Theoretical
3"' Computer Science

~ 4

VIER Theoretical Computer Science 181 (1997) 347-356

A

A %log 3-competitive algorithm for the counterfeit
coin problem

Peng-Jun Wan®*, Qifan Yang®', Dean Kelley®

2Computer Science Department, University of Minnesota, Minneapolis, MN 55455, USA
bSt. Marv's University

Abstract

We study the following counterfeit coin problem: Suppose that there is a set of »n coins. Each
one is either heavy or light. The goal is to sort them according to weight with a minimum
number of weighings on a balance scale. Hu and Hwang gave an algorithm with a competitive
ratio of 3log3 (all logarithms are base-2). Hu, Chen and Hwang also gave an algorithm with
a competitive ratio of 2log3. In this paper we give an improved algorithm whose competitive

ratio is 3 log 3.

1. Introduction

Consider a set of n coins C which contains d light coins and n —d heavy coins. The
cases where d is known and where d is unknown are considered as different problems.
We want to sort the coins by using a balance scale and perform a minimum number
of weighings to identify the d light and the » — d heavy coins.

Let M (n : d) denote the maximum number of weighings required by algorithm A4 to
sort the n coins when d is unknown and let My(n,d) denote this maximum when d is
known. Let M(n : d)=ming My(n : d) and let M(n,d)=miny My(n,d). An algorithm
A is a competitive algorithm if there exist constants ¢ and b such that for alln > d > 0
we have

Myn:dy<cM(n,d)+b.

The constant ¢ is called the competitive ratio.

Hu and Hwang [4] first proposed a bisecting algorithm with a competitive ratio
3log, 3. Soon after, Hu et al. [3] discovered a doubling algorithm with competitive
ratio 2log, 3. In this paper we give an improved algorithm and show that it has a
competitive ratio of %log 3.

* Corresponding author. E-mail: wan@cs.umn.edu.
! Visiting scholar in the Department of Computer Science, University of Minnesota. Supported by Pao
Yu-kong and Pao Zhao-long scholarship and NSF grant CCR-9208913.

0304-3975/97/817.00 © 1997 — Elsevier Science B.V. All rights reserved
PIIS0304-3975(96)00279-4

348 P.-J. Wan et al. ! Theoretical Computer Science 181 (1997) 347-356
2. Preliminaries

The analysis of competitive ratio involves both lower-bound and upper-bound prob-
lems. In this section, we first list some results about the lower-bound for My(n : d)
and My(n,d).

Hu and Hwang [4] gave a lower-bound for My(n,d):

Lemma 2.1.

d 3 log, d 0567 1
MA(n,d)>l— (logz s + log, e\/—> %57 _ - -

0g, 3 2 - 2log,3 log,3 2

Cairns [1] discovered an optimal algorithm to find the only one counterfeit in a set
of coins, when it is known before testing there is only one counterfeit.

Lemma 2.2. M(n,1)=[log;n|.
Hu and Hwang [4] also gave the value of M(n: 1).
Lemma 2.3. M(n: 1)=[log, n].

For convenience we assume that the value of function d log, n/d at d =0 is 0 because
limy—¢ d log, n/d =0. The following lemma, given by Du and Park [2], is an important
tool for analysis.

Lemma 24. Let d=d+d, and n=n, +n, where dy =0, d, >0, ny > 0 and n, > 0.
Then

d) log, Z—‘l +d;log, :’1—2 <dlog, g.
2

3. The algorithm

A set of coins are called uniform if they are all of the same type, and called unigue
if there is only one exception. We also use the modifier “heavy” and “light” to specify
the type of the majority of coins in a uniform or unique set. Assume that the set
of coins to be identified is C = {ci,¢2,...,¢,} for n22. In the algorithm and in the
discussion that follows we employ the notation |4| to denote the number of elements
in the set 4 and ||4]| to denote the weight of the elements of 4. Weight of a set
of elements is relative. That is, we are only interested in comparison weighings as
would be done with a balance scale. Let X and Y be two nonempty sets of coins,
then a comparison between X and Y means to compare X' CX with Y’ CY such
that |[X’| =|Y¥’| and either X' =X or Y’ =Y. In other words, we compare two largest
equinumerious subsets of X and Y. A comparison can have three possible outcomes:

P.-J. Wan et al | Theoretical Computer Science 181 (1997) 347-356 349

XN =07, 11X > 1Y, 1X7] <] Y|, We say the comparison yields equality for the

first outcome, and yields inequality for the other two outcomes.

