in
the time-division multiplexing manner, which results in time and wavelength division
multiplexing (TWDM) media access protocols [5, 7].

In conventional parallel interconnect, the interconnection topology is fixed. Thus
it is impossible to reconfigure it to adapt to any specific application or computa-
tion. The optical parallel interconnect based on passive star couplers, on the other
hand, is reconfigurable by tuning the wavelengths channels of the optical trans-
ceivers at each processor. In general, the optical transceivers at each processor can
be chosen to be either slowly tunable or fast tunable. Currently, the fast tunable
transceivers cost much more than the slowly tunable transceivers. Their tuning
speed is still very slow compared to the transmission speed of optical fibers and is
inverse to their tunable range. In addition, they require accurate pretransmission
coordination. Thus one practical and cost-effective alternate is to employ a small
number of less expensive and readily available slowly tunable transceivers at each
processor. This configuration can emulate the tunability of the fast tunable trans-
ceivers without suffering from tuning delay. In addition, a processor can take part
in several communications simultaneously through different transceivers. Such con-
currence cannot be achieved if a single fast tunable transceiver is used. Therefore,
in this paper we consider the optical parallel interconnect based on this configura-
tion.

In general, regular interconnection topologies are adopted for parallel intercon-
nect topologies. In [13], an approach to realizing a regular interconnection topol-
ogy has been proposed in the context of broadcast-and-select passive optical
networks. The idea is to assign wavelengths to the transceivers properly such that
for any link a � b in the regular topology, the node a has a transmitter and the
node b has a receiver that are assigned to the same wavelength. However, the
proposed approach is applicable only when both the number of transmitters and
the number of receivers can divide the nodal degree of the regular topology. Such
constraint leads to the limited flexibility of the system. Moreover, when neither the
number of transmitters and the number of receivers at each node can divide the
other, the proposed approach tends to make use of a small number of wavelengths,
and therefore limits the transmission concurrence of the system. Thus the first con-
tribution of this paper is to develop a general framework to realize a regular
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interconnection topology that is applicable to any number of transmitters and any
number of receivers.

Traditionally, the routing in a parallel optical interconnect or a broadcast-and-
select optical network simply follows the same routing algorithm developed for the
embedded regular interconnection topology [9, 10]. However, we can do better as
the process to realize the regular interconnection topology actually creates some
by-products, the additional (logical) links not present in the original regular inter-
connection topology. Thus the actual logical interconnection pattern contains the
embedded regular interconnection topology as a subgraph and hence is referred to
as super topology. Because of the better connectivity in the super topology, such a
side-effect can be exploited to reduce the distance in terms of the number of hops
among processors. This can be illustrated in the following simple example as
illustrated in Fig. 2. Consider a parallel system of eight processors into which a
3-cube is embedded as follows. Each processor has a single transmitter and a single
receiver. The transmitters at processors 000, 011, 101, 110 and the receivers at
processors 001, 010, 100, 111 are assigned wavelength *0 , while the receivers at
processors 000, 011, 101, 110 and the transmitters at processors 001, 010, 100, 111
are assigned wavelength *1 . Now we consider the routing from processor 000 to
processor 111. If the routing is simply based on the routing in the 3-cube, then the
shortest distance consists of three hops. However, as the transmitter at processor
000 and the receiver at the processor 111 have the same wavelength *0 , the pro-
cessor 000 can talk to the processor 111 directly, and therefore their distance is just
one. A graph theoretic explanation to this improvement is the difference between
the embedded 3-cube and the super topology. Figure 2 shows the super topology of
the above wavelength assignment. In addition to the links in the 3-cube, four addi-
tional links are present in the super topology: the link between 000 and 111, the
link between 001 and 110, the link between 010 and 101, and the link between 100
and 011. It is easy to see that the diameter of this super topology is two, while that
of the 3-cube is three.

The above observation leads to the question of how much better the super
topology is than the original regular interconnection topology in terms of the
network properties such as routing, load balancing, and fault tolerance. The second

FIG. 2. The super topology of the embedded 3-cube.
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contribution of our paper is to characterize various super topologies and develop
their optimal routings in terms of the least number of hops.

