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Abstract. Broadcasting is a fundamental operation which is frequent in wireless ad hoc networks. A simple broadcasting mechanism,
known as flooding, is to let every node retransmit the message to all its 1-hop neighbors when receiving the first copy of the message.
Despite its simplicity, flooding is very inefficient and can result in high redundancy, contention, and collision. One approach to reducing the
redundancy is to let each node forward the message only to a small subset of 1-hop neighbors that cover all of the node’s 2-hop neighbors. In
this paper we propose two practical heuristics for selecting the minimum number of forwarding neighbors: an O(n log n) time algorithm that
selects at most 6 times more forwarding neighbors than the optimum, and an O(n log2 n) time algorithm with an improved approximation
ratio of 3, where n is the number of 1- and 2-hop neighbors. The best previously known algorithm, due to Bronnimann and Goodrich [2],
guarantees O(1) approximation in O(n3 log n) time.
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1. Introduction

Wireless ad hoc networks can be flexibly and quickly de-
ployed for many applications such as automated battlefield,
search and rescue, and disaster relief. Unlike wired networks
or cellular networks, no wired backbone infrastructure is in-
stalled in wireless ad hoc networks. A communication session
is achieved either through a single-hop radio transmission if
the communication parties are close enough, or through relay-
ing by intermediate nodes otherwise. In this paper, we assume
that all nodes in a wireless ad hoc network are distributed in
a two-dimensional plane and have an equal maximum trans-
mission range of one unit.

Broadcasting is a fundamental networking operation in
wireless ad hoc networks. It is widely and frequently per-
formed in many networking tasks such as paging a particular
host, sending an alarm signal, and finding a route to a partic-
ular host [1,9,17]. A simple broadcasting mechanism, known
as flooding, is to let every node retransmit the message to all
its 1-hop neighbors when receiving the first copy of the mes-
sage. Despite its simplicity, flooding has a serious drawback,
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known as the broadcast storm [16]. First, because the radio
propagation is omnidirectional and a physical location may be
covered by the transmission ranges of several nodes, many re-
transmissions are redundant. Second, heavy contention could
exist because retransmitting nodes are probably close to each
other. Third, collisions are more likely to occur because the
RTS/CTS dialogue is inapplicable and the timing of retrans-
missions is highly correlated.

The following simple technique was recently exploited in
[13] (see also [12]) and [19] to reduce redundant retransmis-
sions: By virtue of beaconing, each node maintains a local
topology of its 2-hop neighborhood, and relays the message
only to a small subset of 1-hop neighbors which cover (in
terms of radio range) all nodes that are two hops away. The
subset of 1-hop neighbors selected by each node is referred
to as forwarding set [19] or multipoint relaying set [12,13].
In this paper we consider the problem of finding a forwarding
set of minimum size.

Minimum Forwarding Set problem. Given a source A, let
D and P be the sets of 1- and 2-hop neighbors of A. Find
a minimum-size subset F of D such that every node in P is
within the coverage area of at least one node from F .

1.1. Previous work

Laouiti et al. [13] see also Jacquet et al. [12]) and Sinha et
al. [19] considered the Minimum Forwarding Set problem as-
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suming no knowledge of the geographic location of the nodes.
In this case, the Minimum Forwarding Set problem is essen-
tially the well-studied Set Cover problem. Not surprisingly,
the heuristic proposed in [13] is a translation of Chvátal’s
greedy algorithm [4] for Set Cover, and thus guarantees an
approximation factor of O(logm), where m is the maximum
neighborhood size. The greedy algorithm iteratively selects
a 1-hop neighbor covering the maximum number of 2-hop
neighbors not yet covered, and terminates when all 2-hop
neighbors have been covered. The greedy algorithm does not
take into account the geometric properties of the Minimum
Forwarding Set problem, and in fact figure 1 shows a family
of instances for which the size of the solution found by the
greedy algorithm is larger than the optimum by a logarithmic
factor.

Under the assumption that the nodes in the wireless net-
work are distributed in a two-dimensional plane and each
node has unit transmission range, the topology of the network
is modeled as a unit-disk graph [5]. In this graph, there is
an edge between two nodes if and only if their distance is at
most one. The Minimum Forwarding Set problem for a given
source node s asks for a minimum size set of 1-hop neighbors
of s dominating 2-hop neighbors of s in the unit-disk graph.
The related Dominating Set problem in unit-disk graphs [5]
asks for a subset of nodes dominating (i.e., adjacent to) all the
other nodes. The Dominating Set problem in unit-disk graphs
is NP-hard [5] but admits a PTAS [11]. The Minimum For-
warding Set problem does not reduce to the Dominating Set
problem in unit-disk graphs since dominators are restricted to
the set of 1-hop neighbors.

The Minimum Forwarding Set problem is also related to
the Unit-Disk Cover problem [10], which asks for the mini-

Figure 1. An instance for which the size of the solution computed by
the greedy algorithm, {g1, . . . , glog k}, is larger than the optimum solution,

{opt1, opt2}, by a logarithmic factor.

mum number of unit disks covering a given set of points in
the plane. The Unit-Disk Cover problem is also NP-hard [5]
and admits a PTAS [10]. Since in the Unit-Disk Cover prob-
lem disk centers can be chosen arbitrarily in the plane, the
algorithms for this problem do not apply to the Minimum For-
warding Set problem where disks must be centered at 1-hop
neighbors only.

