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Abstract

In wireless sensor networks, a virtual backbone has been proposed as the routing infrastructure to alleviate the broadcasting
storm problem and perform some other tasks such as area monitoring. Previous work in this area has mainly focused on how to
set up a small virtual backbone for high efficiency, which is modelled as the minimum Connected Dominating Set (CDS) problem.
In this paper we consider how to establish a small virtual backbone to balance efficiency and fault tolerance. This problem can be
formalized as the minimum m-connected k-tuple dominating set problem, which is a general version of minimum CDS problem
with m = 1 and k = 1. We propose three centralized algorithms with small approximation ratios for small m and improve the
current best results for small k.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A Wireless Sensor Network (WSN) consists of wireless nodes (transceivers) without any underlying physical
infrastructure. In order to enable data transmission in such networks, all the wireless nodes need to frequently flood
control messages thus causing a lot of redundancy, contentions and collisions. To support various network functions
such as multi-hop communication and area monitoring, some wireless nodes are selected to form a virtual backbone.
Virtual backbone has been proposed as the routing infrastructure of WSNs. In many existing schemes (e.g., [1]) virtual
backbone nodes form a Connected Dominating Set (CDS) of the WSN. With virtual backbones, routing messages are
only exchanged between the backbone nodes, instead of being broadcasted to all the nodes. Prior work (e.g., [7]) has
demonstrated that virtual backbones could dramatically reduce routing overhead.
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In WSNs, a node may fail due to accidental damage or energy depletion and a wireless link may fade away during
node movement. Thus it is desirable to have several sensors monitor the same target, and let each sensor report via
different routes to avoid losing an important event. Hence, how to construct a fault tolerant virtual backbone that
continues to function when some nodes or links break down is an important research problem.

Recent work on sensor deployment and repairing [2,5] addresses the problems of deploying a sensor network from
scratch or repairing a sensor network by adding new sensors to satisfy a certain connectivity requirement. In our
study, we only need to choose a subset of nodes out of a pre-deployed network, instead of adding new nodes into the
network.

In this paper we assume as usual that all nodes have the same transmission range (scaled to 1). Under such an
assumption, a WSN can be modelled as a Unit Disk Graph (UDG) that consists of all nodes in the WSN and there
exists an edge between two nodes if the distance between them is at most 1. We assume that the network is sufficiently
dense such that the network is m-connected, and each node has at least k neighbors for a given k. The fault tolerant
virtual backbone problem can be formalized as a combinatorial optimization problem: Given a UDG G = (V, E) and
two nonnegative integers m and k, find a subset of nodes S ⊆ V of minimum size that satisfies: (i) each node u in
V is dominated by at least k nodes in S (there is an edge between u and each of k nodes in S), (ii) S is m-connected
(there are at least m disjoint paths between each pair of nodes in S). Every node in S is called a backbone node and
every set S satisfying (i)–(ii) is called a m-connected k-tuple dominating set ((m, k)-CDS), and the problem is called
a minimum m-connected k-tuple dominating set problem.

In this paper, we will study the minimum m-connected k-tuple dominating set problem for m ≤ 2, which is
important for the fault tolerant virtual backbone problem in WSNs. (When m = 1 and k = 1 the problem is reduced to
the well known minimum connected dominating set problem.) We propose three centralized approximation algorithms
to construct k-tuple dominating sets and m-connected k-tuple dominating sets for m = 1, 2. Our contributions
in this paper are the following: (1) We propose new algorithms for (1, k)-CDS problems with performance ratio
(6+ ln 5

2 (k −1)+
5
k ); In particular, an algorithm for (2, 1)-CDS problem with a performance ratio less than 24, which

is better than the current best result. (2) We propose a centralized approximation algorithm for (2, k)-CDS problems
for k ≥ 2; To the best of our knowledge, this paper is the first to address this problem.

The remainder of this paper is organized as follows: Section 2 gives some definitions and Section 3 presents
some related work. In Section 4 we present our algorithms with theoretical analysis on guaranteed performances. In
Section 5 we conclude the paper.

