
ARTICLE  IN  PRESS
Theoretical Computer Science ( ) –

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

New approximations for minimum-weighted dominating sets and
minimum-weighted connected dominating sets on unit disk graphs
Feng Zou a,∗, Yuexuan Wang b, Xiao-Hua Xu c, Xianyue Li d,∗∗, Hongwei Du c, Pengjun Wan c,
Weili Wu a
a Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
b Institute of Theoretical Computer Science, Tsinghua University, Beijing 100084, China
c Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
d School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

a r t i c l e i n f o

Keywords:
Minimum-weighted dominating set
Minimum-weighted connected dominating
set
Minimum-weighted chromatic disk cover
Node-weighted Steiner tree
Polynomial-time approximation scheme
Approximation algorithm

a b s t r a c t

Given a node-weighted graph, the minimum-weighted dominating set (MWDS) problem is
to find a minimum-weighted vertex subset such that, for any vertex, it is contained in this
subset or it has a neighbor contained in this set. And the minimum-weighted connected
dominating set (MWCDS) problem is to find a MWDS such that the graph induced by
this subset is connected. In this paper, we study these two problems on a unit disk
graph. A (4+ε)-approximation algorithm for anMWDS based on a dynamic programming
algorithm for aMin-Weight Chromatic Disk Cover is presented. Meanwhile, we also propose
a (1 +ε)-approximation algorithm for the connecting part by showing a polynomial-time
approximation scheme for a Node-Weighted Steiner Tree problem when the given terminal
set is c-local and thus obtain a (5+ε)-approximation algorithm for anMWCDS.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Due to the lack of predefined infrastructure, most routing protocols in wireless networks involve flooding, which usually
causes a serious broadcasting storm [12]. The Connected Dominating Set (CDS) has become a well known approach for
constructing a virtual backbone to alleviate this broadcasting storm in wireless networks. With the help of the CDS, the
average message burden of the network could be reduced so that routing becomes much easier and can adapt quickly to
network topology changes [4]. Furthermore, using aCDS as forwarding nodes can efficiently reduce the energy consumption,
which is also a critical concern in wireless networks.
Given a graph G = (V , E), a Dominating Set (DS) is a subset D ⊆ V such that, for every vertex v ∈ V , either v ∈ D,

or v has a neighbor in D. If the graph induced from D is connected, then D is called a Connected Dominating Set (CDS). The
Minimum Dominating Set (MDS) problem is to find a dominating set in G with minimum size and the Minimum Connected
Dominating Set (MCDS) problem is to find a connected dominating set in G with minimum size. Both problems are well-
known NP-complete problems [6]. Lichtenstein [11] showed that they are NP-complete problems even though the given
graph is a unit disk graph (UDG), which has a wide application in networks. A unit disk graph is associated with a set of unit
disks in the Euclidean plane. Each vertex is the center of a unit disk. An edge exists between two vertices u and v if and only
if the Euclidean distance between u and v is at most 1. The most common methodology researchers use to construct the
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approximation algorithms for anMCDS has the following two steps. First, find a DS, and then make this DS connected using
either a Steiner tree or a spanning tree. Usually, we call this step connecting.
The Minimum-Weighted Connected Dominating Set problem (MWCDS) is a generalization of theMCDS. Given a graph

G = (V , E) with node weight function C : V → R+, the MWCDS problem is to find a CDS of G such that its total weight
is minimum. Similarly, the Minimum-Weighted Dominating Set problem (MWDS) is a generalization of theMDS, which is
to find a DS of G such that its total weight is minimum. For convenience, we normalize the weight function C such that, for
any vertex v in G, C(v) ≥ 1. If the weights on all vertices are the same, theMWDS andMWCDS problems are equal to the
MDS andMCDS respectively. Hence, theMWDS andMWCDS problems are also NP-complete problems. Until now, the best
known approximation ratio for anMWCDS in a general graph is O(log n) [7].
In this paper, we are concerned aboutMWDSs andMWCDSs in unit disk graphs, most of the constructionmethodologies

of which adopted by researchers follow the routine for MDSs and MCDSs. Ambühl et al. [1] gave a 72-approximation
algorithm for anMWDS.Meanwhile, by introducing a 17-approximation algorithm for the connecting part, they gave the first
constant-factor algorithm for anMWCDSwith approximation ratio 89. Huang et al. [9] improved the approximation ratio of
anMWCDS from 89 to 10 +ε with a (6 +ε)-approximation algorithm for theMWDS and a 4-approximation algorithm for
the connecting part. Recently, Dai and Yu [5] gave a (5+ε)-approximation algorithm for anMWDS and Zou et al. [16] gave
a 3.875-approximation algorithm for the connecting part by using a Steiner tree. Therefore, the best known approximation
ratio so far for anMWCDS in a UDG is 8.875+ε.
In this paper, we first present a (4 +ε)-approximation algorithm for an MWDS based on a dynamic programming