The Minimum Forwarding Set problem is a special case of
the NP-hard Disk Cover problem [2], which asks for a mini-
mum size subset of a given set of disks covering a given set
of points. The complexity of Minimum Forwarding Set prob-
lems is not known. A constant-ratio approximation algorithm
for Disk Cover, and therefore also for Minimum Forwarding
Set, was given by Bronnimann and Goodrich [2] However,
their algorithm – which is a special case of a sophisticated
algorithm for spaces with bounded VC-dimension – has im-
practical running-time and its proven approximation ratio is a
very large constant.

1.2. Our contributions

• An exact O(n log2 n) time, and a 2-approximation
O(n logn) time algorithm for the special case of the Min-
imum Forwarding Set problem when all 2-hop neighbors
are in the same quadrant with respect to the source node.

• A 6-approximation algorithm for the Minimum Forward-
ing Set problem running in O(n logn) time, where n is the
total number of 1- and 2-hop neighbors.

• A 3-approximation algorithm for the Minimum Forward-
ing Set problem running in O(n log2 n) time.

• A constant-factor approximation for the Disk Cover prob-
lem with disks of the same radius, based on rounding the
optimal solution of a linear programming relaxation.

A preliminary version of this paper [3] presents the same
results, except that the exact algorithm for the quadrant case
and the 3-approximation algorithm given in [3] run in O(n2)

time.
The paper is organized as follows. In next section we re-

formulate the Minimum Forwarding Set problem in geomet-
ric terms, give a high-level algorithm based on decomposition
into quadrants, and establish basic geometric properties of the
partitioned sets of 1- and 2-hop neighbors. The next three sec-
tions deal with covering 2-hop neighbors in a quadrant: we
first describe an O(n logn) 2-approximation algorithm (sec-
tion 3), then we give an O(n2) exact algorithm (section 4)
and finally describe details of data structures needed to obtain
the O(n log2 n) implementation of the exact algorithm (sec-
tion 5). In section 6 we give an extension of our techniques to
the Disk Cover problem of [2], and conclude in section 7.

2. Partition based algorithm

Throughout this paper a unit disk, or just disk for short, refers
to a closed disk of radius 1. The boundary of a regionR of the
Euclidean plane is denoted by ∂R, e.g., the boundary circle of



SELECTING FORWARDING NEIGHBORS 103

Algorithm 1: 1-Hop Disk Cover

Input: Unit-disk A, set of unit disks D centered inside A, set of points P outside A such that P ⊆⋃{D ∈ D}.
Output: Subset F ⊆ D such that P ⊆⋃{D ∈ F}.
1. Partition the exterior of A into four quadrants Q1–Q4 by two orthogonal lines, not containing points in P ,

through the center of A (see figure 2).
2. For q = 1, . . . , 4, compute a disk cover, Fq , for the points in P ∩Qq .
3. Output F = F1 ∪ F2 ∪ F3 ∪ F4.

a disk D is denoted by ∂D. Under the assumption that each
network node has unit transmission range, we reformulate the
Minimum Forwarding Set problem as follows.

1-Hop Disk Cover problem. Given a unit-disk A, a set D of
unit disks centered inside A, and a set of points P outside A
such that P ⊆ ⋃{D ∈ D}, find a minimum-size subset F of
D such that P ⊆⋃{D ∈ F}.

Our high-level algorithm (algorithm 1) partitions the
points of P according to the four quadrants defined by two
orthogonal lines through the center of A, and then indepen-
dently solves the 1-Hop Disk Cover problem for each quad-
rant. The union of these four disk covers is then a disk cover
for all the points in P . As usual, the approximation ratio of an
algorithm A for a minimization problem � is the supremum,
over all instances of �, of the ratio between the output value
of A and the optimal value. The following theorem relates the
approximation ratio of algorithm 1 to the approximation ratio
that can be guaranteed for the 1-Hop Disk Cover restricted to
points in a single quadrant.

Theorem 1. If disk covers Fq computed in step 2 are within
a factor of α of optimum, then algorithm 1 has an approxima-
tion ratio of at most 3α for the 1-Hop Disk Cover problem.

Proof. Let OPT be the optimal set of disks, and denote by
OPTq , q = 1, 2, 3, 4, the subset of disks in OPT having
centers in the qth sector of disk A. The key observation
is that points in quadrant Qq cannot be covered by disks in
OPTq+2(mod 4). Therefore, points in P ∩Q1 must be covered
by disks in OPT4∪OPT1∪OPT2, and thus, by the assumption
that Fq ’s are within a factor of α of the respective optimum
solutions,

|F1| � α
(|OPT4| + |OPT1| + |OPT2|

)
.

Similarly,

|F2|� α
(|OPT1| + |OPT2| + |OPT3|

)
,

|F3|� α
(|OPT2| + |OPT3| + |OPT4|

)
,

|F4|� α
(|OPT3| + |OPT4| + |OPT1|

)
.

Thus, the output of the algorithm has size

|F1| + |F2| + |F3| + |F4|
� 3α

(|OPT1| + |OPT2| + |OPT3| + |OPT4|
)

= 3α|OPT|. �

Figure 2. The four quadrants in algorithm 1.

