
Theoretical Computer Science 276 (2002) 33–50
www.elsevier.com/locate/tcs

Splittable tra c partition in WDM=SONET rings
to minimize SONET ADMs

Gruia C+alinescu 1, Peng-Jun Wan ∗

Department of Computer Science, Illinois Institute of Technology,
Chicago, IL 60616, USA

Received 24 August 2000; received in revised form 11 December 2000; accepted 16 January 2001
Communicated by D.-Z. Du

Abstract

SONET ADMs are the dominant cost factor in the WDM=SONET rings. Recently several
articles (Belvaux et al., European J. Oper. Res. 108 (1) (1998) 26–35; C+alinescu and Wan,
Tra c partition in WDM=SONET rings to minimize SONET ADMs, submitted for publication;
Gerstel et al., Proc. IEEE INFOCOM’98, vol. 1, pp. 94–101; Liu et al., Proc. INFOCOM, vol.
2, 2000, pp. 1020–1025; Sutter et al., Oper. Res. 46 (5) (1998) 719–728) proposed a number
of heuristics for tra c partition so as to use as few SONET ADMs as possible. Most of these
heuristics assumes wavelength-continuity, i.e., the same wavelength is allocated on all of the
links in the path established for a tra c stream. It was Arst observed and argued by Gerstel
et al. that the number of ADMs can be potentially reduced by allowing a tra c stream to be
locally transferred from one ADM in a wavelength to another ADM in a diBerent wavelength at
any intermediate node, in other words, the tra c streams are splittable. In this paper, we study
two variations of this minimum ADM problem with splittable tra c streams: all tra c streams
have prespeciAed routings, and all tra c streams have no prespeciAed routings respectively. Both
variations are shown to be NP-hard. For the former variation, a heuristic with approximation
ratio at most 5=4 is proposed. For the latter variation, a similar heuristic with approximation
ratio 3=2 is proposed. c© 2002 Published by Elsevier Science B.V.

Keywords: Approximation algorithm; Wavelength division multiplexing (WDM); Optical
networks; Synchronous optical networks (SONET); Add-drop multiplexer (ADM)

1. Introduction

Wavelength division multiplexing=synchronous optical networks (WDM=SONET)
rings is a very attractive network architecture that is being deployed by a growing
number of telecom carriers. In this network architecture, each wavelength channel

∗ Corresponding author.
E-mail addresses: calinesc@cs.iit.edu (G. C+alinescu), wan@cs.iit.edu (P.-J. Wan).
1 Work performed in part at Georgia Institute of Technology and supported in part by NSF grant

CCR-9732746.

0304-3975/02/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S0304 -3975(01)00101 -3

34 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

carries a high-speed (e.g., OC-48) SONET ring [8]. The key terminating equipments are
optical add-drop multiplexers (OADMs) and SONET add-drop multiplexers (ADMs).
Each node is equipped with one OADM. The OADM can selectively drop wavelengths
at a node. Thus if a wavelength does not carry any tra c from or to a particular node,
the OADM allows that wavelength to optically bypass that node rather than being elec-
tronically terminated. Consequently, in each SONET ring a SONET ADM is required
at a node if and only if it carries some tra c terminating at this node. Therefore, the
SONET ADMs required by a set of tra c streams is determined by the routing and the
wavelength assignment to them, i.e., a proper partition of the tra c streams into subsets
such that each subset can be carried in a single wavelength. As the SONET ADMs
are the dominant cost factor in the WDM=SONET rings, several articles [2, 3, 6, 10, 14]
have proposed a number of heuristics for tra c partition so as to use as few SONET
ADMs as possible. Most of these heuristics assumes wavelength-continuity, i.e., the
same wavelength is allocated on all of the links in the path established for a tra c
stream. Two versions were considered. In the Arst version, all tra c streams have pre-
determined routings and thus can be treated as circular arcs along a ring. This version
can be described mathematically as follows:
• Instance: A set of circular-arcs A along a (clockwise) ring.
• Solution: A proper partition of A, �= {A1; A2; : : : ; Aw}, such that for any 16 i 6 w
all arcs in each Ai are non-intersecting.

• Cost: The cost of each Ai is the number of diBerent nodes of the ring that are the
endpoints of the arcs in Ai, and the cost of the partition � is the sum of the costs
of Ai for all 16 i 6 w. The minimum cost over all proper solutions is called the
minimum ADM cost of A.

In the second version, all tra c streams have no predetermined routings. Whether the
underlying physical ring network is a bidirectional line-switched ring with two Abers
(BLSR=2) or a bidirectional line-switched ring with four Abers (BLSR=4) [8], this
version can be reduced to the following equivalent problem:
• Instance: A set of chords C along a (clockwise) ring.
• Solution: A proper partition of C, �= {C1; C2; : : : ; Cw}, such that for any 16 i 6
w all chords in each Ci can be routed as non-intersecting arcs over the ring.

• Cost: The cost of each Ci is the number of diBerent nodes of the ring that are the
endpoints of the chords in Ci, and the cost of the partition � as the sum of the
costs of Ci for all 16 i 6 w. The minimum cost over all proper solutions is called
the minimum ADM cost of C.
Indeed, if each tra c stream is symmetrically duplex and its two portions in opposite

directions must be routed along the same path (in opposite directions), we can treat
the two working Aber rings as one (clockwise) ring, and each tra c stream as a
(undirected) chord. Otherwise, each tra c stream has to be represented by a simplex
tra c demand from its origin node to its destination node. Consider a simplex tra c
demand from node i to node j. The above formulation uses instead a (undirected) chord
with endpoints i and j. The ring of the above formulation is oriented clockwise, as all
arcs are clockwise. Choosing the clockwise ring for the tra c demand corresponds to