The remainder of this paper is arranged as follows. Section 2 presents a general
framework to embed a given regular topology into an optical parallel interconnect
with an arbitrary number of transceivers at each processor. In addition, some key
concepts such as transmission graph and connected components and their relations
to the super topology are analyzed. Section 3 investigates the optimal routing in the
super topology of parallel hypercube interconnect. It presents the structure of the
super topology, the optimal routing algorithm, the distance between any pair of
processors, and the diameter in the super topology. Finally Section 4 concludes the
paper.

2. EMBEDDING OF REGULAR TOPOLOGIES

Let N be the number of processors, indexed by numbers from 0 to N&1. Each
processor is equipped with T transmitters and R receivers. The set of transmitters
at processor a is denoted by

[(a, t) | 0�t<T].

The set of receivers at processor a is denoted by

[(a, r) | 0�r<R];

For each transmitter (a, t), a and t are called its node index and local index, respec-
tively. Similarly, for each receiver (a, r), a and r are also called its node index and
local index respectively. The differences between the transmitter and the receiver are
specified by the context.

Let G be any regular topology on N vertices that is to be realized. If G is an
undirected graph, we treat each edge in it as two unidirectional links. Let d be the
nodal degree of G. In some regular interconnection topologies, d and N are inde-
pendent, while in others d is a function of N. An intrinsic ordering of the outgoing
links and the incoming links at each node is given a priori. In particular, the ith
outgoing (incoming) link at each node is said to be along dimension i for any
0�i<d.

If d is a multiple of both T and R, G can be realized via the uniform consecutive
partition scheme proposed in [13]. However, when d is not a multiple of T or R,
a more delicate approach is needed. To simplify the presentation, we introduce the
following definition. For any positive integer k and any set S, a k-partition of S,
[S0 , S1 , ..., Sk&1], is said to be even if

|Si |={_
|S|
k

|S|
k &

for 0�i<|S| mod k,

for |S| mod k�i<k.
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We begin with the simplest case in which T=R. The d dimensions are evenly and
consecutively partitioned into T groups

[D0 , D1 , ..., DT&1].

The transmitter (a, t) is responsible for the outgoing links at a along dimensions in
Dt , and the receiver (a, r) is responsible for the incoming links at a along dimen-
sions in Dr .

Next, we consider the case that 0<T<R<d. We partition the d dimensions
evenly and consecutively into T groups

[D0 , D1 , ..., DT&1].

Then the transmitter (a, t) will be responsible for the outgoing links at a along
dimensions in Dt . For each 0�t<R mod T, we further partition Dt evenly and
consecutively into W R

TX subgroups

[Dt, 0 , Dt, 1 , ..., Dt, WR�T X&1],

and the receiver (a, t W R
TX+i) is responsible for the incoming links at a along

dimensions in Dt, i for any 0�i<W R
TX. For each R mod T�t<T, Dt is further

evenly and consecutively partitioned into w R
Tx subgroups

[Dt, 0 , Dt, 1 , ..., Dt, wR�Tx&1],

and the receiver (a, R mod T+t w R
Tx+i) is responsible for the incoming links at a

along dimensions in Dt, i for any 0�i<w R
Tx.

When 0<R<T<d, similar partitions can be performed as above. We first
partition the d dimensions evenly and consecutively into R groups

[D0 , D1 , ..., DR&1].