We will show that α = 2 can be achieved in O(n logn)
time (see section 3), and α = 1 can be achieved in
O(n log2 n) time (see section 4). Hence, algorithm 1 achieves
an approximation factor of 6, respectively 3, within the same
time bounds. It is natural to ask if these approximation ratios
can be improved by partitioning the set of points according
to k < 4 equal sectors defined by half-lines starting at the
center of A. The proof of theorem 1 can be generalized to
show that partitioning into k sectors gives an approximation
ratio of (�k/2 + 1)α for the 1-Hop Disk Cover problem if
the disk cover for each sector is approximated within a factor
of α. Thus, using decomposition into 3 equal sectors does not
lead to an approximation ratio better than that obtained by
decomposition into quadrants. Improvements using decom-
position into 2 equal sectors are possible provided that we
can find an algorithm for covering the points in a 180◦ sector
with an approximation ratio of less than 3/2. The ideas used
in section 4 to solve exactly the problem for a quadrant do
not extend to 180◦ sectors, since these lack the second of the
essential topological properties established for the quadrants
in the following lemma.

Lemma 2. Let Q be an exterior quadrant of A, J = ∂Q be
its border, and D be a set of disks intersecting the interior
of Q. Then:

(a) For any disk D ∈ D, |∂D ∩ J | = 2.

(b) For any two disks D,D′ ∈ D, |∂D ∩ ∂D′ ∩Q| � 1.

(c) No two disks in D are tangent in Q.

Proof. Without loss of generality, we may assume that the
unit-disk A is centered at the origin and that Q is defined by
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the positive x- and y-axes. Then, the boundary of quadrantQ,
J , consists of the two half-lines from (0, 1) to (0,∞), and
from (1, 0) to (1,∞), together with a quarter-circle of ∂A.
Let a, b, c be the points with coordinates (0, 0), (1, 0), and
(0, 1), respectively. We will use

�
bc to denote the quarter-

circle of A enclosed in J .
(a) Since every D ∈ D has non-empty intersection with

the interior of Q, every circle ∂D has at least two intersection
points with J . The closed simple Jordan curve ∂D and the
infinite simple Jordan curve J must intersect an even number
of times (unless they are tangent, but this cannot happen), and
thus cannot intersect three times. To complete the proof of
part (a) we need to show that ∂D does not intersect J four or
more times.

Let d denote the center of disk D. Then 0 < |da| � 1,
since d is inside A. Note that ∂D can intersect the x-axis in
at most two points, of which only one can have x-coordinate
bigger than 1. Similarly, D can intersect the y-axis in at most
two points, of which only one can have y-coordinate bigger
than 1. Furthermore, D intersects

�
bc at most once. Indeed,

when two unit-circles with centers within distance of at most
1 intersect, the two intersection points are at least 2π/3 apart
on each of the circles, and hence a quarter-circle may contain
only one of them.

(b) Assume, for a contradiction, that D and D′ are two
distinct disks in D that intersect at points h and l, with both
h and l in Q ∪ J . Let d and d ′ be the centers of D and D′,
respectively. We will change the configuration a bit, to obtain
a more extreme case. First, translate d , d ′, h, and l to the right
until d or d ′ hits

�
bc, and assume, by symmetry, that d is on

�
bc. We still have h, l ∈ R ∪ J . Assume also that h is to the
right of l. Now start rotating the rhombus hd ′ld clockwise
around d until h hits either the x-axis or

�
bc, whichever hap-

pens first (see figure 3). This procedure also keeps d ′ inside
the unit-disk A and l in Q. Let m be the point where the line
hd intersects the y-axis. As |d ′h| = |dh| = 1, d ′ must lie
on the same side of line hm as a. As the angle ĥam � π/2,
m must be within the diameter of the unit-disk centered at d

Figure 3. The extreme configuration in the proof of lemma 2(b).

that contains h. Therefore |dm| � 1. Thus l, which is in Q,
must be outside the triangle ahm, and consequently d ′ must
be on the other side of line hm than a, which is a contradic-
tion.

(c) Let D and D′ be two disks from D. Then ∂D and ∂D′
cannot be tangent from the interior since they have the same
radius. If ∂D and ∂D are tangent from the exterior, then the
distance between their centers is 2, and the common point can
only be the origin a, which is not in Q. �

3. Fast geometric disk covering in a quadrant

In this section we give a fast 2-approximation algorithm for
the 1-Hop Disk Cover problem with all points of P coming
from an exterior quadrant Q of the unit disk A.

The skyline S = (x0, x1, . . . , xk) of D is the upper enve-
lope of Q ∩ (

⋃{D ∈ D} ∪ A) (see figure 4). The skyline

consists of arcs �xi−1xi on the border of disks Di ∈ D ∪ {A},
i = 1, . . . , k, such that x0 ∈ ∂Q ∩ ∂D1, xi ∈ ∂Di−1 ∩ ∂Di

(i = 1, . . . , k − 1), and xk ∈ ∂Dk ∩ ∂Q. The algorithm (al-
gorithm 2) starts by computing the skyline S with xi’s num-
bered in counter-clockwise order, i.e., with polar coordinates
(ρi , ri ) of points xi satisfying ρ0 � ρ1 � ρ2 � · · · � ρk . As
established in lemma 8 below, the skyline disks Di covering
a point p ∈ P form an interval in the sequence D1, . . . ,Dk .
The algorithm computes these intervals for each point of P ,
then outputs a minimum size set F of skyline disks hitting all
intervals, i.e., containing at least one disk Di from each inter-
val. Computing the minimum size hitting set (step 3) is done
using a simple greedy algorithm, similar, e.g., to the algorithm
in [18] for finding a minimum weight dominating set in an in-
terval graph given. Clearly, the hitting set F computed by
algorithm 2 is a disk cover for the points in P . Furthermore,
we have:

Theorem 3. Algorithm 2 runs in O(n logn) time, and has an
approximation ratio of 2 for the 1-Hop Disk Cover problem
in a quadrant.

