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Abstract 

We study the following counterfeit coin problem: Suppose that there is a set of II coins. Each 
one is either heuuy or light. The goal is to sort them according to weight with a minimum 
number of weighings on a balance scale. Hu and Hwang gave an algorithm with a competitive 
ratio of 3 log 3 (all logarithms are base-2). Hu, Chen and Hwang also gave an algorithm with 
a competitive ratio of 2 log 3. In this paper we give an improved algorithm whose competitive 
ratio is 1 log3. 

1. Introduction 

Consider a set of n coins C which contains d light coins and n -d heavy coins. The 

cases where d is known and where d is unknown are considered as different problems. 

We want to sort the coins by using a balance scale and perform a minimum number 

of weighings to identify the d light and the n - d heavy coins. 

Let MA(n : d) denote the maximum number of weighings required by algorithm A to 

sort the n coins when d is unknown and let M~(n,d) denote this maximum when d is 

knotvn. Let M(n : d)=minAMA(n : d) and let M(n,d)=minA MA(n,d). An algorithm 

A is a competitive algorithm if there exist constants c and b such that for all n > d > 0 

we have 

M3(n : d) <cM(n, d) + 6. 

The constant c is called the competitive ratio. 

Hu and Hwang [4] first proposed a bisecting algorithm with a competitive ratio 

3 log, 3. Soon after, Hu et al. [3] discovered a doubling algorithm with competitive 

ratio 2 log, 3. In this paper we give an improved algorithm and show that it has a 

competitive ratio of ; log 3. 
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2. Preliminaries 

The analysis of competitive ratio involves both lower-bound and upper-bound prob- 

lems. In this section, we first list some results about the lower-bound for MA(U : d) 

and MA(IZ, d). 

Hu and Hwang [4] gave a lower-bound for A&(n,d): 

Lemma 2.1. 

M,(n,d)>, d log, ; log, e& log, d 0.567 1 - _----- 
b3,3 

+ 
2 2 log, 3 log*3 2’ 

Cairns [I] discovered an optimal algorithm to find the only one counterfeit in a set 

of coins, when it is known before testing there is only one counterfeit. 

Lemma 2.2. M(n, 1) = [log, n]. 

Hu and Hwang [4] also gave the value of M(n : 1). 

Lemma 2.3. M(n : 1) = [log, n1. 

For convenience we assume that the value of function d log, n/d at d = 0 is 0 because 

limd,0 d log, n/d = 0. The following lemma, given by Du and Park [2], is an important 

tool for analysis. 

Lemma2.4. Letd=dl+d2andn=nl+nz wheredl>O,d;!>O,n, >Oandnz>O. 
Then 

3. The algorithm 

A set of coins are called uniform if they are all of the same type, and called unique 
if there is only one exception. We also use the modifier “heavy” and “light” to specify 

the type of the majority of coins in a uniform or unique set. Assume that the set 

of coins to be identified is C = {cl, ~2,. . . , c,} for n 2 2. In the algorithm and in the 

discussion that follows we employ the notation IAl to denote the number of elements 

in the set A and IlAll to denote the weight of the elements of A. Weight of a set 

of elements is relative. That is, we are only interested in comparison weighings as 

would be done with a balance scale. Let X and Y be two nonempty sets of coins, 

then a comparison between X and Y means to compare X’ LX with Y’ C Y such 

that IX’1 = ] Y’I and either X’ =X or Y’ = Y. In other words, we compare two largest 

equinumerious subsets of X and Y. A comparison can have three possible outcomes: 
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l(X’l( = l(Y’I(, lIX’\I > llY’Jl, (IX’11 < \lY’ll. We say the comparison yields equality for the 

first outcome, and yields inequality for the other two outcomes. 

An important component of Hu’s and Hwang’s 3 log 3-competitive algorithm is a 

halving procedure or binary seurch. In searching for a heavy coin this procedure re- 

peatedly splits a set which is known to contain a heavy coin until that coin is identified. 

Each time the set is split (adding a light coin if the set is of odd size) and the two 

halves are compared on the balance scale. If one half weighs more it is selected to be 

split at the next step. In case the halves are of equal weight (i.e., they balance) the 

half to be split in the next step is chosen arbitrarily. Note that in this case both halves 

contain equally many heavy coins. 

There are several important informations we can tell from the binary search path. 