algorithm for the Min-Weight Chromatic Disk Cover. Suppose that we are given a set D of unit disks with positive weights
given by a function c and a set P of nodes in the plane. Also each disk D ∈ D is colored either red or blue. In addition,
suppose that we are given m + 1 ≥ 2 distinct horizontal lines y = yi for 0 ≤ i ≤ m from the top to the bottom, where m
is a nonnegative integer constant. Thus these m + 1 lines separate the plane into m + 2 horizontal strips. A node p ∈ P is
chromatically covered by a red (resp., blue) diskD ∈ D if p ∈ D and the center ofD is above (resp., below) the strip containing
p. A subsetD ′ ⊆ D is said to be a chromatic cover of P if each node in P is chromatically covered by some disk inD ′. The
Min-Weight Chromatic Disk Cover (MWCDC) problem seeks a min-weight chromatic cover D ′ ⊆ D of P . We show that
there exists a polynomial-time dynamic programming algorithm for theMWCDC and prove that given a ρ-approximation
algorithm for theMWCDC and any fixed ε, there is a polynomial (4ρ + ε)-approximation algorithm for theMWDS.
Meanwhile, we also propose a (1 +ε)-approximation algorithm for the connecting part by showing a polynomial-time

approximation scheme (PTAS) for the Node-Weighted Steiner Tree problemwhen the given terminal set is c-local. TheNode-
Weighted Steiner Tree problem (NWST) is a variation of the classical Steiner tree problem. Given a graph G = (V , E) with
node weight function C : V → R+ and a subset X of V , the node-weighted Steiner tree problem is to find a Steiner tree for
the set X such that its total weight is minimum. We call the set X the terminal set. For any Steiner tree T for X and vertex
u ∈ V (T ), we call u a terminal vertex if u ∈ X; otherwise, we call it a Steiner vertex. A polynomial-time approximation scheme
(PTAS) is a family of approximation algorithms with ratio 1 +ε for any ε > 0. Hence, we obtain a (5 +ε)-approximation
algorithm for theMWCDS, which is the best approximation ratio so far.
The rest of this paper is organized as follows. In Section 2, we give necessary notations and lemmas. In Section 3, we

introduce the dynamic programming algorithm for the MWCDC as part of the main algorithm for the MWDS. Section 4
shows a PTAS algorithm for the NWST, and by using this to connect the MWDS, we can obtain a (5 +ε)-approximation
algorithm for theMWCDS.

2. Preliminaries and fundamental lemmas

In this section, we introduce three variants of disk covers and their relations first as the fundamental lemmas for an
MWDS. We then introduce some preliminaries for constructing an NWST to interconnect theMWDS.

2.1. Disk cover problems

Suppose that we are given a set D of unit disks with positive weights given by a function c and a set P of nodes in the
plane. A node p ∈ P is covered by a disk D ∈ D if p ∈ D. A subset D ′ ⊆ D is said to be a cover of P if each node in P is
covered by some disk inD ′. TheMin-Weight Disk Cover (MWDC) problem seeks a min-weight coverD ′ ⊆ D of P .
Now, suppose in addition that we are givenm+ 1 ≥ 2 distinct horizontal lines y = yi for 0 ≤ i ≤ m from the top to the

bottom, where m is a nonnegative integer constant. The set P of nodes lies between the topmost line and the bottommost
line. None of the nodes in P and the centers of the disks inD lies on any of thesem+ 1 horizontal lines. Thesem+ 1 lines
separate the plane intom+ 2 horizontal strips. A node p ∈ P is strongly covered by a disk D ∈ D if p ∈ D and the center of
D does not lie in the same strip as p. A subsetD ′ ⊆ D is said to be a strong cover of P if each node in P is strongly covered
by some disk inD ′. TheMin-Weight Strong Disk Cover (MWSDC) problem seeks a min-weight strong coverD ′ ⊆ D of P .
Next, suppose further that each diskD is colored either red or blue. A node p ∈ P is chromatically covered by a red (resp.,

blue) disk D ∈ D if p ∈ D and the center of D is above (resp., below) the strip containing p. A subsetD ′ ⊆ D is said to be
a chromatic cover of P if each node in P is chromatically covered by some disk inD ′. The Min-Weight Chromatic Disk Cover
(MWCDC) problem seeks a min-weight chromatic coverD ′ ⊆ D of P .
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Using the double partition and shifting techniques developed in [17], we can prove the following relation between the
MWSDC and theMWDC.

Theorem 2.1. Suppose that there exists a polynomial ρ-approximation algorithm for theMWSDC, then for any fixed ε > 0 there
is a polynomial (2ρ + ε)-approximation algorithm for theMWDC.

The following theorem further reduces theMWSDC to theMWCDC.

Theorem 2.2. Suppose that there exists a polynomial algorithm for the MWCDC, then there is polynomial 2-approximation
algorithm for theMWSDC.

Proof. Consider an instance (P,D, c) of theMWSDC. We duplicateD into a red copyR and a blue copyB. LetR′ ∪B ′ be
a min-weight chromatic cover of P , andD ′ ⊆ D be the set of disks inD for which the set of disks inR′ ∪B ′ is duplicated.
We show that D ′ is a 2-approximation. Suppose that D∗ is a min-weight strong cover of P . Let R∗ (resp., B∗) be the red
(resp., blue) duplication ofD∗. Then,R∗ ∪B∗ is a chromatic cover of P , and consequently,

c
(
D ′
)
≤ c

(
R′ ∪B ′

)
≤ c

(
R∗ ∪B∗

)
= 2c

(
D∗
)
. �

In the next section, we will establish the following theorem on theMWCDC.

Theorem 2.3. There exists a polynomial algorithm for theMWCDC.

