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SONET/WDM networks using wavelength add–drop
multiplexing can be constructed using certain graph
decompositions used to form a “grooming,” consist-
ing of unions of certain primitive rings. The existence
of such decompositions when every pair of sites em-
ploys no more than 1

8 of the wavelength capacity is
determined, with few possible exceptions, when the
ring size is a multiple of four. The techniques devel-
oped rely heavily on tools from combinatorial design
theory. © 2001 John Wiley & Sons, Inc.
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1. THE COMBINATORIAL PROBLEM
AND SONET/WDM NETWORKS

A synchronous optical network (SONET) ring on n sites
is an optical interconnection device. The sites are ar-
ranged circularly. A clockwise or right ring connects the
ith site to the (i+1)st, and a counterclockwise or left ring
connects the ith site to the (i − 1)st. This provides two
directions in which traffic can be delivered between any
two sites.

Each optical connection can carry multiple signals on
different wavelengths. However, the number of wave-
lengths is limited, and the bandwidth on each wavelength
is also limited. Typically, one goal is to minimize the
number of wavelengths used. An equally important goal
is to ensure that each wavelength has a sufficient band-
width for the traffic it is to carry; we return to this later.

In this paper, we examine the situation in which ev-
ery pair of sites needs a communication path, and each
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such path requires only a fixed fraction 1/g of the ca-
pacity of a wavelength. This problem has been studied
primarily in the context of variable traffic requirements
[4, 11, 10], but the case of fixed traffic requirements has
served as an important special case [11, 12]. In this in-
troduction, we establish that the wavelength assignment
problem which arises can be reduced to a problem on
partitioning complete graphs with loops into a small set
of fixed subgraphs. Then, in the remainder of the pa-
per, we develop techniques for solving the wavelength
assignment when the SONET ring has a size which is a
multiple of four.

We require a substantial set of mathematical prelimi-
naries. Let n be a positive integer. Let Zn denote the set
{0, . . . , n − 1}; when the arithmetic is done on the ele-
ments of Zn, it is carried out modulo n. Let Pn be the
set {(i, j) : i, j ∈ Zn, i ≠ j}. Partition the sets of Pn

into two sets, L and R. Then, associate with each pair
P = (i, j) ∈ Pn the set S(P) = {i, i + 1, . . . , j − 1} if
P ∈ R, or the set S(P) = {j + 1, . . . , i − 1, i} if P ∈ L.

Partition Pn into s classes, C1, . . . , Cs. Compute the
multiset union Mi =

⋃
P∈R∩Ci

S(P) and the multiset
union Ni =

⋃
P∈L∩Ci

S(P). Let g be an integer. If, for
every 1 ≤ i ≤ s, the multisets Mi and Ni do not contain
any symbol of Zn more than g times, then C1, . . . , Cs is
an (s, g)-assignment for the partition L, R of Pn.

Since we are at liberty to choose the partition of
Pn into L and R, we define an (n, s, g)-assignment to
be the partition together with the (s, g)-assignment for
that partition. We shall be concerned with those (n, s, g)-
assignments that minimize s for particular values of n
and g. Among these assignments, we prefer certain ones
realizing a minimality condition, described next.

Consider a particular (n, s, g)-assignment. Let Vi =
{x, y : (x, y) ∈ Ci}. The drop cost of the assignment is
defined to be

∑s
i=1 |Vi|. For specific choices of n and

g, what is the smallest value of s that we can achieve?
For (n, s, g)-assignments, what is the smallest drop cost
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that we can achieve? We address these two questions and
describe an approach that uses techniques from combina-
torial design theory and graph decompositions to obtain
results on the existence of such assignments.

Let us first examine how the basic SONET situation
is modeled in the combinatorial formulation. The sites of
the SONET ring are the elements in Zn. Then, Pn simply
indicates the pairs of sources and destinations for com-
munication. The choice of a left or right ring on which
traffic is to be routed is indicated by the partition into L
and R. Then, for P ∈ Pn, the set S(P) is precisely the
originating site together with all the intermediate sites
through which the traffic flows for the pair P. The num-
ber of wavelengths used is s, and the partition into classes
C1, . . . , Cs specifies the chosen wavelengths.

Suppose that the pairs P1, . . . , Pt have all been as-
signed to the same direction and the same wavelength.
Suppose further that some site h ∈ Zn has the prop-
erty that h ∈ ⋂t

i=1 S(Pi). Then, all traffic involving these
source–destination pairs must be routed through site h.
If the traffic requirement for these t pairs exceeds the
bandwidth, then site h would be unable to handle the
traffic. In the absence of specific information about the
traffic requirements, we suppose that no pair has a traffic
requirement exceeding 1

g times the bandwidth. Then, the
condition on Mi and Ni ensures that a sufficient band-
width is available on each wavelength in each direction.

In a communication, the source and destination sites
typically convert between the electrical and optical do-
mains, while intermediate sites are all-optical forward-
ing devices. To start or terminate a connection is more
expensive. Wavelength add–drop multiplex (WADM) per-
mits a wavelength to bypass a node without the costly
termination when no traffic on the wavelength originates
or terminates at the node; a SONET add–drop multiplexer
(SONET ADM) accomplishes this task. Hence, the costs
of a SONET ring configuration using WADM can often
be lowered by reducing the number of different source
and destination sites on each wavelength. The drop cost
of the assignment defined earlier gives the number of
SONET ADMs employed, and our interest is to mini-
mize this number.