Figure 4. The skyline of a set of disks in a quadrant.
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Algorithm 2: Geometric 1-Hop Disk Covering in a quadrant

Input: Unit-disk A, set of unit disks D centered inside A, set of points P in the exterior quadrant Q of A such that
P ⊆⋃{D ∈ D}.
Output: A subset F ⊆ D such that P ⊆⋃{D ∈ F}.
1. Find the skyline S = (x0, x1, x2, . . . , xk) of D, where the polar coordinates of xi are (ρi , ri ) and ρ0 � ρ1 � ρ2 �
· · · � ρk . Let Di be the disk containing arc�xi−1xi .

2. For each p ∈ P with polar coordinates (ρ, r), find the interval [Dfirst(p),Dlast(p)] of skyline disks Di that cover p,
via three binary searches:

(a) find i ∈ {1, . . . , k}, such that ρ ∈ [ρi−1, ρi ]
(b) first(p)← min{j : 1 � j � i, p ∈ Dj }
(c) last(p)← max{j : i � j � k, p ∈ Dj }

3. Find the minimum set F of skyline disks hitting each interval [Dfirst(p),Dlast(p)], p ∈ P , using the following
Interval Hitting Algorithm:

(a) Sort the set of all intervals I = {[Dfirst(p),Dlast(p)], p ∈ P} in ascending order of their right end, Dlast(p)

(b) F ← ∅
(c) While I �= ∅ do

Add to F the right end disk Dlast(p) of the first interval
Remove from I all intervals hit by Dlast(p)

4. Output F .

Theorems 1 and 3 immediately give:

Corollary 4. Combined with algorithm 2, algorithm 1 runs
in O(n logn) time and has an approximation ratio of 6 for the
Minimum Forwarding Set problem.

The rest of the section is devoted to the proof of theorem 3.

Lemma 5. A point q ∈ Q belongs to a disk D ∈ D if and
only if the half-line L from the center a of A through a point
q intersects ∂D ∩ Q at a point q ′ such that q belongs to the
segment [a, q ′].

Proof. Every disk D ∈ D contains a. Thus, the segment
[a, q ′] is fully contained in D, and every point of L outside
this segment is in the exterior of D. �

Lemma 6. If point p ∈ P has polar coordinates (ρ, r) such
that ρ ∈ [ρi−1, ρi ], then p ∈ Di .

Proof. Follows immediately from lemma 5. �

Lemma 7. Let D1,D2,D3 be three disks of D appearing in
this order in the skyline of {D1,D2,D3}. ThenD1∩D3∩Q ⊆
D2 ∩Q.

Proof. Assume that D1 ∩ D3 ∩ Q �= ∅, and let S′ = (y0,

y1, y2, y3) be the skyline of {D1,D2,D3} (see figure 5).
Since y1 = ∂D1∩∂D2∩Q, y2 = ∂D2∩∂D3∩Q, and y1, y2 /∈
D1∩D3, lemma 2(b) implies that ∂D2∩∂(D1∩D3∩Q) = ∅.

To complete the proof, it suffices to show that D2 contains
some point of D1∩D3∩Q. Let x = ∂D1∩∂D3∩Q, and let L
be the half-line from a through x. Since a ∈ D1, L intersects
∂D1 exactly once, at x. Thus, L does not intersect the arc

Figure 5. The skyline of {D1,D2,D3} in lemma 7.

�y0y1 of the skyline. Similarly, L does not intersect �y2y3. It
follows that L intersects �y1y2, and, by lemma 5, x ∈ D2. �

The following is a straightforward corollary of lemma 7:

Lemma 8. For every p ∈ P , the skyline disks Di cover-
ing p form an interval [Dfirst(p),Dlast(p)] in the sequence
D1, . . . ,Dk .

Lemma 9. The optimum cover of P with disks from the set
{D1, . . . ,Dk} of skyline disks contains at most 2 times more
disks than the optimum cover of P with disks from D.

Proof. It suffices to prove that, for every D ∈ D, D ∩ Q

is covered by at most two skyline disks. Furthermore, since
lemma 5 implies that any set of disks covering ∂D ∩Q fully
covers D ∩Q, we only need to show that ∂D ∩Q is covered
by at most two skyline disks.
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Let d1 and d2 be the two points of intersection of ∂D with
the boundary of the central disk A. By lemma 2(b), any sky-
line disk Di intersecting D ∩ Q contains at least one of the
points d1 and d2. The key observation is that, for any two
skyline disks Di and Dj both containing d1 (or both con-
taining d2), the arc ∂D ∩ ∂Di ∩ Q is contained in the arc
∂D ∩ ∂Dj ∩ Q or vice versa. Therefore the minimal set of
skyline disks covering ∂D ∩Q has at most two disks. �

Proof of theorem 3. The approximation ratio of algorithm 2
follows from lemma 9. Step 1 of the algorithm can be im-
plemented in O(n logn) time using, e.g., an adaptation of
the divide-and-conquer algorithm in [15] for computing the
Manhattan skyline. The binary searches in step 2 also take
O(n logn) time.

Finally, the Interval Hitting Algorithm can be implemented
in O(n logn). Indeed, an interval is hit by the disk Dlast(p) if
its left covering disk is beforeDlast(p) in the skyline S. There-
fore, by traversing all intervals sorted in ascending order of
their left ends Dfirst(p), we can delete each hit interval in con-
stant time per interval.

Figure 6. A tight example for the approximation ratio of algorithm 2.