From these three theorems, we can come up with a (4+ ε)-approximation algorithm for theMWDC.

2.2. Node-weighted Steiner tree

Given a solution for the MWDC, we could consider all the vertices in the MWDC as terminals, and consider connecting
them together as looking for an NWST for all these terminals.
Given a node-weighted graph G = (V , E) with weight function C , and also the terminal set X we are interested in, we

first introduce two kinds of distance between any two vertices u and v in the graph, which are called the e-distance and the
w-distance, respectively. In detail, diste(u, v) is calculated as the Euclidean distance between the two nodes and distw(u, v)
is calculated as the minimum weight of all the possible paths connecting u and v in G. The weight of each path here is
calculated as the total weight of all intermediate vertices on that path.
Since the graph is node-weighted instead of edge-weighted, the construction of the minimum spanning tree, or saying

theminimum node-weighted spanning tree on terminal set X (denoted as Ts(X)), is a little bit different here. First, we create
an edge-weighted complete graphG′ on terminal set X such that, for any edge (u, v) inG′ (u, v ∈ X), its weight is equal to the
w-distance between u and v. Then let Ts be a minimum spanning tree of G′. It is easy to see that, for any edge (u, v) in Ts, it
corresponds to the minimum-weighted path between u and v in G. In the following, we use C(Ts) to denote the total weight
of edges in Ts. Meanwhile, for simplicity, we keep Ts as it is without replacing the weighted edge with the corresponding
minimum-weighted path between any two nodes in the node-weighted graph.
A set of vertices X is called c-local in a node-weighted graph if, in the minimum node-weighted spanning tree for X ,

the weight of the longest edge is at most c. This definition could be considered as the node-weighted version of the c-local
definition given by [14]. In the remainder of the paper, we assume that the terminal set X is c-local for some constant c .
In [13], Robin et al. showed that the Minimum Spanning Tree Number for a Euclidean metric is 5, and [15] shows that,

for any unit disk graph G, there exits a spanning tree T of G such that the maximum degree of T is at most 5. Thus, we can
get the following lemma easily.

Lemma 2.4. The minimum spanning tree of a given terminal set in a node-weighted graph has an approximation ratio of at most
5 for the optimal Steiner tree of the same given terminal set.

3. Dynamic programming algorithm for the MWCDC

In this section, we present a dynamic programming algorithm for theMWCDC. We beginwith some terms and notations.
By necessary preprocessing, we can assume that each disk inD chromatically covers at least one node in P . The m + 1

horizontal lines separate (w.r.t. the disk centers) the setD of disks intom+ 2 subsetsD0,D1, . . . ,Dm,Dm+1 from the top
to the bottom. For each 0 ≤ i ≤ m+ 1, we denote byRi (resp.,Bi ) the set of red (resp., blue) disks inDi.
For ease of treatment, we also introducem dummy red disks andm dummy blue disks as follows. For each 0 ≤ i ≤ m−1,

the half-plane y ≥ yi defines a dummy red disk of zero weight; we denote byR+i the union ofRi and this red dummy disk.
For each 2 ≤ i ≤ m+ 1, the half-plane y ≤ yi−1 defines a dummy blue disk of zero weight; we denote byB+i the union of
Bi and this blue dummy disk. None of these 2m dummy disks chromatically cover any node in P , but each of them intersects
every vertical line as a half-plane.
Consider a disk D ∈ R+i with 0 ≤ i ≤ m− 1 intersecting a vertical line l. A disk D

′
∈ R+i is said to be dominated by D at l

if one of following cases occurs (see Fig. 1 for an illustration).
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a b c

Fig. 1. Three scenarios for a red disk D to dominate another red disk D′ at a vertical line l.

Fig. 2. If D dominates D′ at l and D′ dominates D at l′ , then D ∩ Q ⊆ D′ ∩ Q .

1. D′ does not intersect l;
2. The lower endpoint of D ∩ l is below the lower endpoint of D′ ∩ l;
3. D ∩ l and D′ ∩ l have the same lower endpoint, but the center of D lies to the left to the center of D′.

Similarly, consider a disk D ∈ B+i with 2 ≤ i ≤ m+1 intersecting a vertical line l. A disk D
′
∈ B+i is said to be dominated

by D at l if and only if one of following three conditions is satisfied:

1. D′ does not intersect l;
2. The upper endpoint of D ∩ l is above the upper endpoint of D′ ∩ l;
3. D ∩ l and D′ ∩ l have the same upper endpoint, but the center of D lies to the left to the center of D′.

It is easy to verify that the domination is transitive; i.e.,

• Suppose that D1,D2,D3 are three red disks inR+i for some 0 ≤ i ≤ m− 1, and l is a vertical line. If D1 dominates D2 at l
and D2 dominates D3 at l, then D1 dominates D3 at l.
• Suppose that D1,D2,D3 are three blue disks inB+i for some 2 ≤ i ≤ m+ 1, and l is a vertical line. If D1 dominates D2 at
l and D2 dominates D3 at l, then D1 dominates D3 at l.

The following geometric fact was used in both [1,5].

Lemma 3.1. Let l and l′ be two distinct vertical lines with l lying on the right to l′.