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 35

replacing the chord (i; j) with the arc with origin i and termination j, while choosing
the counterclockwise ring for the demand corresponds to replacing the chord (i; j) with
the arc with origin j and termination i. One can check that any valid solution in one
formulation corresponds to a valid solution in the other formulation.
Both of the above two variations were proven to be NP-hard [3, 10]. The best known

approximation ratios for both variations are both 3=2 [3].
Most previous theoretical on wavelength assignment in optical networks concentrated

on minimizing the number of wavelengths, with or without routing [9, 12, 11], maxi-
mizing the number (or weighted proAt) of tra c demands which can be routed using a
given number of wavelengths [1], or minimizing the maximum load when routing is not
prespeciAed [17, 13]. However, as argued in [6, 4], often there are enough wavelengths,
and in this case the goal should be minimizing the number of ADM devices.
Gerstel et al. [7] showed that minimizing the number of SONET ADMs is intrinsi-

cally diBerent from minimizing the number of wavelengths, and there exist cases where
the two minima cannot be simultaneously achieved.
It was Arst observed and argued in [6] that the number of ADMs can be potentially

reduced by allowing a tra c stream to be locally transferred from one ADM in a
wavelength to another ADM in a diBerent wavelength at any intermediate node; in
other words, the tra c streams are splittable. For this splittable variation, we also
consider two versions depending whether the tra c streams have prespeciAed routings
or not. The arc version with splits can be stated as follows:
• Instance: A set of circular-arcs A along a (clockwise) ring.
• Solution: A choice of splitting each arc of A, thus obtaining A′, and then a proper
partition of A′, �= {A′

1; A
′
2; : : : ; A

′
w}, such that for any 1 6 i 6 w all arcs in each

A′
i are non-intersecting.

• Cost: The cost of each A′
i is the number of diBerent nodes of the ring that are the

endpoints of the arcs in A′
i , and the cost of the partition � is the sum of the costs

of A′
i for all 16 i 6 w. The minimum cost over all proper solutions is called the

minimum ADM cost of A with splittings.
The chord version with splits can be stated as follows:
• Instance: A set of chords C along a (clockwise) ring.
• Solution: A choice of routing each chord of C, thus obtaining a set of arcs A; then
a choice of splitting each arc of A, thus obtaining A′; and Anally a proper partition
of A′, �= {A′

1; A
′
2; : : : ; A

′
w}, such that for any 1 6 i 6 w all arcs in each A′

i are
non-intersecting.
• Cost: The cost of each A′

i is the number of diBerent nodes of the ring that are the
endpoints of the arcs in A′

i , and the cost of the partition � is the sum of the costs
of A′

i for all 16 i 6 w. The minimum cost over all proper solutions is called the
minimum ADM cost of C with split.
Notice that in the chord version, we do not allow the transferring of a tra c from

a ring in one direction to the other ring in the opposite direction for fault protection
reasons. This restriction also make this formulation applicable to both BLSR=2 and
BLSR=4, to both symmetric=full-duplex tra c and simplex tra c.

36 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

The beneAt of splitting is illustrated by an example presented in [6] for the arc
version with splits. In this example, the optimum with splits is 3=4 the optimum without
splits. In fact, optimum with splits could be 2=3 the optimum without splits, as shown
by the following example: A = {a1; a2; a3} over a 3-node ring, with a1 = (0; 2) (here
(i; j) represents the arc from node i to node j), a2 = (2; 1), and a3 = (1; 0). The optimum
without splits is 6, while with splits a solution of 4 can be obtained by splitting a2 into
a′2 = (2; 0) and a

′′
2 = (0; 1). After the splitting, an optimal partition consists of {a1; a′2}

and {a′′2 ; a3}, see Fig. 1.
Actually, the example above is extreme, in the sense that any solution with splits can

be converted, by simply putting alone in a wavelength any arc which is split, into a
solution without splits of cost at most 50% bigger. But how the two costs of optimum
relate is not as interesting as how the best solutions we can And relate.
Based on the hardness result obtained in [3, 10], we show that Anding an optimal

solution with splits is also NP-hard, in both the prespeciAed and the non-prespeciAed
routing versions. Thus, we are interested in approximation algorithms. A heuristic called
cut-Arst was proposed in [6] for the arc version with splits. However, little is known
about its approximation ratio. This paper introduces a new polynomial-time approxi-
mation algorithm for wavelength assignment to splittable lightpaths over WDM rings.
The algorithm combines greedy ideas with Eulerian rounding, a technique similar to
the cut-Arst heuristic of [6]. We prove our algorithm has approximation ratio at most
5=4. An example shows that the new algorithm has approximation ratio at least 10=9.
The Eulerian rounding technique can also be applied to the case when there is a choice
for routing, yielding an algorithm with approximation ratio exactly 3=2. By compari-
son, when lightpaths are not splittable, the best known algorithm [3] has approximation
ratio in between 4=3 and 3=2.

Fig. 1. Arc a2 is split into a′2 and a
′′
2 to obtain a solution with splits of cost 4.

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 37

This paper is organized as follows: in Section 2, we present the formal deAnition
of the problem of assigning wavelengths to splittable lightpaths over WDM rings,
with the objective of minimizing the number of SONET ADMs. In Section 3 we
present the proofs that both versions (routing is prespeciAed or not) of ring generation
with splittable lightpaths are NP-hard. In Section 4 we present the new approximation
algorithm and prove that its approximation ratio is in between 10=9 and 5=4. We
also propose some practical improvements to the algorithm. In Section 5 we present
the adaptation of our algorithm to the version when routing is not prespeciAed. We
conclude with Section 6, in which we also discuss the simulation results of the new
algorithm on some randomly generated instances.
We mention that a version of the new algorithm was presented, without proofs, in

our survey paper [16].