We have outlined an optical communications environ-
ment in which traffic from a particular source to a par-
ticular destination remains on a single wavelength. How-
ever, only for certain (s, g)-assignments can we partition
each wavelength into g channels so that that each source–
destination pair remains on a single channel. The imple-
mentation is substantially simplified when we can do so.
If an (s, g)-assignment can be partitioned into channels
in this way, then it arises from an (sg, 1)-assignment by
forming s unions of g classes each. This special type of
assignment is a grooming. We shall typically require that
the assignments produced are, in fact, groomings.

2. PRIMITIVE RINGS

The case when g = 1 arises when each communica-
tion requires the entire bandwidth available on a wave-
length. Two pairs P and P′ can, nonetheless, share the
bandwidth if they are on opposite (left and right) rings
or if they are on the same ring and S(P)∩S(P′) = ∅. Our
task is then to partition the set Pn into s wavelengths and
two directions, so that within each we find each site at
most once. It is then necessary that any such partition of
the pairs Pn also partition the multiset M =

⋃
P∈Pn

S(P)
into s classes and two directions, each containing every
symbol in Zn at most once. Now, S(P) depends upon the
direction chosen for P, but let us suppose for the mo-
ment that S(P) contains at most n/2 elements. This can
be guaranteed if we choose the shorter direction around
the ring. Then, M, by an easy counting argument, has
(n3 − n)/4 elements when n is odd and n3/4 when n is
even. Since each wavelength accounts for at most 2n of
the entries in M, we require that s ≥ d n2−1

8 e wavelengths

be available when n is odd and s ≥ d n2

8 e when n is even.
See, for example, [2, 11].

Wan [12] described a very useful set of “primitive
rings” which provide the wavelength assignment. We re-
view his method briefly: First, suppose that n = 2m is
even. Define the rings Qn

ij = {(i, j), (j, i + m), (i + m, j +
m), (j + m, i)}; when these rings are routed clockwise
and i < j < i + m, the pairs of each ring can be
placed on a single wavelength. Next, define the rings
Ri = {(i, i + m), (i + m, i)}.

We place the pairs in the rings Qn
ij in R when 0 ≤

i < j < m. Then, for 0 ≤ i < dn/4e, we place the ring
Ri in R. All other pairs are placed in L. Indeed, when
Qn

ij is placed in R, we suppose that Qn
ji is placed in L.

The rings Qn
ij and Qn

ji involve the same sites and can be
placed on the same wavelengths in opposite directions.

It is easily verified that such a set of primitive rings
minimizes the number of wavelengths (indeed, every
wavelength is used at every single site). When n =
2m + 1 is odd, a simple variant can be used. Begin
with the primitive rings described for the even order
n − 1: We introduce a new symbol ∞ between n − 1
and 0. Rings Qn−1

ij are placed as before. However, the
rings Ri are removed, and each is replaced by two rings,
Tn

i = {(∞, i), (i, i + m), (i + m, ∞)} in R and Tn
i+m =

{(∞, i + m), (i + m, i), (i, ∞)} in L.
Using this solution for g = 1, one way to produce

an assignment with g > 1 is to combine up to g primi-
tive rings, while minimizing the number of wavelengths
and drop costs. A method for forming an assignment by
taking unions of primitive rings is called a grooming of
primitive rings. The most natural case to treat is when g
is a power of two as a result of the bandwidth hierarchy
available in SONET rings.

Wan [12] solved the cases when g = 2 and g = 4 and
develops some general techniques. The solution when
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g = 2 is straightforward using his model, while the so-
lution for g = 4 is complicated by the necessity of con-
structing numerous small solutions for use in a recursive
combinatorial technique. We review his method briefly:
First, let n = 2m + 1 be odd. Form a graph LKm, a com-
plete graph with a loop on each vertex. Associate with
edge {i, j}, i < j, the primitive ring Qn−1

ij and with each
loop {i} the primitive ring Tn

i . Now choose a subgraph of
LKm having q edges and p vertices of nonzero degree. If
we place the primitive rings corresponding to these edges
in the clockwise direction on the same wavelength, the
bandwidth suffices exactly when g ≥ q. Indeed, this sim-
ply restates the requirement that every site be involved as
a sender or intermediate site in at most g primitive rings
on the same wavelength and same direction. What about
the drop cost? Each edge {i, j} with i < j corresponds
to a primitive ring involving four sites, while each loop
corresponds to a primitive ring involving three. When a
vertex appears in more than one edge, a savings results.
When no loops are chosen, the cost for this wavelength
(or subgraph) is easily calculated to be 2p; when at least
one loop is chosen, it is 2p + 1.

When n is even, the situation is fundamentally the
same, but some details differ. We examine this next.
While for the case of odd n, the primitive rings fall natu-
rally into pairs, the primitive rings Ri do not “naturally”
pair when n is even. Indeed, if we select a graph in the
decomposition whose number of nonloop edges plus half
the number of loops does not exceed eight, then we can
make a valid assignment to wavelengths as follows: On
the clockwise ring, we place a primitive ring of size four,
placing its reversal on the counterclockwise ring. How-
ever, for primitive rings of size two, we place half on the
clockwise ring and half on the counterclockwise ring.
Hence, in the even case, we treat loops differently than
when the ring size is odd. In this case, the cost of a sub-
graph is always simply twice the number of vertices of
nonzero degree in the subgraph.

Our task in both cases has been reduced to a graph
decomposition problem. Partition the edges of LKm into
subgraphs, each containing at most g edges (counting
loops as edges when the ring size is odd and as half-
edges when the ring size is even) so that the number of
subgraphs is minimized and so that the total cost of all
chosen subgraphs is minimized. See [5, 9] for results on
graph decompositions in general and for further refer-
ences.