Then the receiver (a, r) will be responsible for the incoming links at a along dimen-
sions in Dr . For each 0�r<T mod R, we further partition Dr evenly and con-
secutively into W T

RX subgroups

[Dr, 0 , Dr, 1 , ..., Dr, WT�RX&1],

and the transmitter (a, t W R
TX+i) is responsible for the outgoing links at a along

dimensions in Dr, i for any 0�i<W T
RX. For each T mod R�r<R, Dr is further

evenly and consecutively partitioned into w T
Rx subgroups

[Dr, 0 , Dr, 1 , ..., Dr, wT�Rx&1],

and the receiver (a, T mod R+r w T
Rx+i) is responsible for the outgoing links at a

along dimensions in Dr, i for any 0�i<w T
Rx.
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The above partition induces a bipartite digraph in which the vertex set consists
of all NT transmitters and all NR receivers, and there is a link from a transmitter
to a receiver if and only if they are responsible for one common link in the inter-
connection topology to be realized. This graph is referred to as the transmission
graph. It is obvious that the number of links in the transmission graph is the same
as that in the interconnection topology. The partition also imposes a constraint
on the wavelength assignment of the transmitters and receivers as explained
below. Since the transmitters and receivers are slowly tunable, once they are tuned
to some particular wavelengths, this configuration will last for a relatively long
time until the next reconfiguration. Consequently, any transmitter (receiver) and
its adjacent receivers (transmitters) in the transmission graph are forced to have the
same wavelength channels of the transmitter (receiver). Therefore any pair of
transceivers must have the same wavelength channel if there is a path between
them assuming the links in the transmission graph are bidirectional. Thus all
transmitters and receivers in the same connected component (ignoring the unidirec-
tional nature of the links) of the transmission graph must have the same wavelength
channel.

The connected components of the transmission graph play a very important role
in the design and analysis of the optical parallel interconnect. First of all, it helps
to choose the right number of transceivers in the most cost-effective way. Note that
the number of connected components in the transmission graph might exceed the
number of available wavelengths. As an extreme example, when T=R=d each
connected component consists of only one link. In this case, one or more connected
components should share a wavelength channel, and the transmission concurrence
is limited by the available wavelengths. Thus to minimize the system cost, we
should select T and R such that the number of connected components is no more
than the number of available wavelengths. So in the remainder of this paper, we
assume that the number of transceivers is selected such that each connected compo-
nent has a unique wavelength. Under this assumption, a wavelength assigned to a
connected component is shared by all transmitters in this connected component in
a time-sharing manner. Thus the number of time slots in a TDM frame of this
wavelength is at least the number of transmitters in the corresponding connected
component. At this point, it is hard to claim whether a higher number of trans-
mitters would lead to higher performance. On one hand, the higher number of trans-
mitters may result in the higher number of connected components. But on the other
hand, the higher number of transmitters may also lead to the higher number of
transmitters in each connected component. Thus to judge the cost�performance
relation, an analytic formula for the total number of time slots required by a pair
of nodes to communicate is needed.

The connected components can also help to determine the super topology of a
wavelength assignment. In general, there is a link from node a to node b in the
super topology if and only if a has a transmitter and b has a receiver which are in
the same connected component. Thus once the structure of connected components
is characterized, we are able to determine the set of neighbors of each processor and
the nodal degree in the super topology. The optimal routing algorithms in the super
topology are then possibly obtained.
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3. OPTIMAL ROUTING IN SUPER TOPOLOGIES OF HYPERCUBES

The n-dimensional hypercube, or n-cube in short, has N=2n nodes which are
labeled by n-bit binary numbers. The nodal degree of n-cube is n. For each node
0�a�N&1, its outgoing links are

a � a�2i, 0�i�n&1

and its incoming links are

a�2i � a, 0�i�n&1,

where the operator � is the parity operator (bit-wise exclusive or). The hypercube
presents several attractive properties, such as simple self-routing, logarithmic
diameter, and high fault-tolerance.

For simplicity of discussion, we first introduce some notations. We use T and R
to denote the number of transmitters and the number of receivers respectively at
each processor. For any S�[0, 1, ..., n&1] and any n-bit binary number a, we use
a|S to denote the |S|-bit binary number consisting of the bits of a at positions in
S and a|S� to denote the (n&|S| )-bit binary number consisting of the bits of a at
positions not in S. For any two processors a and b, we use H(a, b) to denote their
distance in terms of the number of hops in the super topology.