2. Preliminaries

We assume that a (clockwise) ring network consists of n nodes numbered clockwise
by 0; 1; : : : ; n− 1. All arithmetic involving nodes is performed implicitly using modulo
n operations. The link from the node i to node i + 1 in the ring is referred to as link
i. A circular arc a over a ring is represented by an ordered pair (o(a); t(a)), where
o(a) is the origin of a and t(a) is the termination of a. A chord in a ring is speciAed
by an unordered pair (i; j) where i and j are the two endpoints of the chord.
Two arcs are said to be intersecting (or overlapping) if they contain a common link

of the ring, disjoint if they do not contain any common node of the ring, adjacent if
they are not intersecting but share at least one endpoint, and complementary if they
are not intersecting and share two endpoints. A sequence of circular arcs is called a
chain if the termination of each circular arc, except the last one, is the origin of the
subsequent circular arc. If no two arcs in a chain overlap, the chain is called valid.
If the termination of the last circular arc is the also the origin of the Arst circular
arc, the chain is called closed, otherwise it is called open. The length of a chain P is
the number of arcs in P and is denoted by |P|. A chain of length ‘ is called as an
‘-chain. The cost of a chain is the number the nodes in the chain. For a closed chain,
the length and cost coincide, while for an open chain, the cost is one more than the
length.
Splitting a tra c stream corresponds to the following deAnition for splitting arcs: the

arc a is replaced by several arcs a1; a2; : : : ; ak such that o(a)= o(a1), t(a)= t(ak), and
t(ai)= o(ai+1) for any 16i¡k. To make notation simple, replacing an arc by itself is
also a split, called a nsplit. An arc which is the result of an nsplit is called original.
A split which is not a nsplit is called a realsplit. An arc which results from a realsplit
is called fragment.
For both arc-version and chord version of the minimum ADM cost problem, with

or without splits, we can restrict the solutions to partitions of a set of arcs into valid
chains, referred to as valid chain generations. This restriction does not change the

38 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

optimum value, but may require more wavelengths. The wavelength requirement by any
solution can be further reduced by treating each chain as an arc and applying Tucker’s
algorithm for circular-arc coloring [15]. Notice that the cost of chains produced a valid
chain generation is the number of input arcs or chords plus the number of open chains
plus the number of splits.
More preliminary deAnitions must be introduced before presenting the algorithm.

Given a set of arcs S, the surplus of a node i with respect to S is deAned as follows:

surS(i) = |{s ∈ S: t(s) = i}| − |{s ∈ S: o(s) = i}|:

Note that the surplus might be negative and in fact
∑n−1

i= 0 surS(i)= 0. An open chain
P= 〈a1; a2; : : : ; ak〉 in S such that surS(o(a1))¡0 and surS(t(ak))¿0 is called tight
with respect to S, or simply tight, when S is understood as being a current set of arcs.
The de4ciency of a node i is defS(i)=

1
2 |surS(i)|. The deAciency of a set of arcs S is

def(S)=
∑n−1

i=0 defS(i): Then |S|+ def(S) is a lower bound on the minimum ADM
cost required by S.
Given a set of chords C, the de4ciency of a node i is 0 if the node has even degree,

1
2 if the node has odd degree. The deAciency of a set of chords C is deAned as follows:
def(C)=

∑n−1
i=0 defC(i): Then |C|+def(C) is a lower bound on the minimum ADM

cost required by S.
For the purpose of the proof, we use arcs which are not in A. Such an auxiliary arc

is called a fake, and has an origin and a termination like any other arc. We divide
the set of arcs in two: red arcs and blue arcs. An arc is red if it does not contain the
link n− 1, and blue otherwise. Given a set of arcs S, the blue number of S, denoted
by b(S), is the number of blue arcs in S. Sometimes we write b(a) instead of b({a}).
Note that any valid closed chain has blue number one, while a valid open chain has
blue number at most one.

3. NP-hardness results

The NP-hardness proofs in [3, 10] implies that it is NP-complete to determine, for
both the arc-version and chord version of the minimum ADM cost problem with splits,
whether the optimum equals the number of arcs or chords, respectively. Notice that
for the arc-version with splits, optimum equals the number of arcs if and only if the
set of arcs can be partitioned into valid closed chains without any splits; and for the
chord-version with splits, again optimum equals the number of chords if and only if
the set of chords can be oriented and then partitioned into valid closed chains without
any splits. Thus we immediately obtain the following hardness result:

Theorem 1. Both the arc-version and chord version of the minimum ADM cost prob-
lem with splits are NP-hard.

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 39

4. The arc-version with splits

We start by describing the last and most interesting phase of the algorithm, Eulerian
rounding. Let S be a set of arcs. We consider two cases. In the Arst case, def(S)¿0.
We Arst add a set of def(S) fake arcs F such that def(S ∪F)= 0. This can be easily
done by adding one by one fake arcs with the origin being a node of positive surplus
and the termination being a node of negative surplus, thus each fake arc decreasing
the deAciency by one. Now the directed graph with edges S ∪F is Eulerian. Choosing
any Eulerian tour and then removing all fake arcs results in def(S) open chains. For
every invalid (open) chain P, break it into valid chains as follows (see Fig. 2): for
each circular arc a in P that passes through o(P), the origin of P, split it into two arcs

a′ = (o(a); o(P)); a′′ = (o(P); t(a)):

After these splittings, the invalid chain P is then be decomposed into valid chains by
walking along P from o(P) and output a valid chain whenever reaching o(P).
In the second case, def(S)= 0, and thus the directed graph with edges S is Eulerian.

Choosing any Eulerian tour. Let i be any node which is the origin of some arc. For
any circular arc a in the oriented Eulerian tour that passes through i, split it into two
arcs

a′ = (o(a); i); a′′ = (i; t(a)):

After these splittings, the oriented Eulerian tour is then be decomposed into valid
(closed) chains by walking along the oriented Eulerian tour from node i and output a
valid (closed) chain whenever reaching node i.

Lemma 2. The solution produced from Eulerian rounding for S has cost at most
|S|+ b(S) + def(S).

Fig. 2. Eulerian rounding. Arcs are split into two fragments when they pass through node o(P): the dashed
fragment closes a chain, while the dotted fragment starts another chain.

40 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

Proof. We Arst consider the case that def(S)¿0. Let P be any invalid chain. Note that
among all valid chains generated by Eulerian rounding from P, exactly one is open and
all others are closed. Since the chain P must pass through the link (n−1; 0) each time
before passing through o(P), the number of splits is at most b(P). So the total cost
of these valid chains generated from P is at most |P|+ b(P) + 1. Since there are total
def(S) open chains, the total cost of all valid chains is at most |S|+ b(S) + def(S).
Now we consider the case that def(S)= 0. In this case, all valid chains are closed,

and the number of splits is at most b(P). So the total cost of these valid chains is at
most |S|+ b(S).