3. GROOMING WITH ggg = 8

We examine the problem of grooming when g = 8. If
a subgraph on eight edges is chosen, we must minimize
the number of vertices. Evidently, three or fewer vertices
do not suffice to support eight edges. However, with four
vertices, if we choose two, three, or four loops, we can

place four, five, or six other edges to form a subgraph.
When loops only contribute a half-count, including all
four loops permits us to select all six nonloop edges.
Hence, it appears that our “favorite” subgraphs are those
with four vertices. However, each such subgraph uses
loops and there is a small supply of loops. Hence, we also
require some subgraphs on five vertices and eight edges.
In the absence of loops, there are two such subgraphs,
as shown in Figure 1. The names G20 and G21 follow the
numbering in [3].

The existence problem for decompositions into either
of these graphs is open, although substantial partial re-
sults are known [9]. Using techniques from combinato-
rial design theory, we are able to establish recursive con-
structions that enable us to employ such graph decompo-
sitions for small values of m to produce decompositions
for larger values of m. Indeed, these constructions es-
tablish that if the graph decomposition problems can be
solved in a small finite number of cases it can be then
be solved for every m. This necessitates the generation
of graph decompositions for “small” orders. To illustrate
the type of problem encountered, we display in Table 1
a decomposition of K16 into isomorphic copies of G20 of
Figure 1.

In general, a decomposition of Km (or LKm) contains
m2

16 + O(m) subgraphs, so finding and presenting decom-
positions can be lengthy even for relatively small values
of m if no additional structure is assumed. Indeed, the
decomposition of Table 1 was found only after an exten-
sive backtrack search by computer. Fortunately, many
decompositions do exhibit an additional structure. To il-
lustrate this, we show a set of four graphs in Figure 2.

We interpret the vertex labels in each of these graphs
as elements of Zm, where m = 65. Let us denote a copy
of G20 as [a, b, c, d|e], where all edges are present ex-
cept for {c, e} and {d, e}. For example, the first graph
of Figure 2 is denoted by [0, 1, 22, 29|18]. To form the
decomposition of Km, which has 260 = 1

8

(
m
2

)
graphs in

it, we produce for each graph [a, b, c, d|e] in Figure 2
the m graphs [a + i, b + i, c + i, d + i|e + i] for i ∈ Zm.
Vertex labels are reduced modulo m whenever needed.
It is easy to verify that each edge appears in exactly one
of the 260 graphs that result, as follows: To check that
the pair {k, `} is in exactly one of these graphs, let us

FIG. 1. The two graphs.
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TABLE 1. Partition of K16 into G20.

{0,4} {0,5} {0,6} {0,7} {4,5} {4,6} {4,7} {5,6}
{0,8} {0,9} {0,10} {0,11} {8,9} {8,10} {8,11} {9,10}
{0,12} {0,13} {0,14} {0,15} {12,13} {12,14} {12,15} {13,14}
{1,2} {1,0} {1,3} {1,4} {2,0} {2,3} {2,4} {0,3}
{1,5} {1,7} {1,8} {1,9} {5,7} {5,8} {5,9} {7,8}
{1,6} {1,10} {1,12} {1,13} {6,10} {6,12} {6,13} {10,12}
{14,15} {14,1} {14,11} {14,4} {15,1} {15,11} {15,4} {1,11}
{2,5} {2,11} {2,12} {2,13} {5,11} {5,12} {5,13} {11,12}
{2,14} {2,7} {2,10} {2,9} {14,7} {14,10} {14,9} {7,10}
{6,8} {6,2} {6,15} {6,14} {8,2} {8,15} {8,14} {2,15}
{3,5} {3,10} {3,15} {3,14} {5,10} {5,15} {5,14} {10,15}
{3,6} {3,7} {3,11} {3,9} {6,7} {6,11} {6,9} {7,11}
{3,8} {3,4} {3,12} {3,13} {8,4} {8,12} {8,13} {4,12}
{4,11} {4,10} {4,13} {4,9} {11,10} {11,13} {11,9} {10,13}
{7,9} {7,13} {7,15} {7,12} {9,13} {9,15} {9,12} {13,15}

observe that {k, `} and {k+ i, `+ i} are in the same num-
ber of graphs; in other words, every two edges whose
endpoints have the same difference modulo m are in the
same number of graphs. Thus, it suffices to check that,
among the m−1

2 edges of the four graphs of Figure 2,
every difference modulo m is represented once (an edge
{k, `} accounts for two differences, namely, k−` mod m
and ` − k mod m). Since each of the graphs shown is
used to generate further graphs (in this case, m graphs
for each), we call each of the graphs shown a base graph
(under the action of Zm, i.e., addition modulo m). This
simplifies our task dramatically, since we can find and
present just the base graphs. In fact, the decomposition
of Figure 2 was easily found by a hand computation. We
shall use similar techniques for numerous small cases.

These “difference” techniques have been used exten-
sively, relating to the existence of cyclic designs and to
various graph labelings; see [6].

4. G-GROUP DIVISIBLE DESIGNS

In this section, we treat the cases when the ring size is
a multiple of eight. To do this, we need not only consider
decompositions of complete graphs, but also complete
graphs with specified “missing” complete subgraphs. To
make this precise, for a given number m of vertices, when
m =

∑s
i=1 giui, we write the partition of a set of size m

into ui classes of size gi for 1 ≤ i ≤ s by the exponential
notation g

u1
1 · · · g

us
s . We call the partition sizes the group

type. Now, let T = g
u1
1 · · · g

us
s be a group type for order

m. Then, we denote by G(T) the graph on m vertices
obtained by first identifying a partition of type T of the
vertices, calling the equivalence classes of the partition
the groups. Then, G(T) contains precisely those edges
whose endpoints are in different groups. Using graph
theoretic nomenclature, G(T) is a complete multipartite
graph, with T representing the sizes of the classes in the
partition.