Remark. The approximation ratio of 2 in theorem 3 is tight:
figure 6 gives an instance when the optimum disk cover con-
sisting of skyline disks has size 2, while there is a single (non-
skyline) disk covering the two points of P .

4. Exact combinatorial disk covering in a quadrant

In this section we present an O(n2) exact algorithm for the
1-Hop Disk Cover problem with all points of P coming from
an exterior quadrant Q of the unit disk A. In the next sec-
tion we describe a faster O(n log2 n) implementation of this
algorithm based on efficient data structures. In [3], a different
O(n2) algorithm is presented for the 1-Hop Disk Cover prob-
lem with all points of P coming from Q. That algorithm is
somehow easier to implement, but has a more involved cor-
rectness proof. Furthermore, the algorithm in [3] does not
appear to have an implementation faster than O(n2).

The new exact algorithm (see algorithm 3) starts by sorting
and renumbering all disks Di with respect to the intersection
points of ∂Di with ∂Q (step 1). The first and the last disk
in this order covering each point are determined. Finally, a
modified version of the Interval Hitting Algorithm (see step 3
of algorithm 2 ) finds the minimum disk cover.

We start the proof of correctness of the algorithm 3 with
the following definition and a crucial topological lemma. For
i < j < s, we say that disks Di and Ds supercover disk Dj

if there is a point p in P such that p /∈ Dj and p ∈ Di ∩Ds .

Lemma 10. There is an optimum solution which uses no su-
percovered disk.

Proof. Assume, for a contradiction, that OPT is an optimum
solution such that the area of

⋃
D∈OPT(Q ∩D) is maximum,

and that there is a disk Dj ∈ OPT which is supercovered, by
say Di and Ds , where i < j < s. This means that there is a
point p ∈ P ∩ Di ∩ Ds which is not in Dj . There is a disk
Dk ∈ OPT such that p ∈ Dk . In the following we consider
only the case when k > j , the other case being symmetric.

Algorithm 3: Combinatorial 1-Hop Disk Covering in a quadrant

Input: Unit-disk A, set of unit disks D centered inside A, set of points P in the exterior quadrant Q of A such that
P ⊆⋃{D ∈ D}.
Output: Minimum size subset F ⊆ D such that P ⊆⋃{D ∈ F}.
1. For each Di ∈ D find li and ri , the two points of intersection between the boundaries ∂Di with ∂Q. We assume

that lj < rj in a fixed orientation of ∂Q. Renumber the disks in D such that either li < li+1 or li = li+1 and
ri < ri+1 for every i = 1, . . . ,m− 1. Further, D < D′ denotes that the disk D has smaller index than the disk D′.

2. For every point p ∈ P , compute D
p
f and D

p
q , the first and last disks containing p.

3. Set P̄ ← P and F ← ∅
4. While P̄ �= ∅

(a) Find p ∈ P̄ with the minimum last disk D = D
p
q

(b) While there exists p′ ∈ P̄ with D
p′
f < D and p′ /∈ D

Replace D by the the last disk before D containing p
(c) Set F ← F ∪ {D}
(d) Remove from P̄ all the points p′ with D

p′
f � D

5. Output F .
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Figure 7. The existence of a nonempty region in Q∩((Di∪Dk)\Dj ) implies
that (Dj ∩Q) ⊆ (Di ∩Dk).

Lemma 2 implies that (Dj ∩Q) ⊆ (Di ∪Dk). See figure 7
for an illustration.

Consider the walk on ∂Di starting from li towards ri . Let
p1 be the last point in this walk (p1 might not be in P) which
is inside a disk Dg with g < i and Dg ∈ OPT. Let p2 be the
first point in this walk (p2 might not be in P) which is inside
a disk Dr with i < r and Dr ∈ OPT . We have two cases.

If p1 comes before p2 on the walk on ∂Di , then OPT \
{Dj } ∪ {Di} is a solution of the same size as OPT, but of big-
ger total area, as it includes the arc of ∂Di in between p1 and
p2. This contradicts the assumption that OPT is an optimum
solution with maximum area.

Now assume p2 comes no later than p1 on the walk
on ∂Di . Let Dg < Di and Dr > Di be the disks in OPT
such that p1 = ∂Di ∩ ∂Dg and p2 = ∂Di ∩ ∂Dr . The fact
that there is a point in (Q ∩Di ∩Dk) \Dj and lemma 2 im-
ply that ∂Di ∩ ∂Dk comes before ∂Di ∩ ∂Dj on the walk,
and therefore r �= j . As ∂Di ∩ ∂Dr comes no later than
∂Di ∩ ∂Dg, lemma 2 implies that (Di ∩ Q) ⊆ (Dg ∪ Dr).
Then (Dj ∩Q) ⊆ (Dg ∪Dr ∪Dk), implying that OPT \ {Dj }
is a solution. This contradicts the fact that OPT is an optimum
solution, and completes the proof. �

From now on, we assume that OPT is a fixed optimum
solution which contains no supercovered disk.

Based on the previous lemma, an O(n4) exact algorithm
for disk cover is immediate: eliminate all the supercovered
disks. After that, for every point p ∈ P , the set of disks
which cover p forms an interval. Then the Interval Hitting
Algorithm finds the optimum solution.

To prove that the runtime of the algorithm 3 is O(n2) we
need to show that the total time spent in the inner while loop
(step 4(b)) is O(n). This fact follows from the following
lemma.

Lemma 11. A disk cannot appear as D inside the inner while
loop (step 4(b)) for two different points.