2. Preliminaries

Let G be a graph with vertex-set V (G) and edge-set E(G). For any vertex v ∈ V , the neighborhood of v is defined
by N (v) ≡ {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is defined by N [v] ≡ {u ∈ V (G) : uv ∈

E(G)} ∪ {v}. The minimum degree of vertices in V (G) is denoted by δ(G).
A subset U ⊆ V is called an independent set (IS) of G if all vertices in U are pairwise non-adjacent, and it is

further called a maximal independent set (MIS) if each vertex V \ U is adjacent to at least one vertex in U .
A dominating set (DS) of a graph G = (V, E) is a subset S ⊆ V such that each vertex in V \ S is adjacent to at

least one vertex in S. A DS is called a connected dominating set (CDS) if it also induces a connected subgraph. A
k-tuple dominating set (k-DS) S ⊆ V of G is a set of vertices such that each vertex u ∈ V is k-dominated by vertices
of S. (Note that in some literatures, k-DS S only requires that each node in V \ S is dominated by at least k nodes in
S.)

A cut-vertex of a connected graph G is a vertex v such that the graph G \ {v} is disconnected. A block is a maximal
connected subgraph having no cut-vertex (so a graph is a block if and only if it is either 2-connected or equal to K1
or K2). The block-cut-vertex graph of G is a graph H where V (H) consists of all cut-vertices of G and all blocks of
G, with a cut-vertex v adjacent to a block G0 if v is a vertex of G0. The block-cut-vertex graph is always a forest.
A 2-connected graph is a graph without cut-vertices. Clearly a block with more than three nodes is a 2-connected
component. A leaf block of a connected graph G is a block of G with only one cut-vertex.

3. Related work

Much effort has been made to design approximation algorithms for minimum connected dominating set problems.
Wan et al. [9] proposed a two-phase distributed algorithm for the problem in UDGs that has a constant approximation
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performance ratio of 8. The algorithm first constructs a spanning tree, and then at the first phase, each node in a tree
is examined to find a Maximal Independent Set (MIS) and all the nodes in the MIS are colored black. At the second
phase, more nodes are added (color blue) to connect those black nodes. Recently, Li et al. [6] proposed another two-
phase distributed algorithm with a better approximation ratio of (4.8 + ln 5). As in [9], at the first phase, an MIS
is computed. At the second phase, a Steiner tree algorithm is used to connect nodes in the MIS. The Steiner tree
algorithm is based on the property that any node in UDG is adjacent to at most 5 independent nodes.

The problem of minimum double domination and k-tuple domination sets has been studied in [3]. Ralf et al.
[4] described a (ln |V | + 1)-approximation algorithm for k-tuple dominating set problem in general graphs, and
showed that this problem cannot be approximated within a ratio of (1 − ε) ln |V | for any ε > 0 unless N P ⊆

DTIME(|V |
O(log log |V |)). They also proposed an algorithm for the problem in UDGs that has an approximation ratio

of 5
2 (k − 1 +

2
k ).

Most related to our work, Yang et al. [12] considered the problem of constructing the minimum (1, k)-CDS problem
in WSNs. They proposed a cluster-based algorithm with performance ratio of O(k2) in unit disk graphs. Most recently,
Wang et al. [10] proposed a 64-approximation algorithm for the minimum (2, 1)-CDS problem. The basic idea of this
centralized algorithm is as follows: (i) Construct a small-sized CDS as a starting point of the backbone; (ii) iteratively
augment the backbone by adding new nodes to connect a leaf block in the backbone to other block (or blocks); (iii) the
augmentation process stops when all backbone nodes are in the same block, i.e., the backbone nodes are 2-connected.
The augmentation process stops in at most |CDS| − 1 steps and in each step at most 8 nodes are added.

4. Approximation algorithms

Ralf et al. [4] proved the following lemma, which will be used in our performance analysis of proposed algorithms.

Lemma 1. Let G = (V, E) be a unit disk graph and k a constant such that δ(G) ≥ k − 1. Let D∗

k be a minimum
k-tuple dominating set of G and S a maximal independent set of G. Then |S| ≤

5
k |D∗

k |.