Suppose that the binary search is to seek a heavy coin from a set U. 

l There are no equal weighing in the binary search path if and only if U is light 

unique. 

l If there is any equal weighing in the binary search path, consider the last one. 

Suppose that Ai and A2 are the two sets involved in that weighing. Then both Al 

and Al are light unique. If there are more than one equal weighings in the binary 

search path, then the set U - (Al U AI) has at least two heavy coins. 

The same holds in case the binary search is for a light coin. 

Based on the above observation, we develop a multi-phase algorithm. Each phase 

begins with a set which either contains only a single coin or is a unique set of size at 

least four. If a phase begins with a a unique set, then at the beginning of the phase, 

a binary search is used to identify the types of all coins in the unique set. Each phase 

employs doubling together with binary searches. Except the last phase, each phase find 

two heavy (or light) coins and more than two coins of the other type. At the end of 

each phase except the last one, a set which either contains only a single coin or is a 

unique of size at least four is found for the next phase to begin with. 

Before presenting the algorithm, we first describe some variables used in the algo- 

rithm: 

U: all the coins of unknown type (initially is C). 

X: all identified coins in a phase; 

Y: a subset of coins from U to be used test against X in a weighing; 

ToSeek: the type of coins to seek in a phase. It’s value can be unknown, light. hemy. 

Found: the number of coins of type ToSeek identified in a phase. 

Our algorithm can be described as follows. 

Algorithm A 

X := {c} where c is any coin in C, I/ := C -X; 

repeat 

Found := 0; 

if ((Xl = 1) then 

ToSeek I== unknown; 
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if (IX/ > 1) then 

binary search X; /* One weighing could be saved if 1X( <3 or if two haves of 

X has been compared in the previous phase */ 

Found := Found + 1; 

X := 2L’Og lxlJ coins from X containing the unique coin; 

repeat 

Y := min{lUl, 1x1) coins from U; 

compare X and Y; 

if Y is pure, then 

X:=XUY, u:=u-Y; 

else 

binary search Y; 

Found := Found + 1; 

if found = 1 then 

ToSeek := the type of the coin the binary search looks for; 

if Y is unique, then 

x:=x u Y, u := u - Y; 

else 

Let Al and A2 be the two halves involved in the last equal weighing and Al 

is identified in the binary search. 

if Found = 2 then 

X:=A2, U:=U-A,; 

else 

binary search At; 

Found := Found + 1; 

U:=U-(A, uA2); 

if Y - (Al u AZ) # 0 and there is only one equal weighing in the path, 

then compare Y - (A, U AZ) against a unique set of same size; 

if Y - (Al U AZ) is empty or pure, then 

X :=X u Y, U := U - (Y - (A, uA2)); 

else 

if Y - (A, U AZ) is unique, then 

X:=Y-(A,uA2), U:=U-(Y-(A,uA2)); 

else 

X := {c} where c is any coin in U, U := U - {c}; 

until found = 2 or U = 8; 

/* Now X either contains a single coin or is a unique set or contains exactly 

two coins of the ToSeek type. */ 

if X contains two coins of the ToSeek type, then 

repeat 

Y := min{lUl, [Xl} coins from U; 

compare X and Y; 
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if Y contains at least two coins of the ToSeek type, then 

X := {c} where c is any coin in U, U := U - {c}; 

else 

split Y into two halves and compure them; 

if Y is unique, then 

X:=Y, lJ:=u- Y; 

else 

X:=XUY, u:=u- Y; 

until X is either unique or contains u single coin or U = 8; 

until U=@: 

Now we give a brief explanation of algorithm A. Each phase corresponds to the 

outer repeat-until loop. Each phase begins with a set of coins X which either contains 

a single coin or is a unique set. If X is a unique set, then the type of the unique coin 

is given by the variable ToSeek, from the previous phase. A binary search is used to 

identify the type of coins in X when X is a unique set. The first inner repeat-until 

loop performs the doubling process. Each time a set Y of coins are picked from the 

set of unidentified coins. The doubling process continues until a Y which contains the 

coin of different type from the majority type of X. Then the algorithm takes a binary 

search on Y. As we mentioned before, each phase except the last one find exactly two 

heavy (or light) coins. After the binary search on Y, if the number of heavy (or light) 

coins founded so far in the current phase, given by Found, is one, then it will either 

find another one from Y if Y has any or it will start another this inner loop. Once the 

phase finds two heavy (or light) coins, it will prepare the set X for the next phase to 

begin with. The set X is chosen in two ways. One way is to choose any unidentified 

coin if the algorithm can determine that the remaining unidentified coins contains at 

least two coins of the type given by ToSeek. The other way is to find a unique set 

in which the unique coins is of type given by ToSeek. The second inner repeat-until 

loop performs such kind of preparing. 