• Suppose that D and D′ are two red disks in R+i for some 0 ≤ i ≤ m − 1. If D dominates D
′ at l and D′ dominates D at l′,

then D ∩ Q ⊆ D′ ∩ Q , where Q is the (closed) lower-left quarter-plane bounded by the lines y = yi and l′ (see Fig. 2 for an
illustration).
• Suppose that D and D′ are two blue disks inB+i for some 2 ≤ i ≤ m+ 1. If D dominates D

′ at l and D′ dominates D at l′, then
D ∩ Q ⊆ D′ ∩ Q , where Q is the (closed) upper-left quarter-plane bounded by the lines y = yi and l′.

Suppose thatD ′ is a set of disks which includes all dummy disks and l is a vertical line. For each 0 ≤ i ≤ m− 1, the i-th
red skyline disk ofD ′ at l is the disk D ∈ D ′ ∩R+i which dominates all other red disks, if there are any, inD ′ ∩R+i . For each
2 ≤ i ≤ m+ 1, the i-th blue skyline disk ofD ′ at l is the disk D ∈ D ′ ∩B+i which dominates all other blue disks, if there are
any, in D ′ ∩ B+i . The skyline of D

′ at l is defined to be sequence of m red skyline disks at l followed by the sequence of m
blue skyline disks at l.
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Let l1, l2, . . . , ln be the set of vertical lines through P from left to right. Let P0 = ∅. For each 1 ≤ k ≤ n, we use Pk to
denote the set of nodes in P lying on the (closed) left half-plane separated by lk, and useR+i,k (resp., B

+

i,k) to denote the set
of red disks inR+i (resp.,B

+

i ) intersecting the line lk. Denote

Γk =

(
m−1∏
i=0

R+i,k

)
×

(
m∏
i=2

B+i,k

)
.

For each D ∈ Γk, Ck (D) denotes the collection of chromatic disk coversD ′ of Pk with D as the skyline at lk and containing all
the 2m dummy disks. If Ck (D) is non-empty, let Ck (D) be a min-weight cover in Ck (D), and ck (D) be the weight of Ck (D);
otherwise, set Ck (D) to null, and set ck (D) to∞. Clearly,

• if D is a chromatic cover of Pk, then Ck (D) = D and ck (D) = c (D);
• if D is not a chromatic cover of Pk \ Pk−1, then Ck (D) = null and ck (D) = ∞.

Suppose that 2 ≤ k ≤ n. For any D ∈ Γk, denote by Γk−1 (D) the set of D′ ∈ Γk−1 satisfying that each component disk in
D′ is dominated by the corresponding component disk of D at lk. Then, we have the following recursive relation.

Lemma 3.2. Suppose that 2 ≤ k ≤ n. For any D ∈ Γk which is a chromatic cover of Pk \ Pk−1,

ck (D) = min
D′∈Γk−1(D)

ck−1
(
D′
)
+ c

(
D \ D′

)
.

Proof. First, we show that

ck (D) ≥ min
D′∈Γk−1(D)

ck−1
(
D′
)
+ c

(
D \ D′

)
.

This holds trivially if ck (D) = ∞. So we assume that ck (D) < ∞ is finite. Let D′ be the skyline of Ck (D) at the line lk−1.
Then, D′ ∈ Γk−1 (D). Set

D ′ = Ck (D) \
(
D \ D′

)
.

Then

c
(
D ′
)
= ck (D)− c

(
D \ D′

)
and D′ is the skyline ofD ′ at the line lk−1. We claim thatD ′ is a chromatic cover of Pk−1. Assume to the contrary that some
point p ∈ Pk−1 is not chromatically covered byD ′. Then, p is chromatically covered by some disk D ∈ D \ D′. By symmetry,
we assume that D is a red disk. Suppose that D ∈ Ri,k. Let D′ be the component disk of D′ in R+i,k−1. Then D and D

′ are
distinct, D dominates D′ at lk, and D′ dominates D at lk−1. By Lemma 3.1, p is also chromatically covered by D′, which is a
contradiction. Therefore, our claim holds. HenceD ′ ∈ Ck−1

(
D′
)
. So

ck−1
(
D′
)
≤ c

(
D ′
)
= ck (D)− c

(
D \ D′

)
,

which implies

ck (D) ≥ ck−1
(
D′
)
+ c

(
D \ D′

)
.

Secondly, we prove that

ck (D) ≤ min
D′∈Γk−1(D)

ck−1
(
D′
)
+ c

(
D \ D′

)
.

This inequality holds trivially if the right-hand side is∞. So we assume that the right-hand side is finite. Suppose that the
right-hand side achieves its minimum at D′ ∈ Γk−1 (D). Let

D ′ = Ck−1
(
D′
)
∪ D.

Since D is a chromatic cover of Pk \ Pk−1,D ′ is a chromatic cover of Pk. We prove the following two claims:
Claim 1: For any component disk D of Dwhich is not a dummy, D /∈ Ck−1

(
D′
)
\ D′.

Claim 2: D is the skyline ofD ′ at lk.
Claim 1 implies that

c
(
D ′
)
= ck−1

(
D′
)
+ c

(
D \ D′

)
.

Claim 2 implies thatD ′ ∈ Ck (D). Consequently,

ck (D) ≤ c
(
D ′
)
= ck−1

(
D′
)
+ c

(
D \ D′

)
.