4.1. Algorithm for computing k-DS and (1, k)-CDS

The basic idea of our algorithm for the minimum k-DS (i.e., (1, k)-CDS) problem is as follows: First, construct a
set D by sequentially choosing an MIS k times (first choosing a CDS and then sequentially choosing an MIS (k − 1)

times) such that all vertices in V \ D are k-dominated by set D; And then choose a set from V \ D such that each
vertex in D is also k-dominated. At each time we choose a vertex that can dominate the most number of vertices in S,
where S is the vertex set that is not k-dominated up to now. The algorithm is more formally presented as follows.

Algorithm A for computing k-DS and (1, k)-CDS

1. Choose an MIS I1 of G and a set C such that I1 ∪ C is a CDS (refer to [9])
2. for i := 2 to k
3. Construct an MIS Ii in G \ I1 ∪ · · · ∪ Ii−1
4. end for
5. D := I1 ∪ · · · ∪ Ik and Dk := D
6. m(v) := k − |N [v]

⋂
Dk | for each v ∈ D

7. S = {v ∈ D : m(v) > 0}

8. while S 6= ∅ do
9. Find vertex u ∈ V \ Dk that has the most neighbors in S

10. Dk := Dk ∪ {u}

11. If v ∈ N (u) ∩ S then m(v) := m(v) − 1
12. S := {v ∈ D : m(v) > 0}

13. end-while
14. return Dk and Dc

k = C ∪ Dk

Theorem 1. Algorithm A returns a solution that is a (6 + ln 5
2 (k − 1))-approximate solution to the minimum k-tuple

dominating set problem, and also a (6 + ln 5
2 (k − 1) +

5
k )-approximate solution to the minimum connected k-tuple

dominating set problem.
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Proof. Suppose that Algorithm A, given graph G = (V, E) and a natural number k ≥ 1, returns Dk , C ∪ Dk . Let D∗

k
be a minimum k-tuple domination of G. We will show that Dk and C ∪ Dk are a k-tuple dominating set and connected
k-tuple dominating set of G, respectively. For all u ∈ G \ I1 ∪ · · · ∪ Ik , at the i-th iteration, u is not in Ii and thus it
is dominated by one vertex of Ii . At the end, u is dominated by at least k different vertices of I1 ∪ · · · ∪ Ik . When the
algorithm terminates, for each u ∈ I1 ∪ · · · ∪ Ik , m(u) ≤ 0, i.e., |N [u]

⋂
Dk | ≥ k. Hence, u is k-dominated and Dk

is a k-tuple dominating set.
By the first step of Algorithm A, C ∪ I1 is a CDS and thus C ∪ Dk is connected. By the rule of Algorithm A, we

have D = I1 ∪ · · · ∪ Ik and each Ii is an MIS. Thus it follows from Lemma 1 that |Ii | ≤
5
k |D∗

k |. Hence we have
|D| ≤ 5|D∗

k |. In the following we will show that |Dk \ D| ≤ (1 + ln 5
2 (k − 1))|D∗

k |.
Let u1, . . . , ul be the vertices in Dk \ D in the order of their appearances in the algorithm. Then Di

=

D ∪ {u1, u2, . . . , ui }, and for any v ∈ D, mi (v) = k − |N [v]
⋂

Di
|, Si

= {v ∈ D : mi (v) > 0}, M i
=

∑
v∈D mi (v).

Let C i be an optimal solution such that each vertex in Si is mi (v)-dominated by C i . Clearly, |C i
| ≤ |D∗

k |. Note that
for each i = 1, 2, . . . , k and each vertex u ∈ Ii , |N [v] ∩ D0

| ≥ i , where D0
= D. Indeed, vertex u is i-dominated by

itself and at least one vertex in I j for each 1 ≤ j ≤ i − 1. Hence, m0(u) ≤ k − i . We have

M0
=

∑
v∈D

m0(v) ≤

k∑
i=1

(k − i)|Ii | ≤
5
2
(k − 1)|D∗

k |.

Since at the (i +1)-th iteration, we choose a vertex u such that u has the most neighbors in Si , the number of neighbors
of u in Si must be at least M i

|C i |
. Thus we have

M i+1
≤ M i

−
M i

|C i |
≤ M i

−
M i

|D∗

k |
.

Note that M0
≤

5
2 (k − 1)|D∗

k | and M l+1
= 0. There exists a natural number h ≤ l such that Mh

≥ |D∗

k | and
Mh+1 < |D∗

k |. So,

Mh
≤ M0

(
1 −

1
|D∗

k |

)h

≤ M0e
h

|D∗
k | .