Proof. Assume, for a contradiction, that two points, p1 and
p2, selected in this order in step 4(a), use the D in step 4(b).

Since p2 is not removed from P̄ while processing p1, we have
D

p1
f < D

p2
f . There is a disk D̄ which is not supercovered and

contains p2. We have D̄ � D, since otherwise D̄ would be
selected by p2 in step 4(c), and D would not be processed by
p2. Thus Dp1

f < D
p2
f � D̄ � D � D

p1
q , and since D̄ is not

supercovered, we deduce that D̄ contains p1.
Let D1 be the disk selected in step 4(c) while processing

p1. We cannot have D1 < D̄, since otherwise, while process-
ing p1, D̄ would have been considered as D′ before D1, and
since D̄ is not supercovered, D̄ would be selected by p1 in
step 4(c). So we have Dp2

f � D̄ � D1 � D � D
p2
q . As D1

is selected while processing p1, the check in the if statement
ensures that D1 contains p2. So p2 is eliminated from P̄ in
step 4(d) while processing p1, a contradiction. �

Lemma 12. The runtime of algorithm 3 is O(n2).

Proof. Using straightforward for loops, every inner step, ex-
cept for the inner while loop (step 4(b)), of the algorithm takes
time O(n). The replacement of a disk by a previous disk (in-
side the inner while loop) takes timeO(n) for a given point p.
Checking the condition in the inner while loop (step 4(b))
takes O(n) time, and lemma 11 ensures that such a check is
done at most once per disk. �

Before proving the correctness of algorithm 3, we give the
intuition which motivates its steps. P̄ is the current set of un-
covered points. In each iteration of the outer while loop in
step 4, as in the Interval Hitting algorithm, we pick the point
with the first last-covering disk. Then we select a disk which
includes this point, as close as possible to the last-covering
disk (in order to include a larger number of points) subject to
excluding supercovered disks. Note that the inner while loop
in step 4(b) simply jumps over disks which are supercovered.

Theorem 13. Algorithm 3 gives an optimal solution for the
1-hop Disk Cover problem in a quadrant.

Proof. First we show that every point is covered. We look
at the current situation at the beginning of each execution of
the outer while loop in step 4. By the time step 4(b) (the
inner while loop) is finished, p is removed from P̄. Indeed,
in OPT, there is a disk D

p
opt which is not supercovered and

which covers p, and D
p
f � D

p
opt � D

p
q . Every disk ignored

by the algorithm in step 4(b) is supercovered, since by the

choice of p in step 4(a), we have D
p′
f � D′ � D

p
q � D

p′
q .

Therefore the inner while loop will stop at Dp
opt , if not earlier.

To prove optimality, let p1, p2, . . . , ps be the set of points
selected by the algorithm in step 4(a). We claim that no disk
D of OPT can include pi and pj , where i < j . Let Di

be the disk selected to cover pi in step 4(c). Note that while
processing pi , the algorithm cannot ignore D in step 4(b), as
D is not supercovered, and therefore D � Di . Assuming by
contradiction that D contains pj , we obtain that D

pj
f � D.

But then D
pj
f � Di , and pj should have been removed from

P̄ in step 4(d).
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It follows that |OPT | � s, and the theorem follows from
the fact that the algorithm also selects s disks. �

Theorems 1, 13, and lemma 12 imply:

Theorem 14. Combined with algorithm 3, algorithm 1 runs
in O(n2) time and has an approximation ratio of 3 for the
Minimum Forwarding Set problem.

5. An O(n log2 n) implementation of the combinatorial
disk covering algorithm

In this section we describe an enhanced data structure based
on Voronoi diagrams which allows to implement algorithm 3
in time O(n log2 n).

Step 1 can obviously be executed in O(n logn). Next we
describe the data structure which we use for step 2. Con-
struct a balanced binary search tree T , with the centers of
the individual disks as leaves, in the sorted order obtained
in step 1. For a node v ∈ T , denote by Av the set of the
centers in the subtree rooted at v. For every node v in T ,
construct the Voronoi diagram of Av , and preprocess the dia-
gram for membership queries. A membership query returns,
for a give point p, the face of the Voronoi diagram where p

lies. The preprocessing time for constructing the Voronoi di-
agrams is O(n logn) per level in T (see, for example, chapter
20.2 of [8]), for a total of O(n log2 n). The space require-
ment is O(n) per level of T , for a total of O(n logn). Pre-
processing a node v for membership queries also takes time
O(|Av| log |Av|) and space O(|Av|), and a query can be an-
swered in time O(log |Av|) (see, for example, chapter 30.3
of [8]). The total time is O(n log2 n), and the total space is
O(n logn).

With this data structure, given any node v in T , and a
point p, one can find whether a disk in the subtree rooted
at v covers p in time O(logn), by finding out in which cell of
the Voronoi diagram of Av p lies, and computing the distance
from p to the center of that cell. Using this observation, a
binary search in T can find for a point p the disks Dp

f and Dp
q

in time O(log2 n).
Before proceeding to step 3, in time O(n logn), sort the

points of P with respect to D
p
f and put them in a list L1. To

represent P̄ , we only use the position in L1 of the first point
of P̄ ; this is enough since the points removed from P̄ in step
4(d) are consecutive in L1, and include the first uncovered
point of L1. This representation allows the implementation of
step 4(d) in total time O(n): to remove points from P̄ , simply

move forward in L1, checking at every step if Dp′
f � D.