FIG. 2. Partition of K65 into G20.

The basic idea of using decompositions of complete
multipartite graphs is to partition “almost all” edges of
LKn, leaving behind only those on the groups. In this
way, given partitions of the edges within each group, we
can partition the larger graph. When groups are small,
we need only develop partitions then for small complete
graphs. This technique of “filling in holes” is a standard
one in combinatorial design theory.

Let G be a class of graphs. A G-group divisible design
(GDD for short) of type T is a partition of all edges
of G(T) into graphs, so that each graph of the partition
is isomorphic to a graph in the class G. Our interest is
in {G20, G21}-GDDs, so we assume that G = {G20, G21}
unless explicitly stated otherwise. We permit group sizes
to equal 0 and also the number ui of groups of size gi

to be 0. We also permit that gi = gj for i ≠ j, so that,
for example, 45 is the same as 4441. Let us consider an
example: Let m = 20, s = 1, g1 = 4, and u1 = 5, so
that the group type T is 45. On the vertex set Z20, define
a set of five groups of size four as {i, i + 5, i + 10, i +
15} for 0 ≤ i ≤ 4. Now use the graph of Figure 3 as
the base graph under addition modulo 20 to form a set
of 20 graphs. These 20 graphs partition G(T), using the
groups defined. (This is also easily checked. Edges whose
endpoints have a difference which is a multiple of 5 are
inside the groups; all other differences modulo 20 appear
exactly once among the edges of the graph in Figure 3.)

A solution of a similar type is given for type 49 via
the base graphs of Figure 4. Here, the groups are formed
by edges having differences which are the multiples of 9.

If one attempts to employ this method for general G-
GDDs of type 4n, it does not work. To see this, calculate
the number of base graphs needed. Since G(4n) contains(

n
2

)
·42 edges, the number of graphs required is n(n−1).

If addition modulo 4n is to generate these graphs from
base graphs, then n−1

4 base graphs are needed so that
this variety of decomposition can exist only when n ≡ 1
(mod 4).

We therefore develop of variant of the technique to
treat further small cases. Instead of choosing the vertex

FIG. 3. Type 45 on Z20.

110 NETWORKS–2001



FIG. 4. Type 49 on Z36.

set to be Z4n, we employ the vertex set Z2n ×{0, 1}, con-
sisting of ordered pairs whose first component is from
Z2n and whose second component is from {0, 1}. We
write xi for the element (x, i) ∈ Z2n × {0, 1}. We can
again use base graphs, but in this case, each base graph
generates 2n graphs, obtained by repeatedly adding 1
modulo 2n to the first component. Groups can be chosen
as {xi, (x + n)i : i ∈ {0, 1}} for 0 ≤ x < n. Base graphs
for a decomposition of type 47 of this variety are given
in Figure 5; we leave the verification to the reader.

A decomposition obtained in a similar manner for
type 411 has the base graphs shown in Figure 6. Sim-
ilar solutions for types 415 and 419 are given in Table 2.

Employing Z2n × {0, 1} treats only those cases when
n is odd. We therefore develop a similar strategy to treat
small cases when n is even. To illustrate, let the point
set be Z4(n−1) together with four points {β0, β1, β2, β3}.
We use the notation (a, b, c, d)e to denote the graph iso-
morphic to G21 missing the edges {{a, c}, {b, d}}. When
a, b, c, d ∈ Z4(n−1), we denote by (a, b, c, d)β the base
graph generating the set of graphs (a+i, b+i, c+i, d+i)βi ,
where the entries are reduced modulo 4(n − 1) and the
subscript on β is reduced modulo 4. Then, if a, b, c, d
are all distinct modulo 4, this family of graphs con-
tains every edge of the form {x, βi} for x ∈ Z4(n−1) and
i ∈ {0, 1, 2, 3} exactly once. The remaining base graphs
only involve elements of Z4(n−1) and are developed un-
der addition modulo 4(n − 1) as before. A decomposi-
tion of this type of type 48 is shown in Figure 7. It
is essential that the graph involving β have all four re-
maining vertices distinct modulo 4, and we can check
that {0, 5, 7, 22} mod 4 = {0, 1, 3, 2}. To be precise, the
groups here are {i, i + (n − 1), i + 2(n − 1), i + 3(n − 1)}
for 0 ≤ i < n − 1, along with {β0, β1, β2, β3}.

A decomposition of type 412 obtained in the same
manner is shown in Figure 8.