Using the machinery developed before, we proposed the following approximation
algorithm for Wavelength Assignment in WDM Rings with Splittable Lightpaths:
The input is a set of arcs A.
Phase 1: While A contains a valid closed chain P of length two, nsplit the arcs in

P, output the valid (closed) chain consisting of the two arcs, and set A←A\P.
Phase 2: While A contains a valid closed chain P of length three, nsplit the arcs in

P, output the valid (closed) chain consisting of the three arcs, and set A←A\P.
Phase 3: While such an arc exists, select a∈A such that a is blue and such the chain
〈a〉 is tight. Nsplit a, output the valid (open) chain consisting of a, and set A←A\{a}.
Phase 4: While such a pair of arcs exists, select a1; a2 ∈A such that 〈a1; a2〉 is a

tight valid chain, and one of a1; a2 is blue. Nsplit a1 and a2, output the valid (open)
chain consisting of the two arcs, and set A←A\{a1; a2}.
Phase 5: Do the Eulerian rounding of A.
Phase 5 is the most interesting one. If optimum is ‘perfect’ (has only valid closed

chains and no splits), Eulerian rounding cannot guarantee a good ratio. This is the
reason why we use the Arst two phases, which achieve good results when there are
many short valid closed chains. Phases 3 and 4 produce open chains, but decrease the
deAciency. Since in any solution, the number of open chains is at least the deAciency,
it makes sense to reduce deAciency. We also insist on reducing the number of blue
arcs while reducing deAciency in Phases 3 and 4, to obtain a good Eulerian rounding
in Phases 5 according to Lemma 2.
Before the proof that the algorithm has approximation guarantee 5=4, we introduce

some notation. For a set of arcs A, we use opt(A) to denote the value of the optimum
solution to wavelength assignment in WDM rings with splittable lightpaths which has
A as the input. If A is understood, we use only opt.
Phase 1 is very intuitive. Indeed, let B be the set of arcs nsplit and then assigned to

valid chains during Phase 1. Then there is always an optimum solution which assigns
to valid chains the arcs of B exactly the way our algorithm does. This fact follows
from the following lemma, which was previously known, but whose proof we include
for completeness.

Lemma 3. Let A be a set of arcs and a1; a2 be two arcs of A which form a valid
closed chain. Then opt(A)= opt(A\{a1; a2}) + 2.

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 41

Proof. Assume we have a solution which does not put a1 and a2 in the same valid
closed chain. Let P1 be the chain containing a1 and P2 be the chain containing a2.
Removing a1 from P1 leaves us with one of the following two cases:
1. If P1 is closed: One valid chain, which we call P∗

1 , from t(a1) to o(a1).
2. If P1 is open: Two non-overlapping valid chains, which we call P′

1 and P′′
1 , and

which both could be empty. P′
1 starts at t(a1)= o(a2) and ends at some node in

the interior of a2, and P′′
1 starts at some node in the interior of a2 and ends at

o(a1)= t(a2).
Similarly, removing a2 from P2 leaves us with either P∗

2 or two chains P
′
2 and P′′

2 .
Then, after putting a1 and a2 in the same closed valid chains, depending on which
case we are in, we produce one of the following four combinations:
1. P∗

1 and P
∗
2 in one valid closed chain, at a cost of |P∗

1 |+ |P∗
2 |= |P1|+ |P2| − 2. The

total cost of P1 and P2 is |P1|+ |P2|.
2. P′′

2 , P
∗
1 , P

′
2 in valid open chain, at a cost of |P′′

2 |+ |P∗
1 |+ |P′

2 |+ 1= |P1| − 1 + |P2|.
The total cost of P1 and P2 is |P1|+ |P2|+ 1.

3. P′′
1 , P

∗
2 , P

′
1 in one valid open chain, at a cost of |P′′

1 |+|P∗
2 |+|P′

1 |+1= |P1|−1+|P2|.
The total cost of P1 and P2 is |P1|+ |P2|+ 1.

4. P′′
1 and P

′
2 in one valid open chain, and P

′′
2 and P

′
1 in another valid open chain, at

a total cost of at most |P′′
1 |+ |P′

2 |+ 1+ |P′′
2 |+ |P′

1 |+ 1= |P1|+ |P2|. The total cost
of P1 and P2 is |P1|+ |P2|+ 2.
In all the cases, the cost of the solution which puts a1 and a2 in the same valid

closed chain is at most the cost of the solution which does not put a1 and a2 in the
same valid closed chain.

Based on the lemma above, in the following we assume that no two arcs of the
input form a valid closed chain.

Theorem 4. The algorithm above has performance ratio at most 5=4.

Proof. First, we present a general overview of the proof. We Ax OPT, an optimum
solution, and based on OPT we give credit to arcs of A. Recall that A is the input.
Also, each node i gets defA(i) credit. The exact initial credit allocation scheme is
described later.
Before the algorithm starts, as shown in Lemma 5, the total credit is at most

(5=4)opt. During the execution of Phases 2–4 of the algorithm, as the algorithm se-
lects arcs, puts them in valid chains and outputs the chains (during these phases we
only nsplit), we take the credit from these arcs, and in Phases 3 and 4, also from the
nodes whose deAciency decreases. We use this credit taken to cover the cost of the
valid chains the algorithm produces and to give some extra credit to some other arcs,
according to a credit transfer scheme to be described later.
Finally, by the time we get to Phase 5, the total credit remaining covers the cost of

the output of Eulerian rounding.