In the next section, we will give an analysis of the algorithm. 

4. The competitive ratio of Algorithm A 

We will count the number of weighings in each phase in term of the number of 

coins identified in this phase. Lemma 4.1 will analyze the phases except the last one 

and Lemma 4.3 will analyze the last phase. 

Lemma 4.1. If all together E coins are identijed in a phase other than the last one, 

then the number of tests in this phase is at most 3 log ii. 

Proof. Suppose that algorithm A finds two light coins and at least two heavy coins in 

this phase and without loss of generality suppose that the phase starts with X containing 



352 P.-J. Wan et al. I Theoretical Computer Science 181 (1997) 347-356 

a single coin (or else fewer weighings than the following are needed). There are four 

cases regarding how the two light coins are found. 

Case 1: One light coin is found in the ith doubling and in the jth doubling it is 

found that Y contains only one light coin. 

If ?i= 2k-1 for some k > j, then the number of tests in this phase is at most 

(2i- l)+(j-i)+(j- 1)+2(k-j)=2k+i-2d3k-3=310g(2k-‘). 

If E = 2j and n = 2j + nl with y1i < 2j, then the number of tests in this step is at 

most 

(2i- l)+(j-i)+(j- 1)+2=i+2j<3j- 1 <31og(2j). 

Case 2: One light coin is found in the ith doubling and in the jth doubling it is 

found that Y contains at least two light coins. 

Let Al be the set of coins in Y identified by the binary search. In this case, ii = 2j-i+ 

IA1 I. 
The number of tests in this step is at most 

(2i - 1) + (j - i) + (j - 1) = 2j + i - 2 < 3 log(2j-’ + (Al I). 

Case 3: In the ith doubling, Y contains exactly two light coins. 

Suppose that 7? = 2k-1. Then the number of tests in this step is at most 

(3i - 3) + 2(k - i) < 3 log(2k-‘). 

Case 4: In the ith doubling, Y contains at least three light coins. 

Let Al and AZ be the two halves involved in the last equal weighing in the binary 

search path of Y. Then E= 2’-’ + IAl I + (AzI. The number of tests is at most 

(32’ - 4) + 163 log(2’-’ + /A, I + IAll). 0 

In this analysis the phase is assumed to begin with a set X containing only single 

coin. If a phase begins with a unique set, then even fewer tests are needed. In fact, 

instead of using 2i - 1 tests to find the first light coin, the algorithm begins by binary 

searching X. If 1x124, then the number of tests used for it is [log 1x11 = i + 1 and 

i + 1,(2i - 1 for i 22. If 1x1~ 3, then one test is enough. 

Lemma 4.2. 

If 0 < Q < d2 < ; 

then Q log? +dl <dllogn +dz. 
di d2 

Proof. Let 

n 
f(x)=xlog- +x. 

X 

Then f’(x) = 2n/ex> log i > 0. So f(x) is increasing for x< z. 0 
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Lemma 4.3. Suppose that Algorithm A uses t phases to solve an (nd) problem 

and in the ith phase it ,finds di light coins and n, - di heavy coins (i = 1.. , t). Let 

m; = min{di, n; - di}. 

1. If m, = 2 then the number of tests used in the last phase is at most 3 log n,. 

2. If m, = 1, consider the last two phases. Let ii = n,_ 1 + n,. Let d and E - d he the 

number of liyht coins and heavy coins respectively and let iii = min(d,ii - d>. Then 

the totul nurnher of tests in the last t1t.o phases is at most i(mlog i + iii). 

Proof. (I ) There are two possible cases when m, = 2. 

Case 1: The algorithm finds one light (or heavy) coin in the ith doubling and then 

another one in the j’th doubling for j > i. 

1. If n, 221 then the number of tests used in this phase is at most 

(2i-1)+(j-i)+(j-1)+2(~logn,~-j)~2logn,+i<3logn,. 

2. If n, = 2” + ni, for ni < 2j-’ then the number of tests used in this phase is 

at most 

(2i- l)+(j-i)+ [lognil<3j-3 <3logn,. 

Cuse 2: The algorithm finds two light (or heavy) coins in the ith doubling. 