Thus we have

h
|D∗

k |
≤ ln

M0

Mh ≤ ln
5
2
(k − 1),

and then we obtain

l ≤ h + Mh+1
≤

(
1 + ln

5
2
(k − 1)

)
|D∗

k |.

Hence, |Dk \ D| ≤ (1 + ln 5
2 (k − 1))|D∗

k |.
In the end, let C be the set constructed from the first step of Algorithm A. By using the argument for the proof

of Lemma 10 in [9], we can deduce |C | ≤ |I1|. Hence it follows from Lemma 1 that |C | ≤
5
k |D∗

k |, and the size of
connected k-tuple dominating set Dc

k is bounded by (6 + ln 5
2 (k − 1) +

5
k )|D∗

k | and the size of the optimal solution of
connected k-tuple dominating set is at least |D∗

k |. The proof is then finished. �

4.2. Algorithm for computing (2, k)-CDS

The basic idea of our algorithm for the minimum (2, k)-CDS problem with k ≥ 2 is similar to the method proposed
in [10]. It essentially consists of the following four steps:

Step 1. Apply Algorithm A to construct a connected k-tuple dominating set D.
Step 2. Compute all the blocks in D by computing the 2-connected components through the depth first search.



W. Shang et al. / Theoretical Computer Science 381 (2007) 241–247 245

Step 3. Produce the shortest path in the original graph such that it can connect a leaf block in D with other part of
D but does not contain any vertices in D except the two endpoints. Then add all intermediate vertices in this
path to D.

Step 4. Repeat Step 2 and Step 3 until D is 2-connected.

In Step 2, we can apply the standard algorithm proposed in [8] to compute all blocks in D, denote the number of
blocks in D by ComputeBlock (D). The algorithm is more formally presented as follows:

Algorithm B for computing a 2-connected k-tuple dominating set (k ≥ 2)

1. Choose a connected k-tuple dominating set Dc
k using Algorithm A

2. D := Dc
k and B := ComputeBlocks(D)

3. while B > 1 do
4. Choose a leaf block L
5. for vertex v ∈ L not a cut-vertex do
6. for vertex u ∈ V \ L do
7. Construct G ′ from G by deleting all nodes in D except u and v

8. Puv :=shortestPath(G ′
; v, u) and P := P ∪ Puv

9. end-for
10. end-for
11. Pu0v0 := the shortest path in P
12. D := D∪ the intermediate vertices in Pu0v0

13. ComputeBlocks(D)
14. end-while
15. return D

Lemma 2. For k ≥ 2, at most two new vertices are added into D at each augmenting step.

Proof. Suppose that L is a leaf block of D at one augmenting step and w is the cut-vertex that is adjacent to the
block L . where we assume that w ∈ L . Suppose vertices u0 ∈ L \ {w} and v0 ∈ V \ L are the two vertices
connected by the shortest possible path Pu0v0 returned by the Algorithm in Step 12. We claim that Pu0v0 has at most
two intermediate vertices. Suppose, by contradiction, that Pu0v0 contains u0, x1, x2, . . . , xl , v0, where l ≥ 3, and
xi 6∈ D for i = 1, 2, . . . , l. Since D is a k-tuple dominating set for k ≥ 2, each vertex xi has at least 2 neighbors in
D, and N (xi ) ∩ D ⊆ L or N (xi ) ∩ D ⊆ (V \ L) ∪ {w}. Otherwise, let ui ∈ L \ {w} and vi ∈ V \ L be the two
neighbors of xi , then the path Pui vi between uivi has a shorter distance than Pu0v0 . And it is clear that N (x1)∩ D ⊆ L ,
N (xl) ∩ D ⊆ (V \ L) ∪ {w}. If N (x2) ∩ D ⊆ L , x2 must have a neighbor s in L \ {w}, then the path between sv0 has
a shorter distance than Pu0v0 . Otherwise N (x2)

⋂
D ⊆ (V \ L) ∪ {w}, x2 must have a neighbor s in V \ L , then the

path between u0s has a shorter distance than Pu0v0 . Which contradicts that Pu0v0 has the shortest distance. �

Lemma 3. The number of cut-vertices in the connected k-tuple dominating set Dc
k by Algorithm A is no bigger than

the number of connected dominating sets in I1 ∪ C chosen in Step 1 of Algorithm A.