42 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

We start the proof somehow backwards, discussing this Phase 5. This would give the
motivation for all the previous steps. Let S be the set of remaining arcs after Phase 4.
Assume each node i has defS(i) and each arc a∈ S has 1 + b(a) credit. In total, we
have def(S) + |S| + b(S) credit and therefore, by Lemma 2, we can cover the cost
of the Eulerian rounding. All the remaining discussion is about how to make sure that
at the end of Phase 4, each remaining arc a has 1 + b(a) credit and each node i has
defS(i) credit.
We now describe the initial credit allocation. For a set of arcs S, we deAne OPTS to

be the restriction of OPT to the set of arcs S. Each node i gets defA(i) credit. Every
red arc receives 1 credit. Blue arcs receive credit according to their position in OPT,
as given by the following scheme.
• Initialize S to be the initial set of arcs, A.
Phase 1: As long as possible, do the following: if in OPTS there is a (valid) tight
(with respect to S), open chain P= 〈a〉, where a is blue and nsplit, then a receives
1.5 credit. Remove a from S.
Phase 2: As long as possible, do the following: if in OPTS there is a (valid) tight
(with respect to S), open chain P= 〈a1; a2〉, where either a1 or a2 is blue, and both
are nsplit, the blue arc receives 1.75 credit. Remove from S the arcs of P.
Phase 3: As long as possible, do the following: if in OPTS there is a (valid) closed
chain P= 〈a1; a2; a3〉, where a1, a2 and a3 are nsplit, the blue arc in P receives 1.75
credit. Remove from S the arcs of P.

• Every remaining blue arc receives 2 credit.

Lemma 5. The total initial credit is at most 5
4opt.

Proof. We consider the chains of OPT one by one. We start with the chains used in
Phases 1–3 of the credit allocation scheme above, in the order they are used. Then we
continue with the remaining chains of optimum, in some order to be described later.
Take an open chain of OPT as described in Phase 1 of the scheme. For the arc a,

OPT incurs a cost of 2. We give 1.5 credit to a, 0.5 credit to o(a), and 0.5 credit
to t(a). Altogether, we give 5=4 times the cost of this chain in OPT. Note that after
removing each such arc a from S, both defS(t(a)) and defS(o(a)) drop by 0.5.
Take an open chain of OPT as described in Phase 2 of the scheme. For the chain

P= 〈a1; a2〉, OPT incurs a cost of 3. We give 1 credit to the red arc, 1.75 credit to the
blue arc, 0.5 credit to t(a2) and 0.5 credit to o(a1). Altogether, we give 3.75 credit,
which is 5=4 times the cost of this chain in OPT. Note that after removing the arcs
from P from S, both defS(t(a2)) and defS(o(a1)) drop by 0.5.
Take a closed chain of OPT as described in Phase 3 of the scheme. For the chain

P= 〈a1; a2; a3〉, OPT incurs a cost of 3. We give 3.75 credit, which is 5=4 times the
cost of this chain in OPT. Note that no deAciency changes after removing the arcs
from P from S.
Now, we start giving credit to the arcs in the set S of remaining arcs, and we also

give more credit to the nodes. As described in the scheme, each blue arcs receives 2

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 43

credit and each red arcs receives 1 credit. In addition we need to give to each node i
exactly defS(i) credit, as i already received defA(i)− defS(i) credit.
Take a closed chain P of OPTS , consisting only of nsplit arcs. Then the cost of P

in OPT is |P|. P contains exactly one blue arc, and therefore we give |P| + 1 credit
to the arcs of P. As P was not processed in Phase 3 of the scheme, and since we
assumed P cannot have only two arcs, P has at least four arcs. Therefore we have
|P|+16 5

4 |P|. Remove the arcs of P from S and note that no deAciency changes as a
result of this removal. Repeat the step above as long as possible.
Consider an arc a ∈ A which is realsplit into d1; d2; : : : ; dk . Then a will get enough (at

least 1+b(a)) credit if each di gets at least 0:5+b(di) credit. Let S ′ be the set obtained
from S by the splitting optimum does. Note that for any node i, defS′(i)= defS(i).
We continue a credit-giving scheme, using the arcs of S ′. It is enough if we give at
least defS′(i) credit to each node i, at least 1+b(a) to each original arc a, and at least
0:5 + b(d) to each fragment arc d. That is exactly what we are going to do.
Take a closed chain P of OPTS′ . By this stage, P has some fragment arc. The cost

in OPT of P is |P|, while we give credit at most |P|+0:5, as exactly one arc in P is
blue, but at least one of the arcs of P, being a fragment, saves 0:5 credit. Since |P|¿2,
we have |P| + 0:56 5

4 |P|, and therefore the credit we give is at most 5=4 times the
cost of this chain in OPT . Remove the arcs of P from S ′ and note that no deAciency
changes as a result of this removal. Repeat the step above as long as possible.
At this moment, OPTS′ has only open chains.
Take a tight (with respect to S ′) open chain P= 〈a1; a2; : : : ; ak〉 of OPTS′ , consisting

only of original (nsplit) arcs. The cost in OPT of P is |P|+ 1. If P has no blue arc,
we give |P| credits to the arcs of P and 0:5 credit to o(a1) and 0.5 credit to t(ak),
for a total of |P| + 1 credit. In the following we assume P has blue arcs. Since P is
valid, it has exactly one blue arc. Since P was not considered in Phases 1 and 2 of
the scheme, |P|¿3. Therefore, we give |P|+ 1 credit to the arcs of P. We also give
0.5 credit to o(a1) and 0.5 credit to t(ak). In total, we give |P|+2 credit, which is at
most 54 (|P|+ 1). Remove the arcs of P from S ′ and note that after the removal, both
defS′(o(a1)) and defS′(t(ak)) drop by 0.5. Repeat the step above as long as possible.
Take a tight (with respect to S ′) open chain P= 〈a1; a2; : : : ; ak〉 of OPTS′ , where at

least one of the a′is is a fragment arc. The cost in OPT of P is |P| + 1. We give
credit at most |P| + 0:5 to the arcs of P, 0:5 to o(a1), and 0.5 to t(ak). In total, we
give |P| + 1:5 credit, which is at most 54 (|P| + 1), as |P|¿1. Remove the arcs of P
from S ′ and note that after the removal, both defS′(o(a1)) and defS′(t(ak)) drop by
0.5. Repeat the step above as long as possible.
Take a sequence of open chains P1; P2; : : : ; Pk of OPTS′ , which concatenated form a

(non-valid) closed chain. The cost in OPT of Pi is |Pi| + 1, and the total cost of the
chains P1; P2; : : : ; Pk , is k+

∑k
i=1 |Pi|. We give 1+b(a) to any arc (original or fragment)

in any of these k open chains, at a total cost of at most k +
∑k

i=1 |Pi| (we used the
fact that each Pi has at most one blue arc). Remove the arcs of P1; P2; : : : ; Pk from S ′

and note that after the removal, no deAciency changes. Repeat the step above as long
as possible.