Due to the symmetry of the hypercube, swapping the number of transmitters and
receivers does not change the connectivity of the super topology. Thus we only con-
sider the cases in which the number of transmitters is no more than the number of
receivers. Section 3.1 studies the configuration in which the number of transmitters
is equal to the number of receivers. Section 3.2 studies the configuration in which
the number of transmitters is less than the number of receivers.

3.1. Case 1: T=R

We begin with the simplest case that T=R. The n dimensions are evenly and
consecutively partitioned into T groups

[D0 , D1 , ..., DT&1].

The transmitter (a, t) is responsible for the outgoing links at a along dimensions in
Dt , and the receiver (a, r) is responsible for the incoming links at a along dimen-
sions in Dr . The next lemma characterizes the structure of any connected com-
ponent in the transmission graph.

Lemma 3.1. The connected component containing the transmitter (a, t) consists of
all transmitters

[(b, t) : (a�b)|Dt
is even and (a�b)| Dt

=0]
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and all receivers

[(b, t) : (a�b)|Dt
is odd and (a�b)| Dt

=0].

Proof. Assume that a and b are only different at the dimensions

i1 , i2 , ..., i2k&1 , i2k # Dt .

Then we have the following path in the transmission graph.

(a, t)z

(a�2i1, t)

(a�2i1 �2i2, t)Z

z

(a�2i1 �2i2 �2i3, t)

b

(a�2i1 �2i2 � } } } �2i2k&1�2i2k, t)Z

=(b, t).

Thus the two transmitters (a, t) and (b, t) are in the same subnetwork.
Now we prove the reverse direction. It is easy to prove that in each connected

component all transceivers have the same local indices. Thus if two transceivers
(a, t) and (b, t) are in the same subnetwork, (a�b)|Dt

=0. If two transmitters (a, t)
and (b, t) are in the same connected component, then a and b must have an even
distance. Thus (a�b)|Dt

is even. K

Thus in the super topology, the set of neighbors of node a is

.
T&1

t=0

[b : (a�b)| Dt
is odd and (a�b)|Dt

=0].

So the nodal degree of each node in the super topology is

:
T&1

t=0

2 |Dt| &1=(n mod T ) 2Wn�T X&1+(T&n mod T ) 2wn�T x&1

=(T+n mod T ) 2wn�T x&1.

As

(T+n mod T ) 2wn�T x&1=n

if and only if 2T�n, each node has more neighbors in the super topology if 2T<n
and thus may reduce the distances between some nodes. This will be confirmed later
in this section.

Now consider the optimal routing in the super topology. The routing from
processor a to processor b is equivalent to changing the bits of a to the bits of b
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TABLE 1

Optimal Routing from a to b When T =R

Algorithm Routing1(a, b)
if a=b, stop;
find the smallest t with (a�b) | Dt

{0;
if (a�b) | Dt

is odd then
pick any a$ satisfying that

(a$�b) | Dt
=(a$�a) | Dt

=0 and (a$�a) | Dt
is odd;

a transmits to a$ via transmitter (a, t);
Routing1(a$, b);

else
pick any a$ satisfying that

(a$�a) | Dt
=0 and (a$�a) | Dt

is odd;
pick any a" satisfying that

(a"�b) | Dt
=(a"�a) | Dt

=0;
a transmits to a$ via transmitter (a, t);
a$ transmits to a" via transmitter (a$, t);
Routing1(a", b);

End-Algorithm

according to certain rules. In the super topology with T=R, at each step any odd
number of bits at positions in some Dt are allowed to be reversed simultaneously.
Recall that in the original n-cube, only one bit can be changed at a time. Thus the
distance in terms of the number of steps or hops to change a to b should be poten-
tially smaller.

Note that at each step the reversal of bits at positions in some Dt has no impact
on the bits in other positions. Thus to change the bits of a at positions in Dt to the
bits of b at positions in Dt , we only have to look at (a�b) |Dt

. Suppose that
(a�b) |Dt

=0 and (a�b) |Dt
{0. Then a single hop is needed from processor a to

processor b if (a�b) |Dt
is odd, and two hops are needed if (a�b) | Dt

is even.
Therefore, the routing can be performed sequentially for each 0�t<T. The
optimal routing given in Table 1 is very similar to the well-known Z-routing in the
hypercube. It is given in the recursive format for the simplicity of description.