Also, in time O(n logn), sort the points of P with respect
to D

p
q and put them in a separate list L2. This allows us to

implement step 4(a) to run in total time O(n), by keeping
track of where point p is in L2, and moving only forward in
L2, ignoring the points which are not in the current P̄.

In the following, we describe how to use the data structure
T to implement one replace statement inside the inner while
loop (step 4(b)) in time O(log2 n). Start at the leaf of T which

has the center of D. Let v be the current node and p(v) be its
parent in T . If v is a left child, then replace v by its parent,
and repeat. Assume now that v is a right child, and let v′ be
its sibling. In time O(logn), we can check whether there is
a center in Av′ whose disk includes p. If yes, starting from
v′, find the last center in Av′ whose disk covers p (this is the
same binary search procedure used to compute D

p
q ). If no,

then replace v by its parent, and repeat. Theorem 13 implies
that there always exists a disk beforeD which contains p, and
thus the above procedure is correct.

The condition of the while loop in step 4(b) is checked by
using a data structure T ′ which we describe below. T ′ is a
balanced binary tree, whose leaves are the points of P , sorted
as in L1 (the smaller Df is first). For a node v ∈ T , de-
note by A′v the set of points in the subtree rooted at v. For
every node v in T , construct the furthest-site Voronoi diagram
of A′v , and preprocess the diagram for membership queries.
A cell of the furthest-site Voronoi diagram contains points
which have the same furthest site in A′v . The furthest-site
Voronoi diagram can be constructed in O(|A′v| log |A′v|) and
uses O(|A′v|) space (see, for example, chapter 20.3 in [8],
and with the same time and space bounds, it can be pre-
processed for membership queries (chapter 30.3 of [8]). The
total preprocessing time is O(n log2 n) and the total space is
O(n logn). Given the center of a disk D, and a node v ∈ T ′,
finding if all the points of A′v are contained in D can be done
in time O(logn) by a membership query in the furthest-site
Voronoi diagram of A′v .

Now we describe how exactly to check if there is a point

p′ ∈ P̄ with D
p′
f < D and p′ /∈ D. Given D, the set of

points of P̄ with D
p′
f < D are consecutive in L1. We denote

by p1 and p2 the first, respectively last such point. Note that
p1 is the first point in the remaining part of L1, and that p2

can be found by binary search in O(logn) time. Checking
the condition for p1 and p2 takes constant time. In O(logn)
we can also locate p1 and p2 in the leaves v1 and v2 of T ′
(by binary search), and find the least common ancestor v of
v1 and v2 in T ′. Let v′ be v1, and p(v′) be its parent in T ′.
As long as p(v′) �= v, do the following: if v′ is a left child,
and if v′′ is its sibling, check if D contains A′

v′′ . Then let v′
be p(v′).

Similarly, let v′ be v2. As long as p(v′) �= v, do the fol-
lowing: if v′ is a right child, and if v′′ is its sibling, check if D
contains A′

v′′ . Then let v′ be p(v′). If any of the checks above

fails, then there is a point p′ ∈ P̄ with with D
p′
f < D and

p′ /∈ D; otherwise there is no such point. The total time for
one disk D is O(log2 n), as there are at most 2 logn queries
of the type: check whether all the points of A′v are contained
in D.

Finally, lemma 11 implies that each disk D will need at
most once such processing. Thus step 4(b) takes O(n log2 n)

time overall. Based on the discussion above, we have:

Theorem 15. Algorithm 3 can be implemented to run in time
O(n log2 n).
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6. The general minimum disk cover problem

In this section we describe a constant-factor approximation
algorithm for the following

Minimum Disk Cover problem. Given a set of unit disks D
and a set of points P in the Euclidean plane, find a minimum-
size subset F ⊆ D, such that P ⊆⋃{D ∈ F}.

This problem is NP-hard since it contains as a special case
Dominating Set in unit-disk graphs, a problem shown to be
NP-hard in [5]. A polynomial-time algorithm with constant
approximation ratio for Minimum Disk Cover was first pro-
vided by [2].

If we can obtain a constant ratio for covering an unit-side
equilateral triangle, we can obtain a constant ratio for the
whole plane, by tiling the plane into triangles and separately
covering all the triangles, and using the fact that one disk in
the optimum can only cover points in a constant number of
triangles.

Let ABC be such a triangle. If no point of P is in the
triangle, there is nothing to be done. Also, if there is a disk
D ∈ D whose center is in the triangle, then D covers all the
triangle. So, in the following, we assume all the points are in
the triangle, and all the centers of disks in D are outside the
triangle.

The algorithm has four phases:

1. After removing those disks that do not intersect the trian-
gle, partition the remaining disks into three sets D1, D2,
and D3, such that all the centers of the disks in D1 are on
the other side of the line AB than C, all the centers of the
disks in D2 are on the other side of the line BC than A,
and all the centers of the disks in D3 are on the other side
of the line AC than B. If a disk could be put in more than
one Di , pick one arbitrarily.

2. For i = 1, 2, 3, let Qi be the triangle ABC and let Ji be
a line which separates the centers of the disks of Di from
the interior of the triangle. Find the skyline as in section
3, and compute Fi , the set of disks containing some arc of
the skyline.

3. Write the natural Integer Programming formulation in-
volving only the disks in F1 ∪ F2 ∪ F3. Solve the Linear
Programming relaxation.

4. Round the linear programming optimum to an integer so-
lution, as described in section 6.1.

Later we prove theorem 16, which claims that the algo-
rithm described above has approximation ratio at most 6 for
the problem of covering the points inside the triangle.