44 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

Take a sequence of open chains P1; P2; : : : ; Pj of OPTS′ , which concatenated form a
(non-valid) tight open chain P′= 〈a1; a2; : : : ; ak〉. Note that j¿1, since if such a chain
P1 existed, would have been considered previously. This implies |P′|¿1. Also note
that b(P′)6j. The cost in OPT of P′ is |P′|+ j. We give credit 1 + b(ai) to each ai,
0.5 to o(a1), and 0:5 to t(ak). In total, we give at most |P′|+ j+1 credit, which is at
most 54 (|P′|+ j), since |P′|+ j¿ 4. Remove the arcs of P′ from S ′ and note that after
the removal, both defS′(o(a1)) and defS′(t(ak)) drop by 0.5. Repeat the step above as
long as possible.
It is easy to see that S ′= ∅ at this moment. This completes the proof of Lemma 5.

We continue with the proof of Theorem 4. But Arst some deAnitions. If a blue arc
has 2 credit, it is happy, otherwise it is unhappy. As our credit transfer scheme only
takes credit from an arc when the arc is put (in Phases 2–4 of the algorithm) in a valid
chain (which is then output), happy arcs stay happy as long as they are in the current
set of arcs. By the initial credit allocation scheme, we have three types of unhappy
arcs:
1. Blue arcs given 1.5 credit during Phase 1 of the initial credit allocation scheme.
These arcs are called unhappy singles.

2. Blue arcs given 1.75 credit in Phase 2 of the initial credit allocation scheme. The
two arcs from the same open chain of OPT are called partners, and they form an
unhappy pair.

3. Blue arcs given 1.75 credit in Phase 3 of the initial credit allocation scheme. The
three arcs from the same closed chain of OPT are called partners, and they form
an unhappy triple.
For a node i, deAne dep(i) to be the number of unhappy singles a with o(a)= i

plus the number of unhappy pairs 〈a1; a2〉 with o(a1)= i. As arcs are made happy
or assigned to valid chains (which are then output), dep(i) is decreasing during the
execution of the algorithm. Similarly, for a node i, deAne arr(i) to be the number
of unhappy singles a with t(a)= i plus the number of unhappy pairs 〈a1; a2〉 with
t(a2)= i. As arcs are made happy or assigned to valid chains (which are then output),
arr(i) is decreasing during the execution of the algorithm.
Since only tight (with the respect to the current set of arcs during the credit allocation

scheme) chains contribute to arr, initially arr(i)6sur(i). Similarly, only nodes with
initial negative surplus can have non-zero dep, and in fact initially dep(i)6−sur(i).
Our credit transfer scheme maintains the following deparr invariant during the exe-

cution of the algorithm (that is, with respect to the current set of arcs): for any node
i, if arr(i)¿0, then arr(i)6sur(i), and if dep(i)¿0, then dep(i)6−sur(i).
To maintain the deparr invariant, our credit transfer scheme ensures that whenever

(during Phases 3 or 4) we choose an open chain, and we increase the surplus of a node
i with dep(i)¿0, we also decrease dep(i) by either making a unhappy single happy
or by making the blue arc of an unhappy pair happy. Similarly, whenever (during
Phases 3 or 4) we choose an open chain, and we decrease the surplus of a node i

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 45

with arr(i)¿0, we also decrease arr(i) by either making a unhappy single happy or
by making the blue arc of an unhappy pair happy.
Our credit transfer scheme, as we will see, also makes sure that whenever an arc

from an unhappy pair or from an unhappy triple is selected and used by the algorithm,
any remaining blue arc from the pair or triple receives enough credit to become happy.
Phase 2 of the algorithm is designed to eliminate the unhappy triples. Please note

that no surplus is changed, and therefore there is no need to worry about arr or dep.
Our credit transfer scheme is as follows: Let P= 〈a1; a2; a3〉 be a closed chain se-

lected in Phase 2 of the algorithm, and assume that a1 is the blue arc. The cost of P in
the output of our algorithm is 3. The blue arc a1 has at least 1.5 credit, and therefore
the total credit on these three arcs is at least 3.5. We use 3 credit to cover the output,
give to the unhappy partner (if it exists) of a2 0.25 credit, and give to the unhappy
partner (if it exists) of a3 0.25 credit, thus making happy any remaining unhappy arc
which had one of its partners selected. No unhappy triple remains at the end of the
second phase.
We proceed to Phase 3 of the algorithm. A blue arc a is selected such that sur(o(a))

¡0, sur(t(a))¿0. The algorithm puts a into a valid chain by itself, and outputs this
chain of cost 2. We get whatever credit a has, and another 1 credit since we de-
crease def(o(a)) and def(t(a)). We need to pay for the output, for unhappy partners
separated, and for maintaining the deparr invariant.
We have three cases: a is an unhappy single, a is a happy blue arc, or a is a partner

in an unhappy pair. If a is an unhappy single, as both dep(o(a)) and arr(t(a)) are
decreasing by 1, the deparr invariant is maintained, and no one is separated, and so
we are done.
If a is a happy arc, it has 2 credit. After covering the output, 1 credit is left. No

partners are separated. However, we might need to pay to maintain the deparr invariant,
which could be become violated at both o(a) and t(a). We allocate 0.5 to Axing each
o(a) and t(a). 0.5 credit is enough to make any unhappy arc happy, and therefore
it is enough to make an unhappy single or pair happy, thus decreasing dep(o(a)) or
arr(t(a)).
Now assume a is in an unhappy pair. By symmetry, say 〈a; d〉 is the unhappy pair