We employ a variant to treat small cases when n ≡ 2
(mod 4). We essentially combine the idea of employing a

FIG. 5. Type 47 on Z14 × {0, 1}.

modulus for addition which is half the size with the use
of certain “extra” points. Take as vertex set Z2(n−1) ×
{0, 1} together with four “extra” vertices. When a base
graph does not involve an extra point, it is treated as
before. We use two conventions for specifying the extra
points. Suppose that a, b, c, d ∈ Z2(n−1) × {0, 1} so that
{a, b, c, d} contains one even element and one odd ele-
ment from each of Z2(n−1) × {0} and Z2(n−1) × {1}. Then,
the notation (a, b, c, d)α generates a base graph under ad-
dition modulo 2(n − 1) in which the α denotes two extra
elements, say α0 and α1. When addition is performed,
the subscript of α is computed modulo 2. It is again eas-
ily checked that this results in all pairs involving α0 and
α1 being employed exactly once. The second convention
is that the symbol ∞ denotes an element which is fixed
under the addition. When the symbol ∞ or α is used
in different base graphs of the same solution, the multi-
ple instances represent distinct symbols to be added; in
this sense, ∞ and α are used as notational conveniences
to indicate the way in which new symbols are added,
rather than representing the actual symbols to be added.
In each case, however, the extra elements are specified;
they form one of the groups. A solution of this variety of
type 410 appears in Figure 9 and similar decompositions
for types 414, 426, and 430 appear in Table 3.

We now describe a different type of construction for
G-GDDs. Let G be a graph which is regular of degree
d, that is, so that every vertex is in exactly d edges of
G. A 1-factor of G is a spanning subgraph of G which is
regular of degree 1. A 1-factorization of G is a partition
F1, . . . , Fd of the edges of G into 1-factors. Whenever gu
is even, G(gu) has a 1-factorization [7]. We use this to
establish the following:

Lemma 1. Let g ≥ 1 and u ≥ 2 be integers. If gu is
even, then there is a {G21}-GDD of type (2g)u(g(u − 1))1.

Proof. Let F1, . . . , Fg(u−1) be a 1-factorization of
G(gu) on vertex set X with groups G1, . . . , Gu. We form
the GDD on vertex set (X × {0, 1}) ∪ {γ1, . . . , γg(u−1)} as

FIG. 6. Type 411 on Z22 × {0, 1}.
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TABLE 2. Solutions of type 4n, n odd.

415, Z30 [00, 50, 140, 191|130] [00, 70, 10, 30|111]
[80, 180, 01, 111|41] [130, 240, 01, 121|71]
[50, 230, 01, 141|131] [01, 31, 71, 131|51]
[01, 11, 91, 290|30]

419, Z38 [01, 11, 41, 111|141] [321, 371, 00, 270|250]
[41, 261, 00, 120|200] [00, 180, 91, 351|111]
[00, 300, 131, 331|81] [00, 10, 50, 251|160]
[00, 70, 360, 341|130] [01, 171, 21, 81|150]
[00, 181, 30, 170|280]

follows: Whenever {a, b} is an edge of the 1-factor Fc,
form the graph (a0, b0, a1, b1)γc in the GDD. Edges of the
form {γc, γd} do not appear in any such graph, so use
such elements to form the group of size g(u − 1). Simi-
larly, if x, y ∈ Gz, we find no edges of the form {xi, yj}
in the graphs, so let Gi × {0, 1} be groups for 1 ≤ i ≤ u.
It is now easily verified that edges inside groups appear
in none of the chosen graphs, but that every other edge
appears in exactly one.

Corollary 1. There is a G-GDD of type 44.

Proof. Apply Lemma 1 with g = 2 and u = 3 to
produce a G-GDD of type 4341, that is, 44.

It is not difficult to verify that no G-GDD of type
42 or 43 exists, and we have now produced a number of
other G-GDDs of type 4n. However, we need a new tech-
nique to handle the case of general values of n. To do
this, we employ another class of combinatorial designs.
A pairwise balanced design of order v and blocksizes K,
denoted (v, K)-PBD, is a pair (X, B). X is a set of v ele-
ments, and B is a set of subsets (blocks) of X for which
|B| ∈ K for each B ∈ B. For every 2-subset of elements
{x, y} ⊂ X, there is exactly one block containing x and
y. See [1, 8] for more information on PBDs. We employ
PBDs as follows:

Lemma 2. If a (n, K)-PBD exists, and for each k ∈ K
there exists a G-GDD of type 4k, then there exists a G-
GDD of type 4n.

Proof. Let (X, B) be the PBD. We construct the GDD
on X×{0, 1, 2, 3} with groups {x}×{0, 1, 2, 3} for x ∈ X
as follows: For each block B ∈ B, place on the vertices
in B × {0, 1, 2, 3} a copy of the G-GDD of type 4|B|,

FIG. 7. Type 48 on Z28.

aligning its groups on {x} × {0, 1, 2, 3} for x ∈ B. The
verification is routine.

Lemma 2 is a simple version of a powerful tech-
nique known as Wilson’s Fundamental Construction
(see [8]). To use it, we need some PBDs. Let K =
{4, 5, 7, 8, 9, 10, 11, 12}, noting that we have presented G-
GDDs of type 4k for each k ∈ K already. Then, an (n, K)-
PBD exists for all positive integers n except when n is 2,
3, 6, 14, 15, 18, 19, 23, 26, 27, or 30; see [1]. We have
seen examples for 14, 15, 19, 26, and 30; solutions for
18, 23, and 27 appear later in Corollary 3 and Corollary
4. Applying Lemma 2, we establish the needed result:

Theorem 1. A G-GDD of type 4n exists when n is a
positive integer except when n is 2 or 3 and, possibly,
when n = 6.

Let us at long last return to the SONET/WDM appli-
cation and examine the consequences of Theorem 1. A
G-GDD of type 4n contains n(n − 1) graphs on five ver-
tices and eight edges each. These account in the SONET
ring of size 8n for n(n−1) wavelengths at a drop cost of
10 each. On the vertices of each group, we place an LK4

to handle the remaining edges and loops. This yields n
further graphs (wavelengths), each having drop cost 8.
We conclude the following:

Theorem 2. Let n be a positive integer, n /∈ {2, 3, 6}.
Then, there is an (8n, n2, 8)-assignment obtained from
grooming primitive rings, which has a total drop cost
of 10n2 − 2n.