For any binary number a and any 0�t<T, we define ht (a) as follows.

0, if a |Dt
=0,

ht (a)={1, if a |Dt
{0 and a |Dt

is odd,

2, if a |Dt
{0 and a |Dt

is even.

Then the following lemma gives the distance between any pair of processors in the
super topology.

Lemma 3.2. When T=R, the distance between the processor a and the processor
b in the super topology is

H(a, b)= :
T&1

t=0

ht (a�b).
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In the next lemma we will study the diameter of the super topology.

Lemma 3.3. When T=R, the diameter of the super topology is min[n, 2T].

Proof. From Lemma 3.2, the diameter is equal to the sum of the maxima of
ht (a) over all 0�t<T. It is easy to see that for any 0�t<T, the maxima of ht (a)
is two if |Dt |>1 and is one if |Dt |=1. Therefore, the diameter is at most 2T. If
n�2T, then |Dt |>1 for any 0�t<T. In particular, if a |Dt

=11 for any 0�t<T,
the distance between the processor a and the processor 0 is exactly 2T. So in this
case the diameter is equal to 2T.

Now we assume that n<2T. For any 0�t<n&T, |Dt |=2 and thus the maxima
of ht (a) is two. For any n&T�t<T, |Dt |=1 and thus the maxima of ht (a) is one.
Therefore the diameter is

2(n&T )+(2T&n)=n. K

Lemma 3.3 implies that the fewer the number of transmitters or receivers, the
shorter the diameter. However, the fewer number of transmitters may cause a larger
number of transmitters or receivers in each subnetwork and result in longer channel
access delay. Indeed, the number of time slots required to complete a communica-
tion might be as large as

2 :
T&1

t=0

2 |Dt|&1=(T+n mod T ) 2wn�T x,

which might decrease as T increases.

3.2. Case 2: T<R

Now we consider the configuration with 0<T<R<n. The n dimensions are
evenly and consecutively partitioned into T groups

[D0 , D1 , ..., DT&1].

The transmitter (a, t) is responsible for the outgoing links at a along dimensions in
Dt . For each 0�t<R mod T, Dt is further evenly consecutively partitioned into
W R

TX subgroups

[Dt, 0 , Dt, 1 , ..., Dt, WR�T X&1],

and the receiver (a, t W R
TX+i) is responsible for the incoming links at a along

dimensions in Dt, i for any 0�i<W R
TX. For each R mod T�t<T, Dt is further

evenly and consecutively partitioned into w R
Tx subgroups

[Dt, 0 , Dt, 1 , ..., Dt, wR�T x&1]

and the receiver (a, R mod T+t w R
Tx+i) is responsible for the incoming links at a

along dimensions in Dt, i for any 0�i<w R
Tx.
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The next lemma presents the structure of the connected components.

Lemma 3.4. Suppose that 0<T<R<n. If 0�t<R mod T the connected com-
ponent containing the transmitter (a, t) consists of all transmitters

{(b, t) : (a�b) | Dt
=0, (a�b) |Dt, i

is even for any 0�i<�R
T|=

and all receivers

.
WR�T X&1

i=0
{\b, t �R

T|+i+ : (a�b) |Dt
=0, (a�b) |Dt, i

is odd

and (a�b) |Dt, j
is even for any j{i= .

If R mod T�t<T the connected component containing the transmitter (a, t) consists
of all transmitters

{(b, t) : (a�b) | Dt
=0, (a�b) |Dt, i

is even for any 0�i<\R
T�=

and all receivers

.
wR�T x&1

i=0
{\b, R mod T+t \R

T�+i+ : (a�b) |Dt
=0, (a�b) |Dt, i

is odd

and (a�b) |Dt, j
is even for any j{i= .