We prove Claim 1 by contradiction. Assume to the contrary that Claim 1 does not hold. By symmetry, we assume that for
some red component disk D of Dwhich is not a dummy, D ∈ Ck−1

(
D′
)
\D′. Suppose that D ∈ Ri,k. Let D′ be the component

disk ofD′ inR+i,k−1. Then D and D
′ are distinct. So, D dominates D′ at lk and D′ dominates D at lk−1. By Lemma 3.1, any node in
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Pk−1 chromatically covered by D is also chromatically covered by D′. Hence Ck−1
(
D′
)
\ {D}would still be a chromatic cover

of Pk−1 in Ck−1
(
D′
)
, which contradicts the minimality of Ck−1

(
D′
)
in Ck−1

(
D′
)
. Thus, Claim 1 holds.

We also prove Claim 2 by contradiction. Assume to the contrary that Claim 2 does not hold. By symmetry, we assume
that some red component disk D of D is not a skyline disk ofD ′ at lk. Then there is a disk D′′ ∈ Ri ∩ D ′ which dominates
D at lk. Let D′ the component disk of D′ in R+i,k−1. Then, D

′ and D′′ are distinct. Note that either D = D′ or D dominates
D′ at lk. In either case, D′′ dominates D′ at lk. On the other hand, D′ dominates D′′ at lk−1. By Lemma 3.1, any node in Pk−1
chromatically covered by D′′ is also chromatically covered by D′. Hence, Ck−1

(
D′
)
\
{
D′′
}
would still be a chromatic cover of

Pk−1 in Ck−1
(
D′
)
, which contradicts the minimality of Ck−1

(
D′
)
in Ck−1

(
D′
)
. Thus, Claim 2 holds. �

Now, we are ready to present the dynamic programming for the MWCDC. For each 1 ≤ k ≤ n, we build a table of |Γk|
entries, with each entry corresponding to an element of Γk. The first table is constructed as follows. For each D ∈ Γ1, if D is
a chromatic cover of P1, set

C1 (D) = D, c1 (D) = c (D) ;

otherwise, set

C1 (D) = null, c1 (D) = ∞.

Now suppose that the first k− 1 tables have been constructed for some 2 ≤ k ≤ n. We construct the k-th table as follows.
For each D ∈ Γk,

• if D is a chromatic cover of Pk, set

Ck (D) = D, ck (D) = c (D) ;

• if D is not a chromatic cover of Pk \ Pk−1, set

Ck (D) = null, ck (D) = ∞;

• otherwise, compute a D′ ∈ Γk−1 (D)minimizing ck−1
(
D′
)
+ c

(
D \ D′

)
. If ck−1

(
D′
)
= ∞, set

Ck (D) = null, ck (D) = ∞;

otherwise, set

Ck (D) = Ck−1
(
D′
)
∪ D, ck (D) = ck−1

(
D′
)
+ c

(
D \ D′

)
.

Next, we compute a D ∈ Γn minimizing cn (D). Removing all dummy disks from Cn (D), the remaining set of disks is a
min-weight chromatic cover of P .
Thus, with this algorithm, we could obtain the following theorem.

Theorem 3.3. There is a polynomial-time (4+ ε)-approximation algorithm for the minimum-weighted dominating set problem.

Proof. We observe that the time complexity of the above algorithm for theMWCDC depends onm and number of disks in
D . According to the techniques used in [17],m depends on ε; thus this algorithm is polynomial-time computable according
to the number of disks in D . According to Theorems 2.1 and 2.3, we can conclude that there exists a polynomial-time (4
+ε)-approximation algorithm for the minimum-weighted dominating set problem. �

4. PTAS for the NWST

Recall that the MWCDS problem is to construct the connected dominating set in a node-weighted graph with the
minimum total weight. Normally, researchers start by calculating the dominating sets for the graph first and then
interconnecting them. Obviously, the node-weighted Steiner tree can be used in the MWCDS problem to interconnect all
nodes of the DS to get a better approximation algorithm. We propose a PTAS for the NWST in this section. We present our
approximation algorithm based on the partition and shifting strategy. Before introducing this algorithm, we first give some
useful notations.
Recall that Ts is a minimum spanning tree of terminal set X in G. For a fixed partition P , we call an edge uv a crossing edge

if at least one of the end nodes u or v is contained in the boundary area of P . We use Xp to denote the set of terminal vertices
contained in the interior area of P . Note that we study this problem under a fixed partition P in this section.
The algorithm has two steps, as follows. First, for each cell, we construct a local optimal Steiner forest on terminal

vertices in the interior area of this cell. Then, combine all these forests to obtain a local optimal Steiner forest F̂p on Xp.
In the second step, we add all the crossing edges in Ts into F̂p to get a Steiner tree on terminal set X . We call the resulting
graph Gp for a specific partition P . In order to approximate the minimum node-weighted Steiner tree, we calculate all Gpi,j
for 0 ≤ i, j ≤ k− 1 and choose the minimum one among all of them as the output of our algorithm.
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Fig. 1. Two partitions P0,0 and Pi,j with the shadow area A. The solid lines represent partition P0,0 and the dashed lines represent partition Pi,j .

Fig. 2. The interior area and boundary area with boundary width b = (1+ 1.5 log k)c.