Theorem 2 represents a savings, for ring sizes a mul-
tiple of eight, of 22n2 − 14n over the worst possible
grooming having a drop cost of 32n2 − 16n. This worst
cost is obtained by choosing all graphs associated with
wavelengths to have all edges disjoint. But does our ap-
proach represent the best savings? When groomings are
restricted to the same primitive rings, the answer is af-
firmative. This can be verified by an exhaustive search
to establish that on nine or fewer points, cyclically or-
dered, there is no way to place eight edge-disjoint prim-
itive rings each of length four. In addition, there is no
way to place eight primitive rings of any kind on fewer
than eight points. It follows that the best savings is ob-
tained by choosing n unions consisting of six 4-cycles
and two 2-cycles and the remainder consisting of eight
4-cycles. This corresponds to the savings demonstrated
here.

FIG. 8. Type 412 on Z44.
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FIG. 9. Type 410 on Z18 × {0, 1}.

It may happen that groomings of other primitive rings
yield a better savings. However, in the unions of eight
primitive rings to be formed, the average number of pairs
to be directly connected is 32(n−1)/n and so approaches
32 as n increases. To see this, divide the n(n −1)/2 pairs
to be connected in one direction among the n2/64 wave-
lengths used; the number of wavelengths is determined
by dividing the number of wavelengths used for the prim-
itive rings, n2/8, by the number of connections to the
groomed onto a wavelength, g = 8. An exhaustive search
establishes that if the union of eight primitive rings, each
of arbitrary length at least three, employs nine or fewer
points, then the number of pairs directly connected is at
most 31. This serves as some evidence that the unions
employed above, having 10 points and 32 pairs directly
connected, yield good groomings.

5. RING SIZE A MULTIPLE OF FOUR

In this section, we address the remaining cases when
the SONET ring has a size which is a multiple of four
but not eight. Our task is to partition LKm when m ≡

TABLE 3. Solutions of type 4n, n even.

414, Z26 (00, 10, 251, 201)α (00, 90, 51, 161)α
[101, 171, 00, 80|220] [00, 30, 61, 81|71]
[01, 41, 11, 101|121] [231, 00, 50, 120|110]
[251, 00, 60, 100|240]

426, Z50 (00, 50, 31, 21)α (00, 130, 91, 41)α
[00, 180, 10, 70|210] [00, 140, 151, 351|81]
[00, 401, 90, 240|220] [121, 341, 00, 20|50]
[00, 471, 80, 200|100] [131, 451, 00, 40|250]
[01, 61, 21, 191|161] [191, 301, 00, 160|80]
[31, 261, 01, 121|81] [00, 190, 361, 431|421]
[00, 230, 281, 491|61]

430, Z58 (00, 250, 221, 351)α (00, 230, 191, 501)α
[00, 100, 280, 371|431] [01, 121, 261, 380|10]
[00, 260, 281, 561|421] [00, 220, 251, 451|51]
[141, 381, 00, 70|250] [00, 160, 221, 401|261]
[00, 20, 191, 361|511] [00, 140, 81, 151|181]
[391, 481, 00, 270|530] [60, 90, 00, 170|210]
[01, 11, 31, 111|231] [41, 251, 01, 191|201]

FIG. 10. Type 4621 on Z12 × {0, 1}.

2 (mod 4). Now, calculating the number of edges plus
half the number of loops in LKm, we obtain m2

2 . If we
write m = 4t + 2, this number is (2t + 1)(4t + 2) =
8t2 + 8t + 2. We therefore need t2 + t + 1 graphs in
total. We can employ a partition of m into t parts of
size 4 and one part of size 2 and place LK4 on each
of the first t parts and LK2 on the last. This accounts
for t + 1 graphs using 8t + 2 from the edge total and
contributing 10t + 4 to the drop cost. More importantly,
to complete the grooming, we now need only produce
a G-GDD of type 4t21, aligning the groups on the parts
chosen earlier. Hence, we concentrate next on producing
G-GDDs of the type 4t21. We use the same strategy as
before for a number of examples; see Figures 10–11 and
Table 4.

In the decomposition of Figure 11, we employ a new
notation, namely, (a, b, c, d)∞. Whenever this notation is
used, we require that (a, b, c, d) be of the form (x0, y1, (x+
t)0, (y + t)1), where addition is modulo 2t. Then, adding
t to each entry produces the same graph again, so this
base graph only makes t different graphs, not 2t. Hence,
it does employ only one extra point, consistent with the
choice of the symbol ∞.

A {G20}-GDD of type 4421 can be produced as fol-
lows: Form the (16,{4})-PBD with blocks in Table 5.
Now, form eight graphs by adding an element ∞ adja-
cent to the first two elements in each of the first eight
quadruples given. Form eight further graphs by adding
an element ∞′ adjacent to the first two elements in each
of the next eight quadruples given. The final four quadru-
ples are deleted to form four groups of size four, and the
group of size two is {∞, ∞′}.

Taking g = 2 and u = 2 produces a G-GDD of type
4221 using Lemma 1, leading to a useful corollary:

Corollary 2. There is a G-GDD of type 4x(2x−2)1 when-
ever x ≥ 2. If, in addition, x is even and there is a G-
GDD of type 4(x/2)−121, then there is a G-GDD of type
4(3x/2)−121.

FIG. 11. Type 4721 on Z14 × {0, 1}.
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FIG. 12. Type 4921 on Z18 × {0, 1}.