Proof. We only consider the case that 0�t<R mod T; the case R mod T
�t<T can be dealt with in the same way. It is easy to verify that in the
connected component containing transmitter (a, t), the local index of any transmitter
must be t and the local index of any receiver must be between t w R

Tx and
(t+1)w R

Tx&1. Let b be any node satisfying that (a�b) |Dt
=0, (a�b) |Dt, i

is even
for any 0�i<W R

TX. Then following the Z-routing in hypercube, we can construct
a path between (a, t) and (b, t) in the transmission graph. Now we prove the
reverse. Assume that (a, t) and (b, t) are in the same connected component. Then
we can prove by induction on the length of the distance between (a, t) and (b, t)
in the transmission graph that (a�b) |Dt

=0, (a�b) | Dt, i
is even for any 0�i<W R

TX.
Thus the set of transmitters in the connected component containing transmitter
(a, t) is exactly

{(b, t) : (a�b) | Dt
=0, (a�b) |Dt, i

is even for any 0�i<�R
T|= .
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The set of receivers in this connected component is consequently

.
WR�T X&1

i=0
{\b, t �R

T|+i+ : (a�b) | Dt
=0, (a�b) | Dt, i

is odd

and (a�b) |Dt, j
is even for any j{i= . K

From the above lemma, the set of neighbors of the node a in the super topology
is

.
R mod T&1

t=0

.
WR�T X&1

i=0

[b : (a�b) |Dt
=0, (a�b) |Dt, i

is odd, (a�b) |Dt, j
is even \j{i]

_ .
T&1

t=R mod T

.
WR�T X&1

i=0

[b : (a�b) |Dt
=0, (a�b) |Dt, i

is odd,

(a�b) |Dt, j
is even \j{i].

So the nodal degree of each processor in the super topology is

:
R mod T&1

t=0
�R

T| 2 |Dt|&WR�T X+ :
T&1

t=R mod T \
R
T� 2 |Dt| &wR�T x

which can be simplified as follows:

v If n mod T=R mod T, then the degree is

R2(n&R)�T.

v If n mod T<R mod T, then the degree is

R2W(n&R)�T X+(n mod T&R mod T ) �R
T| 2w(n&R)�T x.

v If n mod T>R mod T, then the degree is

\R+((n&R) mod T ) \R
T�+ 2w(n&R)�T x.

Now consider the optimal routing in the super topology. We again treat the rout-
ing from a to b as the number of steps to change the bits of a to the bits of b.
For any 0�t<T, any odd number of bits at positions in some Dt, i and any even
number of bits at positions in any Dt, j with j{i are allowed to be reversed
simultaneously within a single step. Note that at each step the reversal of bits at
positions in some Dt has no impact on the bits in other positions. Thus to change
the bits of a at positions in Dt to the bits of b at positions in Dt , we only have
to look at (a�b) |Dt

. Suppose that (a�b) | Dt
=0 and (a�b) |Dt

{0. Then if
(a�b) |Dt, i

is even for all i, two hops are needed from processor a to processor b
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TABLE 2

Optimal Routing from a to b When T <R

Algorithm Routing2(a, b)
if a=b, stop;
find the smallest t with (a�b) | Dt

{0;
find the set S=[i : (a�b) | Dt, i

is odd];
if S=< then

choose any a$ satisfying that
(a$�a) | Dt

=0 abd (a$�a) | Dt, i
is odd for some i;

choose any a" satisfying that
(a"�b) | Dt

=(a"�a) | Dt
=0;

a transmits to a$ via transmitter (a, t);
a$ transmits to a" via transmitter (a$, t);
Routing2(a", b);

else
for each i # S in the increasing order do

if i is the last one in S then
choose any a$ satisfying that

(a$�b) | Dt
=(a$�a) | Dt

=0 and (a$�a) | Dt, i
is odd;

else
choose any a$ satisfying that

(a$�a) | Dt
=0, (a$�a) | Dt, i

is odd and (a$�a) | Dt, i
is even \j{i;

a transmits to a$ via transmitter (a, t);
replace a by a$;

Routing2(a, b);
End-Algorithm

if (a�b) |Dt, i
is even for all i; otherwise, the minimal number of hops required from

processor a to processor b is equal to the number of i 's with odd a |Dt, i
. Such proce-

dure can be repeated sequentially for each 0�t<T. The recursive version of an
optimal routing algorithm is given in Table 2.