(the other case being 〈d; a〉 as the unhappy pair). After covering the output, 0.75
credit is left. Now, since the unhappy pair 〈a; d〉 disappears, dep(o(a)) decreases and
therefore the deparr invariant is maintained at o(a). We allocate 0.5 credit to Axing
the deparr invariant at t(a), and this credit is enough by the same argument used in
the case when a is happy.
Finally, no unhappy single arc a can survive Phase 3 of the algorithm, as shown

below. Since dep(o(a)) is positive (because of a itself), by the deparr invariant,
sur(o(a))¡0, and similarly sur(t(a))¿0. Therefore, a is eligible to be selected by
the algorithm. Thus at the end of Phase 3, only unhappy pairs could exist.
We now analyze Phase 4. Due to the deparr invariant, each unhappy pair is eligible

to be chosen by the algorithm in Phase 4, as long as it is unhappy. A valid open chain
〈a1; a2〉 is selected such that sur(o(a1))¡0 and sur(t(a2))¿0, and either a1 or a2 is

46 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

blue. This open chain is output, and has a cost of 3. We get whatever credit a1 and
a2 have, and another 1 credit since we decrease def(o(a)) and def(t(a)). We need
to pay for the output, for unhappy partners separated, and for maintaining the deparr
invariant.
After paying for the output, we have at least 0.75 credit in hand. We allocate 0.25

credit to Ax the deparr invariant at each of o(a1) and t(a2), and 0.25 to make happy
the blue partner (if any) of the red arc in {a1:a2}. As at this stage, any unhappy blue
arc already has 1.75 credit, 0.25 credit is enough to make it happy.
Finally, note that as long as an unhappy pair exists, the algorithm is still in Phase 4

as an eligible pair exists. This fact implies that at the end of Phase 4, no unhappy arc
exists. Thus, we have enough credit for Phases 4 and 5. This completes the proof of
Theorem 4.

Obvious practical improvements are: after Phase 4, but before the Eulerian rounding,
insert three other phases:
Phase 4.1: While A contains a valid closed chain P, And one with minimum number

of arcs. Nsplit the arcs in P, output P, and set A←A\P.
Phase 4.2: While A contains a tight valid chain P= 〈a1; : : : ; ak〉, nsplit the arcs in

P, output P, and set A←A\P.
Phase 4.3: While A contains a closed chain P, And one with b(P) minimum. The

Floyd–Warshall algorithm on the graph with vertex set N and arc set A Ands this
minimum. Do an Eulerian rounding on P (producing b(P) closed chains). Then set
A←A\P.
And after Eulerian rounding, the three transformations (Merging, Combining and

Splitting) proposed by Gerstel et al. [6] should also be applied, if possible.
There is nothing special about the link n− 1 deciding which arc is blue and which

one is not. If enough computing time is available, one should try running the algorithm
using each of the remaining n − 1 links of the ring to decide which arc is blue and
which one is not.
We are not able to prove a better approximation ratio based on these improvements.

The worst example (for which the practical improvements also do not help) we have
is the following: n=6 and A consists of the following nine arcs:

a1 = (0; 2); a2 = (2; 5); a3 = (5; 0);

b1 = (2; 4); b2 = (4; 1); b3 = (1; 2);

c1 = (4; 0); c2 = (0; 3); c3 = (3; 4):

The optimum produces the closed chains

〈a1; a2; a3〉; 〈b1; b2; b3〉; 〈c1; c2; c3〉;
of total cost 9. Indeed, the optimum has cost 9, while if our algorithm is unlucky and
chooses the closed chain 〈a1; b1; c1〉 in phase two, it produces a solution of cost 10,
see Fig. 3.

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 47

Fig. 3. The algorithm selects the closed chain 〈a1; b1; c1〉. Eulerian rounding then splits one arc in two
(a2, for example) and produces a solution of cost 10. Optimum uses the closed chains 〈a1; a2; a3〉, 〈b1; b2; b3〉,
and 〈c1; c2; c3〉, of total cost 9.

5. The chord-version with splits

In this section we describe the adaptation of our algorithm to the version when
routing is not prespeciAed. The input is given as a set of chords. Obviously, the
optimum with splits is at most the optimum without splits. Actually, the optimum
with splits can be 25% lower, as shown by the following example: let n=5 and
C = {ci: 0 6 i 6 4} with c0 = (0; 2); c1 = (1; 3); c2 = (2; 4); c3 = (3; 0); c4 = (4; 1).
The optimum without splits is 8, while with splits a solution of cost 6 can be obtained
by splitting c3 into two chords

c′3 = (3; 4); c′′3 = (4; 0)

and then c0; c2; c′′3 form one valid chain and c1; c′3; c4 form another valid chain, see
Fig. 4. Note that the example giving a 33% potential saving for splitting arcs (pre-
speciAed routing) does not hold for chords.
Our algorithm is based on Eulerian rounding, as follows:
• The input is a set of chords C.
• Add a set of fake chords H such that |H |= def(C) and def(C ∪H)= 0. This can
be easily done by adding one by one fake chords in between nodes of odd degree.
• Find an Eulerian cycle EC of C ∪H . EC can be traversed in two directions, and
each direction transforms the chords of C ∪H into arcs. We call A′ and A′′ the
sets of arcs obtained from C this way. If b(A′)¿b(A′′), let A be A′′, otherwise let
A=A′. C is oriented to obtain A.

• Do the Eulerian rounding of A.
For a chord c∈C, we call a′c ∈A′ and a′′c ∈A′′ the corresponding arcs obtained by

orienting c in opposite directions. Exactly one of a′c and a
′′
c ∈A′′ is blue, and therefore

48 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

Fig. 4. Chord c3 is split into c′3 and c
′′
3 to obtain a solution with splits of cost 6.

b(A′)+b(A′′)= |C|. We conclude that b(A)6 |C|=2. Note that def(A)= |H |= def(C).
By Lemma 2, with Eulerian rounding of A we obtain a solution of cost at most
|A|+ b(A) + def(A)6 3

2 |C|+ def(C). We have:

Theorem 6. The above algorithm has approximation ratio exactly 3=2.