Proof. For the first statement, apply Lemma 1 with
u = x and g = 2. Place the GDD of type 4(x/2)−121 on
the elements of the group of size 2x − 2.

Taking x ∈ {6, 10, 16} yields a G-GDD of type
4t21 for t ∈ {8, 14, 23}. Next, we employ a variant of
Lemma 1:

Lemma 3. Let t be an integer, and suppose that a G-
GDD of type 4ty1 exists. Then, there exists a G-GDD of
type 42t(2t + y)1. If, in addition, 2t + y = 4s + z and a
G-GDD of type 4sz1 exists, then a G-GDD of type 42t+sz1

exists.

Proof. Let F1, . . . , F2t be a 1-factorization of the
complete bipartite graph K2t,2t, with vertex classes A and
B each of size 2t. Let C = {γ1, . . . , γ2t} be disjoint from
A and B. We form a set of graphs on ((A∪B)×{0, 1})∪C
with groups A×{0, 1}, B ×{0, 1}, and C, as follows: For
each edge {a, b} in the K2t,2t, find the 1-factor Fc con-
taining the edge. Then, add the graph (a0, b0, a1, b1)γc . At
this point, we have formed a G-GDD of type (4t)2(2t)1.

Now, let D be a set of y further vertices. On (A ×
{0, 1})∪D, and also on (B×{0, 1})∪D, place the graphs
of a G-GDD of type 4ty1 aligning the group of size y on
D in each case. The result is a G-GDD of type 42t(2t+y)1.
For the final statement, place on C ∪ D the graphs of a
G-GDD of type 4sz1.

Corollary 3. There exist G-GDDs of type 41021, 41221,
418, 423, and 43321.

Proof. Apply Lemma 3 with (t, y, s, z) = (4,2,2,2),
(5,0,2,2), (7,2,4,0), (8,12,7,0), and (13,4,7,2). We have
seen all of the ingredients used except the G-GDD of
type 48121. To produce it, apply Lemma 3 with t = 4,
y = 4, s = 0, and z = 12.

We now introduce the most powerful construction that
we need:

Lemma 4. Let m ≥ 4 be a positive integer, m ≠ 6, 10.
Let y be an even integer satisfying 0 ≤ y ≤ 8m − 2.
Then, there exists a G-GDD of type 44my1.

Proof. First, we collect some needed ingredients: We
write y = z + γ, where γ ∈ {0, 2m − 2} and 0 ≤ z ≤
6m. Then, we write z = z1 + z2 + · · · + zm, where zi ∈
{0, 2, 4, 6} for 1 ≤ i ≤ m. Then, we have seen G-GDDs
of type 44z1

i . In addition, Theorem 1 gives a G-GDD of
type 4m, and Lemma 3 gives one of type 4m(2m − 2)1.

To perform the construction, we start with a {K5}-
GDD of type m5 (this exists under the stated conditions
on m; indeed, it is equivalent to “three mutually orthog-
onal latin squares of side m”; see [5]). Let A, B, C, D, E
be the five groups of size m, and let E = {e1, . . . , em}.
We begin the construction on vertex set ((A ∪ B ∪ C ∪
D) × {0, 1, 2, 3}) ∪ {{ei} × {1, 2, . . . , zi} : 1 ≤ i ≤ m}.
When zi = 0, the product {ei}×{1, 2, . . . , zi} contains no
vertices. For each graph K5 on vertex set {a, b, c, d, ei}
in the {K5}-GDD, we place the graphs of a G-GDD of

TABLE 4. Solutions of type 4n21 over Z2n.

41121 (00, 11, 110, 121)∞ [00, 90, 61, 161|181]
[00, 21, 100, 151|∞] [00, 80, 10, 211|31]
[00, 20, 60, 101|50] [11, 31, 01, 81|71]

41321 (00, 11, 130, 141)∞ [00, 171, 50, 201|∞]
[00, 10, 120, 231|61] [00, 100, 80, 31|91]
[00, 30, 90, 71|70] [01, 61, 81, 160|80]
[01, 11, 51, 121|101]

41521 (00, 11, 150, 161)∞ [00, 221, 90, 181|∞]
[30, 40, 00, 281|51] [00, 20, 51, 191|61]
[121, 241, 00, 40|10] [21, 131, 01, 30|60]
[10, 130, 00, 60|210] [61, 91, 01, 11|161]

41721 (00, 11, 170, 181)∞ [00, 61, 20, 150|∞]
[21, 91, 01, 51|151] [111, 191, 01, 11|80]
[00, 50, 120, 271|60] [00, 140, 100, 331|161]
[01, 141, 40, 200|220] [00, 30, 110, 241|81]
[01, 121, 50, 140|30]

41921 (00, 11, 190, 201)∞ [00, 101, 60, 241|∞]
[00, 180, 80, 351|161] [70, 160, 00, 371|11]
[00, 140, 10, 291|261] [121, 181, 01, 250|40]
[01, 21, 171, 330|290] [01, 11, 111, 50|360]
[20, 170, 00, 50|60] [01, 31, 71, 161|81]

42121 (00, 11, 210, 221)∞ [00, 31, 130, 401|∞]
[30, 200, 00, 110|371] [00, 40, 140, 190|160]
[11, 201, 01, 131|281] [21, 61, 01, 161|330]
[00, 10, 61, 241|361] [00, 20, 91, 201|161]
[81, 251, 00, 60|380] [00, 70, 41, 371|331]
[281, 311, 00, 180|320]