4.1. Partition and shifting

One of the key strategies adopted in our algorithm is partition and shifting. Considered as a special way to make a
restriction and derandomize the probabilistic result to get a deterministic one, researchers started to use a partition and
shifting strategy [2,8] in approximation algorithms from the early 1980s.
Specifically, in our algorithm, we partition the graph according to the following strategy. Let A be the smallest square

containing all vertices of G with size q × q. For a given integer k, let l = (bq/kc + 2)k and make the lower left corner of
the square A the center of the coordinate system. We extend the area A to A′ of size l × l and divide it into small cells such
that the size of each cell is k× k (see Fig. 1). Furthermore, for each cell, we divide it into two parts: the interior area and the
boundary area with boundary width b = (1+1.5 log k)c (as in Fig. 2). We call this partition P0,0. Then we shift the extended
area A′ to make its lower left corner positioned at point (−i,−j) (0 ≤ i, j ≤ k− 1) in the coordinate system, to get another
partition Pi,j. Clearly, there are k2 possible partitions and any partition contains the area A.
Our intention of making use of the partition and shifting strategy is that, for any fixed partition, we first construct the

local optimal solution for each cell. Then, we further modify the union of the local optimal solution of all cells to make it a
feasible solution. In order to achieve the best solution, we use shifting to obtain a set of solutions on different partitions and
choose the best solution among all these feasible solutions. With this strategy, we could better bound the approximation
ratio of our algorithm.
We now describe in detail the construction of the local optimal Steiner forest and the final Steiner tree in our scheme.

4.1.1. Local optimal Steiner forest F̂p
Our target in this part is to construct a local optimal Steiner forest F̂p on Xp. In order to achieve this goal, we first group

the terminal vertices in the interior area of every cell satisfying that thew-distance between any two groups is greater than
c. The grouping is achieved by first constructing the minimum spanning tree on the terminal vertices in the interior area of
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each cell and then deleting all edges with weight greater than c . Obviously, by doing so, terminal vertices will be divided
into different connected components. We consider all terminal vertices in the same connected component to be in the same
group. Clearly, the w-distance between any two groups is greater than c . Otherwise, there will be another spanning tree
with weight less than our minimum spanning tree, which creates a contradiction.
For a fixed cell, let Y1, . . . , Ym be the different groups of all terminal vertices after grouping. In order to get desired

solution, we merge Y1, . . . , Ym into new groups, construct the Steiner minimum tree for each new group in this cell, and
then combine them to form a Steiner forest. If we calculate the total weight of the edges (the w-distance between two
end points) in the resulting Steiner forest to be the cost of this specific merging, with different possible merging choices,
we choose the merging with the minimum merging cost among all of them. The corresponding Steiner forest is the local
optimal Steiner forest that we are after for this cell in partition P .
For a fixed partition P , we denote F̂p the local optimal Steiner forest on the terminal vertices Xp in graph G. It is calculated

as the union of the local optimal Steiner forest in each cell. From the method for F̂p construction described above, we can
obtain the following lemma easily.

Lemma 4.1. F̂p is a Steiner forest on Xp with the following properties:
(1) Each tree in the forest F̂p is completely included in some cell.
(2) The w-distance between any two terminal vertices in different trees of F̂p is greater than c.

In the following, we will discuss the running time for computing a local optimal Steiner forest. Let n be the number of
vertices of G. Since G is a unit disk graph, we can see that G can be covered by a square with size n × n. Recall that the
size of every cell is k × k; there are at most O(n/k)2 cells. Then, we will discuss the time for computing a local optimal
Steiner forest in a cell. Let Y be the set of terminal vertices in the interior area in this cell and m be the number of groups
in the same cell. In the subgraph G[Y ] induced by Y , we shrink each component to be a new vertex and set Y ′ as the set
of these new vertices. It is easy to see that m ≤ |Y ′|. If we find a minimum Steiner tree on Y ′, and replace every vertex in
Y ′ by the corresponding component, we obtain a minimum Steiner tree on Y . Hence, the time complexity to compute the
local optimal Steiner forest is O(2mM(|Y ′|)) [14], whereM(|Y ′|) is the time to compute an optimal Steiner tree on terminal
set Y ′ and M(|Y ′|) is exponential in |Y ′| [3,10]. If we divide the cell into some squares such that the size of each square is
√
2
2 ×

√
2
2 , then the terminal vertices in each squaremust belong to the same component of G[Y ]. Hence, there are atmost 2k

2

components in G[Y ]; i.e., |Y ′| ≤ 2k2. In Section 4.2, we will show that k is only related with c and ε. Hence, we can compute
a local optimal Steiner forest in polynomial time.

4.1.2. Constructing the NWST Tout from F̂p
Recall that in the above subsection, we get a local optimal Steiner forest F̂p on Xp and the w-distance between any two

terminal vertices in different trees of F̂p is greater than c.
Let Esp be the set of all crossing edges in Ts under a partition P . In order to interconnect the disconnected components

in the Steiner forest F̂p, we add all edges in Esp into F̂p and then replace every crossing edge by the corresponding path in G.
Denoting Gp as the resulting graph, we have

Lemma 4.2. Gp contains a Steiner tree interconnecting X.