1. If n, > 2’ then the number of tests used in this phase is at most 

(3i-3)+2([logn,l -i)=2logn,+i- 1 <3logn,. 

2. If n, = 2” + n: and ni < 2’-’ then the number of tests used in this phase is 

at most 

i+2[lognil - 1<3i-3 <3logn,. 

(2) If m, = 1, we consider the last two phases. We first consider the case ?E = 3. 

Without loss generality, we suppose that %i=d. The second to last phase does not end 

until the algorithm finds a set X containing exactly one light coin and the tth phase 

begins with X. 

I. If 1x1 24 the total number of tests used in the last two phases is at most 

3 log+1 + (Vogn,l - Llog IPI] ) + rlog IMl 

d3logn,_l + logn, + 2 

3 
=2 (2log~+2+logn,+l) -klogn,+: 

<; (31,,;+3) 

3 

=-( 

n 

2 
rnlog=+rn . 

m 1 

2. If 1x1 < 3, then the total number of tests used in the last two phases is at most 

3logn,-~ + [logql + 1<3logn,_, +logn,+2<; 
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Now we assume that Fia4. Suppose we seek two light coins in the second to the 

last phase. Since mt = 1 and there are at least two light coins remaining, the last phase 

should have to start beginning with X containing only a single coin, and the algorithm 

will seek a heavy coin. The total number of tests used in the last two phases is at 

most 3 log n,_i + 2 lognl + 1 by Lemma 4.1. 

Case 1: If n, 6 16 then 

3lwnt-I +2logn, + 1 xz ; ( 
210gY +2+lognt 

> +;1ogn,+1 

< ; (3,,;+2) f3 

= ; (3,,;+4) 

< ; (410,; +4) 

<; (Elog;+m). 

The last inequality holds since iii34 and 8 > 2E (by Lemma 4.2). 

Case 2: If n, > 16 then 

3lognt-I+2l%n,+1 = ~(210g~+logn,+2)+~logn,+l 

G ; 
( 

310g;+10gn,+2 
) 

-log&+1 

d 4 
( 

410g 
n + 12t 
-+2 -logn,+l 

) 

+og~~6)-log~;+l 

<; (,10,;+4) -log++4 

d ; (,10,;+4) 

<; rnlog~+zi . 0 
( m 1 

Now we can bound the number of weighing in our algorithm as follows. 

Theorem 4.4. Let m = min{d, n - d}. Then MA(n : d) < i(m log f + m). 

Proof. Suppose that Algorithm A takes t phases to solve an (n,d) problem and in 

the ith phase it identifies 4 light coins and ni - di heavy coins. Let mi = min{di,ni -di} 
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for i=1,2 ,..., t. If m,=2 then 

MA(~ : d) G 3(logni + log% + . + logn,) by Lemmas 4.2 and 4.3( 1) 

= ;(210g~+2+210g~+2+...+2,0g;+2) 

2t log ; + 2t 
> 

by Lemma 2.4. 

Since m, = 2, we have m >2t and 

by Lemma 4.2. 

If m, = 1 then by Lemmas 4.2, 4.3(2), and 2.4 

iMA(K (2(t-2)+Z)log ( n 

2(t - 2) + m 
+ (2(t - 2) + rn) 

> 

As m>2(t - 2)+i?i, we have 

3 
MA(~: d)<- 

( 

n 

2 
mlog- +m 

m > 

by Lemma 4.2 and since n 3 2m. 0 

The next theorem gives the main result of this paper. 

Theorem 4.5. ADA d i(log 3>M(n : d) + 3. 

Proof. Since M(n : 1) = [log ~1 (Lemma 2.3), we have 

M4(n : 1)<2[lognl - 1 d2logn + 1 < $log3)M(rr : 1)-t 3. 

Now, without loss of generality, suppose m = d. For d 22, by Lemma 2.1, we have 

;(log3)M(n : d) + 3 >, ;(log3)M(n,d) + 3 

eJj 
log2-1 d 

310gd -___- 
4 

; (0.567) - ; + 3 

Let 

h(d)=;[log$l)d-y-;(0.56++3. 

Then 

h’(d)=; (log+1) -& 
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Note that h’(d) > 0 and h(d) is increasing when d 34. Moreover, h(2), h(3), and h(4) 

are all positive. Thus we have that 

MA(~ : 4 6 ; (dlog ; + d) 

< ;(log3)M(n : d) + 3. 0 
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