Proof. The fact that the approximation ration is at most 3=2 follows from the discussion
above. The following example shows that the approximation ratio of the algorithm is
at least 32 .
Let n, the number of nodes on the ring, be odd. Consider the following set of chords:

C = {c0; c1; : : : ; cn−3; c′; c′′}, where for 06 i 6 n−3, the endpoints of ci are the nodes
i and i + 2, the endpoints of c′ are 0 and 1, and the endpoints of c′′ are n − 2 and
n− 1.
The Eulerian tour selected by the algorithm is

cn−3; cn−5; : : : ; c0; c′; c1; c3; : : : ; cn−4; c′′:

The chords c′; c1; c3; : : : ; cn−4; c′′ are oriented clockwise, and the chords cn−3; cn−5; : : : ; c0
are oriented counterclockwise. For Eulerian rounding, node 0 is selected. Then all the
arcs cn−3; cn−5; : : : ; c2 are going to be split, obtaining a solution of cost n+ (n− 3)=2,
since there are n chords and (n− 3)=2 of them are split.
However, an optimum of cost n + 2 exists: orient all the chords clockwise and

produce two open chains: c0; c2; : : : ; cn−3 and c′; c1; c3; : : : ; cn−4; c′′. Therefore, the cost
ratio of the output of the algorithm to the optimum is (n + (n − 3)=2)=(n + 2). If we
let n large enough, this ratio gets arbitrarily close to 3

2 .
In conclusion, the approximation ratio of the algorithm presented in this section is

exactly 3
2 .

G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50 49

An obvious practical improvement is: once an orientation has been selected, run
the algorithm from Section 4 on the given set of arcs. Another practical improvement
would be the equivalent of Phases 4.1 and 4.3 of the algorithm from Section 4 applied
directly to chords, before Eulerian rounding. That is, before an orientation is selected,
And cycles in C such that, when oriented in the best of the two possible ways, they
have small blue number (recall that a closed chain with blue number one is valid).
Then do an Eulerian rounding on the cycle, and remove the cycle from C. A procedure
to And in polynomial time a cycle which can be oriented with blue number one, if
such a cycle exists, is described in [3]. This procedure can be adapted to And in time
polynomial in nk a cycle which can be oriented with blue number k, or report that no
such cycle exists. We do not know, however, how to And the smallest blue number
possible. None of the practical improvements above helps in the example from the
proof of Theorem 6.

6. Conclusions

We proved that the approximation ratio of the algorithm, in the prespeciAed routing
version, is in between 10=9 and 5=4. It will be interesting to And the exact worst-case
behavior of the algorithm. We do not have a proof that minimum ADM cost problem
(in any of the four versions: arc=chord, splittable=non-splittable) is MAX-SNP Hard
and therefore the existence of a polynomial-time approximation scheme remains open.
We implemented the algorithm in C++ and run it on several randomly generated

instances, with at most 160 nodes and 7000 arcs. The code is available upon request.
Not being able to compute the optimum, we used as lower bound the number of arcs
plus the deAciency. The output of the algorithm was between 7% and 15% more than
the lower bound. We also implemented the more natural variation which uses Phases 4.1
and 4.3 before Phase 3. This natural variation, for which we could not prove a good
approximation ratio, gave slightly better results on about half the instances.

References

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, B. Schieber, A uniAed approach to approximating
resource allocation and scheduling, Proc. STOC, 2000.

[2] G. Belvaux, N. Boissin, A. Sutter, L.A. Wolsey, Optimal placement of add=drop multiplexers: static
and dynamic models, European J. Oper. Res. 108 (1) (1998) 26–35.

[3] G. C+alinescu, P.-J. Wan, Tra c partition in WDM=SONET rings to minimize SONET ADMs, submitted
for publication.

[4] A.L. Chiu, E.H. Modiano, Tra c grooming algorithms for reducing electronic multiplexing costs in
WDM ring networks, J. Lightwave Technol. 18, 2–12.

[5] M. Garey, D. Johnson, G. Miller, C. Papadimitriou, The complexity of coloring circular arc graphs and
chords, SIAM J. Discrete Math. 1 (2) (1980) 216–227.

[6] O. Gerstel, P. Lin, G. Sasaki, Wavelength assignment in a WDM ring to minimize cost of embedded
SONET rings, Proc. IEEE INFOCOM’98, Vol. 1, pp. 94–101.

[7] O. Gerstel, G. Sasaki, R. Ramaswami, Cost eBective tra c grooming in WDM rings, Proc. IEEE
INFOCOM’98. Vol. 1, pp. 69–77.

50 G. C&alinescu, P.-J. Wan / Theoretical Computer Science 276 (2002) 33–50

[8] I. Haque, W. Kremer, K. Raychauduri, Self-Healing Rings in a synchronous environment, in: C.A.
Siller, M. ShaA (Eds.), SONET=SDH: A Sourcebook of Synchronous Networking, IEEE Press, New
York, 1996, pp. 131–139.

[9] V. Kumar, Approximating circular arc coloring and bandwidth allocation in all-optical ring networks,
Proc. APPROX’98, pp. 147–158.

[10] L.W. Liu, X.-Y. Li, P.-J. Wan, O. Frieder, Wavelength assignment in WDM rings to minimize SONET
ADMs, Proc. INFOCOM, Vol. 2, 2000, pp. 1020–1025.

[11] M. Mihail, C. Kaklamanis, S. Rao, E cient access to optical bandwidth, Proc. FOCS’95, pp. 548–557.
[12] P. Raghavan, E. Upfal, E cient routing in all-optical networks, Proc. 26th ACM Symp. Theory of

Computing, 1994, pp. 134–143.
[13] A. Schrijver, P.D. Seymour, P. Winkler, The ring loading problem, SIAM J. Discrete Math. 11 (1)

(1998) 1–14.
[14] A. Sutter, F. Vanderbeck, L. Wolsey, Optimal placement of add=drop multiplexers: heuristics and exact

algorithms, Oper. Res. 46 (5) (1998) 719–728.
[15] A. Tucker, Coloring a family of circular arcs, SIAM J. Appl. Math. 29 (3) (1975) 493–502.
[16] P.-J. Wan, G. C+alinescu, L.-W. Liu, O. Frieder, Grooming of Arbitrary Tra c in SONET=WDM Rings,

IEEE J. Selected Area Commun., to appear.
[17] P. Wilfong, P. Winkler, Ring routing and wavelength translation, Proc. Ninth Ann. ACM-SIAM Symp.

on Discrete Algorithms, 1998, pp. 333–341.