Proof. In order to prove this statement, it is sufficient to show (1) X ⊆ V (Gp); (2) Gp is connected.
Obviously, vertices in the interior area of a partition Xp ⊆ V (Gp). If a vertex is in the boundary area of a partition, it must

be on one of the crossing edges included in the set Esp, which has already been added into V (Gp). So X ⊆ V (Gp). It is sufficient
to show Gp is connected. For convenience, we keep Gp as it is without replacing every crossing edge by the corresponding
path; i.e., Gp is obtained from F̂p by adding all edges in Esp. Clearly, if this Gp is connected, after replacing every crossing edge,
the resulting graph Gp is also connected.
Now, suppose to the contrary that Gp is disconnected. Then, Gp can be divided into two disjoint subgraphs G1p and G

2
p such

that there are no edges connecting G1p and G
2
p in Gp. Since Gp is obtained from F̂p by adding all edges in E

s
p, there are some

terminal vertices contained in G1p and G
2
p . Since Ts is a spanning tree of terminal set X in G, there is an edge L in Ts connecting

G1p and G
2
p . Because all crossing edges are added in Gp, the edge Lmust be a non-crossing edge. Therefore, L is contained in

some cell. Denote u and v as the endpoints of this edge. Also let Tu and Tv be the two trees containing u and v in the cell,
respectively. Since c is the maximum edge weight among all edges in Ts, we have distw(u, v) ≤ c. On the other hand, from
Lemma 2, we have distw(u, v) > c. This creates a contradiction. Hence, Gp is connected. �

Recall that there are all together k2 different partitions, and for every partition Pi,j, we could obtain a graph GPi,j . Among
all k2 graphs, we choose the minimum-weight graph and prune it into a Steiner tree on X . This final tree, denoted as Tout , is
the output of our algorithm.
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4.2. Theoretical analysis

In this section, we study the approximation ratio of our algorithm and show that, for any ε > 0, choosing the appropriate
integer k, the approximation ratio is 1+ ε.
There are two steps in our proof. In the first step, we show that, for any partition P , C(F̂p) ≤ C(TOPT ), where TOPT is the

optimal solution for node-weighted Steiner tree on terminal set X . In the second step, we show that our algorithm has a
performance ratio of 1+ ε.

4.2.1. C(F̂P) ≤ C(TOPT )
Let Tp be the minimum Steiner tree in G on Xp. Since TOPT is also a Steiner tree on Xp, clearly C(Tp) ≤ C(TOPT ). In order to

prove C(F̂P) ≤ C(TOPT ), we construct a new Steiner forest Fp on Xp, which is modified from Tp satisfying that each tree in Fp
is completely included in a cell and also C(F̂p) ≤ C(Fp). The following gives some useful notations for further proof.
For any Steiner tree, we call a Steiner vertex a real Steiner vertex if its degree is at least 3. Besides, a path between two

vertices in the Steiner tree is a Stem if its endpoints are either a terminal vertex or a real Steiner vertex and also all the other
vertices are 2-degree Steiner vertices. We modify Tp to be the desired forest Fp with the following three steps.
In the first step, we delete all stems with weight greater than c in Tp, and denote the resulting forest by F ′p. After this, the

w-distance between any two trees in F ′p is greater than c because of the optimality of Tp. Also we have C(F
′
p) ≤ C(Tp).

In the second step, we further modify F ′p to guarantee that each tree in it is interconnecting terminal vertices in the same
cell. If there is a tree T ∗ in F ′p connecting terminal vertices in different cells, T

∗ must have some Steiner vertices between
the boundary areas of two adjacent cells since the e-distance between any two vertices is at most 1. By Steiner vertices, we
mean those vertices not belong to the Xp. If we draw two vertical lines, the distance between which is 2c as illustrated in
Fig. 3, there must exist a vertex u in the tree T ∗ within these two lines since the e-distance between any two vertices is at
most 1. Therefore, the e-distance between u and any boundaries of the interior area is more than 1.5c log k. Since the weight
of any stem in F ′p is at most c and the weight of any vertex is at least 1, the e-distance between any two adjacent real Steiner
vertices is at most c , where two real Steiner vertices are adjacent if they can be connected without any other real Steiner
vertices. Now, we count the number of real Steiner vertices to connect the vertex u and any boundary of the interior area.
Clearly, it must use at least 1 + 2 + · · · + 2(1.5 log k)−1 = 21.5 log k − 1 = k1.5 − 1 real Steiner vertices in the tree T ∗ (see
Fig. 3). Hence, there are at least k1.5 − 1 + (k1.5 − 1)(c − 1) = c(k1.5 − 1) Steiner vertices in the tree between u and the
boundary of the interior area. By deleting all of these vertices, at most kmore trees will be created along this boundary. If the
w-distance of any two trees is at most c , connect them to create a new tree. As there are at most k trees, the whole weight
will increase by at most c(k − 1). Meanwhile, as we delete at least c(k1.5 − 1) vertices, which means the whole weight
decreases by at least c(k1.5−1). Hence, the weight of the new F ′p is decreased by doing so. Repeat this step until there are no
trees connecting different cells, denoting the resulting forest by F ′′p . We can see that the w-distance between any two trees
in F ′′p is also greater than c and C(F

′′
p ) ≤ C(F

′
p).