First, we note that lemma 2 holds easily when Ji is a
straight line. For each Fi , lemma 8 also holds. Let F =
F1∪F2∪F3, and assumeF is sorted with F1 (which is sorted)
followed by the sorted F2, and followed by the sorted F3.
Lemma 9 also holds, and therefore F contains a solution at
most twice opt , the size of an optimum solution.

6.1. Rounding

We use the natural IP, with variables xD , for D ∈ F :

minimize
∑
D∈F

xD

subject to
∑

D: P∈D
xD � 1 ∀P ∈ P, (1)

xD ∈ {0, 1} ∀D ∈ D. (2)

Let LP be the linear programming relaxation of IP, obtain
by replacing the constraints 2 by

xD � 0 ∀D ∈ D. (3)

Let Z∗IP the value of the IP optimum. As argued above, we
have Z∗IP � 2opt.

Let y be a (fractional) solution to LP. For a point P ∈ P ,
the set of disks covering it consists of at most three intervals,
say IP1 , IP2 , and IP3 . For one of the three intervals, which we
call simply IP , we have:

∑
D∈IP yD � 1/3.

We introduce a second integer program, which we are able
to solve in polynomial time exactly (see details below), and
which approximates well LP, the linear programming relax-
ation described above. Precisely, consider the integer pro-
gram IP′, with variables xD, for D ∈ F :

minimize
∑
D∈F

xD

subject to
∑
D∈IP

xD � 1 ∀P ∈ P, (4)

xD ∈ {0, 1} ∀D ∈ D. (5)

Let LP′ be the linear programming relaxation of IP′. The
matrix of IP′ is totally unimodular (see [6], theorem 6.28,
p. 223, and example 3 on the next page), and 3y is a so-
lution to LP′. Therefore IP′ has a solution of size at most
3

∑
D∈F yD , and an optimum for IP′ can be found easily by

the greedy algorithm, as described at the end of the proof
of theorem 3. Now, if y is an optimum solution to LP, then∑

D∈F yD � Z∗IP � 2 opt, and therefore the solution found
by the greedy algorithm has size at most 6opt.

Rounding consists of finding for each point P ∈ B the
interval IP , and then using the greedy algorithm to hit each
IP with elements of F . In conclusion, we proved:

Theorem 16. The algorithm described in this section has ap-
proximation ratio at most 6 for covering points inside a unit-
size equilateral triangle with sizes equal to 1 with unit-disks
from a fixed set D.

Since a single disk from the optimum solution can cover
points in at most 17 triangles of the tiling we conclude

Corollary 17. There is a 102-approximation algorithm for
the Minimum Disk Cover problem.
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7. Conclusions

In this paper we presented a geometric O(n logn) 6-approxi-
mation algorithm and a combinatorialO(n log2 n) 3-approxi-
mation algorithm for selecting forwarding neighbors in
wireless ad-hoc networks, significantly improving both the
running time and the approximation ratio of the best previ-
ously known algorithm. An extension of our method can be
used to obtain an alternative constant-ratio polynomial-time
algorithm for the Minimum Disk Cover problem.

We mention that theorem 13 is true in the following more
general setting. Let J be an infinite simple Jordan curve
which separates the plane into exactly two regions, and let
B be one of these two regions. Let all points P be in B,
and each Dj be a region bordered by a simple closed Jordan
curve ∂Dj . Assume that each ∂Dj intersects the infinite curve
J in exactly two points, and, for any two regions Dj and Dk ,
∂Dj ∩∂Dk ∩B has at most one point. Moreover, assume that,
whenever two of the curves ∂Dj intersect, they cross each
other. Then lemma 10 holds, and therefore a polynomial-time
exact disk covering algorithm exists.

On the other side, if the disks have arbitrary radii, the
boundaries of two disks in the region B (as defined in the
paragraph above) can cross in two distinct points. Our argu-
ments rely implicitly on the assumption that boundaries inter-
sect in at most one point inside of the region B where all the
points lie, and all the presented algorithms fail when applied
to arbitrary disks.

When P and the centers of D are separated by a straight
line, we can apply the techniques from this paper to obtain a
rounding procedure with ratio of 2 to the natural linear pro-
gram LP. Then, as in section 6, it follows that the linear pro-
gram LP has constant integrality ratio for the general Disk
Cover problem. However, when the disks in D are weighted,
we do not know the integrality ratio of the corresponding in-
teger and linear programs. The linear program is given be-
low:

minimize
∑
D∈D

wDxD

subject to
∑

D: P∈D
xD � 1 ∀P ∈ P, (6)

xD � 0 ∀D ∈ D. (7)

This research work assumed that the wireless nodes are not
able to adjust the range of transmission. When nodes are able
to adjust the range of transmission, it is possible that conges-
tion can be further reduced. We leave for further research the
design of forwarding algorithms in the variable transmission
range setting.

We also leave for further research the formulation of the
overall broadcast problem, even if the algorithms one ob-
tains after doing it are centralized, and thus not practical.
A comparison with the classical broadcasting problems in
the telephone and post office models would then be benefi-
cial.

Student Yuchen Wu, whom we wish to thank, imple-
mented the geometric 1-hop covering algorithm in a quadrant
(algorithm 2), and the exact O(n2) combinatorial algorithm
for the quadrant given in [3]. On random instances, the much
simpler geometric algorithm finds solutions which are on the
average only 17–44% larger than the optimum found by the
exact combinatorial algorithm.
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