42521 (00, 11, 250, 261)∞ [00, 311, 120, 341|∞]
[00, 10, 91, 171|481] [00, 40, 100, 230|180]
[00, 30, 110, 200|240] [01, 21, 71, 161|171]
[70, 220, 00, 491|11] [111, 241, 01, 220|370]
[121, 221, 01, 290|90] [01, 11, 191, 150|211]
[00, 20, 141, 201|401] [111, 151, 00, 50|200]
[231, 461, 00, 160|410]

43121 (00, 11, 310, 321)∞ [00, 241, 110, 601|∞]
[00, 30, 100, 290|200] [00, 40, 90, 270|280]
[01, 21, 71, 301|291] [01, 11, 121, 251|201]
[00, 10, 41, 101|561] [71, 161, 00, 20|10]
[291, 441, 00, 80|610] [501, 531, 00, 120|280]
[481, 521, 00, 130|60] [00, 140, 331, 541|611]
[201, 371, 00, 250|480] [00, 300, 111, 271|581]
[00, 60, 210, 231|220] [101, 181, 01, 540|321]
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TABLE 5. (16,{4})-PBD.

0,4,8,12 1,5,9,13 2,6,10,14 3,7,11,15
0,5,10,15 1,4,11,14 2,7,8,13 3,6,9,12
0,6,11,13 1,7,10,12 2,4,9,15 3,5,8,14
0,7,9,14 1,6,8,15 2,5,11,12 3,4,10,13
0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

type 44z1
i on groups {a} × {0, 1, 2, 3}, {b} × {0, 1, 2, 3},

{c}×{0, 1, 2, 3}, {d}×{0, 1, 2, 3}, and {ei}×{1, 2, . . . , zi}.
Next, we add γ further vertices V. For each X ∈

{A, B, C, D}, we place on (X ×{0, 1, 2, 3})∪V the graphs
of a G-GDD of type 4mγ1, aligning groups of size four
on {x} × {0, 1, 2, 3} for x ∈ X and the group of size γ
on V. The verification is routine.

A simple application follows:

Corollary 4. There is a G-GDD of type 427.

Proof. Apply Lemma 4 with m = 5 and y = 28 to
produce a G-GDD of type 420281. Then, fill the group of
size 28 with a G-GDD of type 47.

We use primarily Lemma 4 to prove the main result:

Theorem 3. There exists a G-GDD of type 4n21 for all
n ≥ 0 except when n = 1, n = 3, and possibly n = 5.

Proof. We have presented such G-GDDs for all n <
16 with the exception of 1, 3, and 5 and also for n =17,
19, 21, 23, 25, 31, and 33. Simple counting establishes
nonexistence when n is 1 or 3. Now, whenever n ≥ 16
and n is not 17, 19, 21, 23, 25, 31, or 33, it is an easy
matter to choose integers m and s so that n = 4m+s, 0 ≤
s ≤ 2m−1, m ≥ 4 and m /∈ {6, 10} and a G-GDD of type
4s21 exists. The latter condition holds inductively unless
s is 1, 3, or 5. Then, form a G-GDD of type 44m(4s + 2)1

using Lemma 4 and fill the group of size 4s + 2 with a
G-GDD of type 4s21.

Now, we return again to the SONET/WDM applica-
tion. We can calculate the drop cost of the groomings
corresponding to the graph decompositions of Theorem
3 to obtain the following:

Corollary 5. When n /∈ {1, 3, 5}, there exists an (8n +
4, n2 + n + 1, 8)-grooming of primitive rings with total
drop cost 10n2 + 8n + 4.

This appears to be the best drop cost that can be ob-
tained from groomings of these primitive rings, when the
ring size is a multiple of four but not eight.

6. CONCLUSIONS

The techniques developed here using combinatorial
design theory are somewhat involved, but provide a gen-

eral method for prescribing a grooming which realizes
low drop cost. The cases when the ring size is odd can be
treated by similar methods, but the structures involved
are somewhat different from the case treated here. In
the remaining cases when the ring size is even but not
a multiple of four, the graph decompositions that arise
are the same as those treated here. However, the need to
produce a large number of small “ingredients” for that
situation make its presentation much lengthier. In fact,
the need for numerous solutions for small cases limits
the general application of the methods developed here
for determining exact minimum drop costs. We do not
expect that it is reasonable to expect to generate all of
the small solutions needed for general g. Nevertheless,
the techniques developed can be much more easily used
to obtain solutions whose drop cost is in some sense
near the minimum. To illustrate this, with the solutions
given here, it is easy to produce solutions for the ring
sizes that are not multiples of four, which are “near” op-
timal in terms of drop cost. Indeed, a simple strategy
is to first produce a solution for the next larger multi-
ple of four, adding at most three “virtual” sites on the
SONET ring. From this solution, we preserve all wave-
length assignments that involve none of the virtual sites
as drops. The connections involving the virtual sites are
then deleted. The increase in ring size results in an in-
crease in the number of wavelengths used; hence, as a
final step, those remaining connections that involved one
of the virtual sites as a drop are reassigned to wave-
lengths using the fewest wavelengths possible, but with
no concern about the drop cost on these wavelengths.
Since the number of wavelengths involving a virtual site
is linear in the ring size, while the number that do not
involve a virtual site grows quadratically, the dominant
(quadratic) term in the drop cost is the same in the ap-
proximate solution and the exact solution. Hence, as ring
size increases, this approximate solution exhibits a drop
cost whose ratio to the minimum drop cost approaches
1. Using virtual sites, we can obtain approximate so-
lutions without having complete exact solutions for all
orders.
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