In the last step, if any tree of F ′′p is completely included in a cell, we do nothing. Otherwise, there must exist a tree such
that all its terminal vertices are in a same cell, but at least one Steiner vertex is in a different cell. In this case, we modify F ′′p
using the samemethod described in Step 2. Clearly, any tree in the new F ′′p is completely in one cell. Finally, for any tree, we
reconstruct the Steiner minimum tree on its terminal vertices in the cell. Letting Fp be the resulting graph afterwards, we
can obtain the following lemmas.

Lemma 4.3. Fp is a Steiner forest on Tp with the following properties:
(1) Each tree of Fp is completely included in some cell.
(2) The w-distance between any two trees in Fp is greater than c. Furthermore, the w-distance between any two terminal vertices
in different trees of Fp is greater than c.
(3) C(Fp) ≤ C(Tp) ≤ C(TOPT ).

Lemma 4.4. C(F̂p) ≤ C(Fp) ≤ C(TOPT ).

Proof. It is only necessary to show C(F̂p) ≤ C(Fp). Recalling the constructions of F̂p and Fp, for a fixed cell, every Yi is
completely contained in one tree of Fp. Hence, Fp will be one of possible merging solutions as well. Since F̂p is the minimum
solution of all possible merging choices, we have C(F̂p) ≤ C(Fp). �

4.2.2. Performance analysis
Based on Lemma 4.4 and the construction of Tout , we obtain the main theorem in this paper.

Theorem 4.5. The approximation ratio for the NWST problem used in our algorithm to interconnect the terminal set is 1 +
40cd1+ 1.5 log ke/k.
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Fig. 3. The tree T ∗ and the vertex u.

Proof. Recall that Tout consists of two parts, the local optimal F̂p and Epi,j . To bound the total weight of the Epi,j , we consider
the number of times each vertex in the terminal set appears in the boundary area in all k2 partitions.
If we divide every cell into 1× 1 squares, for different partitions, the same terminal vertex must lie in different squares

according to the shifting strategywe used. Since there are atmost 4ckd1+1.5 log ke squares in the boundary area, a terminal
vertex will appear in the boundary area at most 4ckd1 + 1.5 log ke times. For an edge in Ts, since both of its endpoints are
terminal vertices, it will be considered as a crossing edge at most 2× 4ckd1+ 1.5 log ke times in all k2 partitions. Hence, we
have ∑

0≤i,j≤k−1

C(Gpi,j) ≤
∑
p

F̂p +
∑

0≤i,j≤k−1

C(Epi,j)

≤ k2C(TOPT )+
∑

0≤i,j≤k−1

C(Epi,j)

≤ k2C(TOPT )+ 8ckd1+ 1.5 log keC(Ts)
≤ k2C(TOPT )+ 8ckd1+ 1.5 log ke × 5C(TOPT )
≤ k2C(TOPT )+ 40ckd1+ 1.5 log keC(TOPT ).

Therefore, C(Tout) ≤ (
∑
0≤i,j≤k−1 C(Gpi,j) )/k

2
≤ (1+ 40cd1+ 1.5 log ke/k) C(TOPT ). �

Corollary 4.6. For any given ε > 0, let k > d(41 c/ε)2e. Then C(Tout) ≤ (1+ ε) C(TOPT ).

4.3. (5+ ε)-approximation for theMWCDS

We apply the NWST algorithm into the MWCDS problem to interconnect all nodes of the MWDS to get a better
approximation algorithm. Therefore, we can obtain the following results for theMWCDS.

Corollary 4.7. There is a (5+ε)-approximation algorithm for theMWCDS by using a node-weighted Steiner tree to interconnect
all nodes of theMWDS.

Proof. For any node-weighted graph G and a given Dominating Set MWDS of G, denote by OPTCDS and TOPT the optimal
MWCDS of G and the optimal Steiner tree of G on the givenMWDS, respectively. Since the induced graph G[DS

⋃
OPTCDS] is

connected, this graph contains a Steiner tree of G on theMWDS. Hence, we have C(TOPT ) ≤ C(DS)+ C(OPTCDS).
By Theorem 3.3, for any ε > 0, we can obtain a dominating set D of Gwith C(D) ≤ (4+ ε/7) C(OPTCDS). Then, using our

algorithm for D, we can get a Steiner tree T interconnecting D with C(T ) ≤ (1+ ε/7) C(TOPT ). Since D is a dominating set,
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clearly, V (T ) is a connected dominating set of G and

C(T ) ≤ (1+ ε/7) C(TOPT )
≤ (1+ ε/7) ( C(D)+ C(OPTCDS) )
≤ (1+ ε/7)(4+ ε/7) C(OPTCDS)+ (1+ ε/7)C(OPTCDS)
≤ (4+ 6ε/7) C(OPTCDS)+ (1+ ε/7)C(OPTCDS)
≤ (5+ ε) C(OPTCDS). �

5. Conclusion and discussion

In this paper, we first propose a (4 + ε)-approximation algorithm for the MWDS based on a polynomial-time dy-
namic programming algorithm for theMWCDC. Adopting the strategy of partition and shifting, we also propose a (1 + ε)-
approximation algorithm for the NWST problem in unit disk graphs, which is the best solution for this problem we could
ever have without proving P = NP . Based on it, we give a (5 + ε)-approximation solution for the MWCDS problem in
unit disk graphs when the given terminal set is c-local afterwards, by interconnecting the MWDS constructed, which better
bounds the performance of theMWCDS compared with existing algorithms.
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