For any binary number a and any 0�t<T, we define ht (a) as follows.

0, if a |Dt
=0,

ht (a)={1, if a |Dt
{0 and a | Dt, i

is even for all i,

2, if a |Dt
{0 and a | Dt, i

is odd for some i.

The distance between any pair of processors in the super topology is given in the
following lemma.

Lemma 3.5. When 0<T<R<n, the distance between the processor a and the
processor b in the super topology is

H(a, b)= :
T&1

t=0

ht (a�b).

Next we will study the diameter of the super topology.
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Lemma 3.6. When 0<T<R<n, the diameter of the super topology is min[n,
max[R, 2T]].

Proof. The diameter is equal to the sum of the maxima of ht (a) over all
0�t<T. In general, if the number of receivers at each processor that are respon-
sible for the links along dimensions in Dt is more than one, the maxima of ht (a)
is equal to such number. If there is only one receiver at each processor that is
responsible for the links along dimensions in Dt , then the maximum of ht (a) is
equal to two if |Dt |>1 and equal to one if |Dt |>1.

If R�2T, then W R
TX�w R

Tx�2. Thus for any 0�t<T, there are at least two
receivers that are responsible for the links along dimensions in Dt . This implies that
the maxima of ht (a) is equal to the number of receivers at each processor that are
responsible for the links along dimensions in Dt . So the diameter is equal to R, the
total number of receivers at each processor.

If T<R<2T�n, then W n
TX�w n

Tx�2. For 0�t<R&T, there are exactly two
receivers that are responsible for the links along dimensions in Dt ; hence the max-
ima of ht (a) is 2. For R&T�t<T, |Dt |�2 while there is only one receiver at each
processor that is responsible for the links along dimensions in Dt . So the maxima
of ht (a) is also equal to two. Therefore the diameter is 2T.

If T<R<n<2T, we show that the diameter is n. In fact, for 0�t<R&T,
|Dt |=W n

TX=2 and there are exactly two receivers that are responsible for the
two links along dimensions in Dt . Hence the maxima of ht (a) is 2. For
R&T�t<n&T, |Dt |=W n

TX=2 but there is only one receiver at each processor
that is responsible for the two links along dimensions in Dt . So the maxima of ht (a)
is also equal to two. For N&T�t<T&1, |Dt |=w n

Tx=1 and there is only one
receiver at each processor that is responsible for the link along dimensions in Dt .
So the maximum of ht (a) is equal to one. Therefore the diameter is

2(R&T )+2(n&T )+(2T&n)=n. K

Combining Lemmas 3.3 and 3.6, we have the following theorem.

Theorem 3.1. When T�R, the diameter of the super topology is

min[n, max[R, 2T]].

When T�R, the diameter of the super topology is

min[n, max[T, 2R]].

4. CONCLUSION

In this paper, we first presented a general framework to embed any regular topol-
ogy in the parallel interconnect with an arbitrary number of transceivers at each
processor. We then characterized the structure of the super topology of the parallel
hypercube interconnect by using the structure of the connected components in the
transmission graph. The super topology has richer connectivity than the hypercube
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itself. The optimal routing between any pair of processors in the super topology was
then developed. In addition, the analytic formula for the distance between any pair
of processors was also obtained. Finally, the diameter of the super topology was
calculated.

One possible future work is to develop the optimal routing algorithms in the
super topology for common communication patterns such as all-to-all personalized
communication.

The ideas and approaches contained in this paper are easily applicable to optical
parallel interconnects realizing other topologies such as the de Bruijn graph [12],
the star graph [1], and the rotator graph [4].
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