Proof. Let S = I1 ∪ C be a connected domination set. We will show that no vertex in Dc
k \ S is a cut-vertex. For any

two vertices u, v ∈ S, there is a path Puv between them that contains only vertices in S. Since any vertex in Dc
k \ S is

dominated by at least one vertex in S, Hence, for any two vertices u, v ∈ Dc
k , there is a path Puv between them that

contains only vertices in S
⋃

{u, v}. Hence, any vertex in Dc
k \ S is not a cut-vertex. �

Theorem 2. Algorithm B returns a (6 + ln 5
2 (k − 1) +

25
k )-approximate solution to the minimum 2-connected k-tuple

dominating set problem for k ≥ 2.

Proof. Let D∗

k and Dopt be the optimal k-tuple dominating set and 2-connected k-tuple dominating set, respectively.
It is clear that |D∗

k | ≤ |Dopt|. After S is constructed, by Lemmas 2 and 3, the algorithm terminates in at most
|C | + |I1| steps, and in each step at most two vertices are added. Since |C | + |I1| ≤ 2|I1| ≤

10
k |D∗

k |, we have
|D| ≤ |Dc

k | +
20
k |D∗

k |. It follows from Theorem 1 that |Dc
k | ≤ (6 + ln 5

2 (k − 1) +
5
k )|D∗

k |. Hence we obtain
|D| ≤ (6 + ln 5

2 (k − 1) +
25
k )|Dopt|. �
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4.3. Algorithm for computing (2, 1)-CDS

Lemma 2 is true when k ≥ 2. If Algorithm B is used for the case where k = 1, then more vertices are added into
D at each augmenting step. In order to design an algorithm with a smaller performance ratio, we propose Algorithm
C. The main idea of this algorithm is as follows: First, construct a connected dominating set C using the algorithm in
[6], and then construct a maximal independent set D in G \ C , in the end make C ∪ D to be 2-connected by adding
some new vertices to it.

Algorithm C for computing 2-connected dominating set

1. Produce a connected dominating set C of G using the algorithm in [6].
2. Construct a maximal independent set D in G \ C
3. S := C ∪ D
4. Augment S using Steps 2-14 of Algorithm B

Theorem 3. Algorithm C returns a 2-connected dominating set whose size is at most (18.2 + 3 ln 5)|D∗

2 |+ 4.8, where
|D∗

2 | is the size of the optimal 2-connected dominating set.

Proof. Let D∗

1 and D∗

2 be the optimal (1, 1)-CDS and (2, 1)-CDS, respectively. It is clear that |D∗

1 | ≤ |D∗

2 |. After
C and D are constructed, which are a connected dominating set of G and a dominating set of G \ C , respectively,
each vertex in V \ S is dominated by at least two vertices in S. Thus, Lemmas 2 and 3 also hold true for Algorithm
C. In addition, it follows from Lemmas 2 and 3 that at most |C | steps are needed before the algorithm terminates,
and at each step at most two vertices are added. Hence, we obtain |S| ≤ 3|C | + |D|. Using the same argument for
Theorem 1 in [6,11], we could show |C | ≤ (4.8 + ln 5)|D∗

1 | + 1.2 and |D| ≤ 3.8|D∗

1 | + 1.2 respectively. Thus we
obtain |S| ≤ (18.2 + 3 ln 5)|D∗

2 | + 4.8. �

Observe that (18.2 + 3 ln 5) < 23.03. So Algorithm C has a better guaranteed performance than the 64-
approximation algorithm in [10] for the same problem (when the size of the optimal 2-connected dominating set
is not very big).

5. Conclusion

In this paper we have proposed three centralized approximation algorithms for the minimum k-tuple dominating
set problem and m-connected k-tuple dominating set problem for m = 1, 2. Although the approximation performance
ratios of Algorithms A and B are dependent on k, they are very small when k is not very big, in fact, that is the case for
virtual backbone construction in wireless sensor networks. Our future work is to extend our study to the more general
case of m ≥ 3, and design distributed and localized algorithms for the minimum m-connected k-tuple dominating set
problem.
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