An important component of Hu’s and Hwang’s 3 log 3-competitive algorithm is a
halving procedure or binary search. In searching for a heavy coin this procedure re-
peatedly splits a set which is known to contain a heavy coin until that coin is identified.
Each time the set is split (adding a light coin if the set is of odd size) and the two
halves are compared on the balance scale. If one half weighs more it is selected to be
split at the next step. In case the halves are of equal weight (i.e., they balance) the
half to be split in the next step is chosen arbitrarily. Note that in this case both halves
contain equally many heavy coins.

There are several important informations we can tell from the binary search path.
Suppose that the binary search is to seek a heavy coin from a set U.

e There are no equal weighing in the binary search path if and only if U is light
unique.

e If there is any equal weighing in the binary search path, consider the last one.
Suppose that 4; and A4, are the two sets involved in that weighing. Then both A,
and A4, are light unique. If there are more than one equal weighings in the binary
search path, then the set U — (4, U A,) has at least two heavy coins.

The same holds in case the binary search is for a light coin.

Based on the above observation, we develop a multi-phase algorithm. Each phase
begins with a set which either contains only a single coin or is a unique set of size at
least four. If a phase begins with a a unique set, then at the beginning of the phase,
a binary search is used to identify the types of all coins in the unique set. Each phase
employs doubling together with binary searches. Except the last phase, each phase find
two heavy (or light) coins and more than two coins of the other type. At the end of
each phase except the last one, a set which either contains only a single coin or is a
unique of size at least four is found for the next phase to begin with.

Before presenting the algorithm, we first describe some variables used in the algo-
rithm:

U: all the coins of unknown type (initially is C).

X: all identified coins in a phase;

Y: a subset of coins from U to be used test against X in a weighing;

ToSeek: the type of coins to seek in a phase. It’s value can be unknown, light, heavy.

Found: the number of coins of type ToSeek identified in a phase.

Our algorithm can be described as follows.

Algorithm A

X:={c} where c is any coinin C, U:=C — X,
repeat
Found :=0;
if (|X|=1) then
ToSeek .= unknown,

350 P.-J. Wan et al. | Theoretical Computer Science 181 (1997) 347-356

if (|[X|> 1) then
binary search X; /* One weighing could be saved if | X|<3 or if two haves of
X has been compared in the previous phase */
Found := Found + 1,
X :=2UelXl] coins from X containing the unique coin;
repeat
Y := min{|U|, X |} coins from U,
compare X and Y;
if Y is pure, then
X=XuY U=U-Y,;
else
binary search Y,
Found := Found + 1,
if found =1 then
ToSeek = the type of the coin the binary search looks for;
if Y is unique, then
X=XuY, U=U-Y,;
else
Let A and A, be the two halves involved in the last equal weighing and A4,
is identified in the binary search.
if Found =2 then
XI:Az, UZ:U—Al;
else
binary search Ay;
Found := Found + 1,
U:=U -~ (4, UA);
if ¥ — (4, UA4y) # 0 and there is only one equal weighing in the path,
then compare Y — (4, U 4,) against a unique set of same size;
if Y — (4, U4y) is empty or pure, then
X:=XUY, U:=U—-({Y —(A,U4));
else
if Y — (A4, UA4>) is unique, then
X:=Y—(4,UAy), U:=U — (Y — (4, UA));
else
X :={c} where c is any coin in U, U:=U — {c};
until found =2 or U =0
/* Now X either contains a single coin or is a unique set or contains exactly
two coins of the ToSeek type. */
if X contains two coins of the ToSeek type, then
repeat
Y := min{|U|,|X|} coins from U;
compare X and Y;

P.-J. Wan et al. | Theoretical Computer Science 181 (1997) 347-356 351

if Y contains at least two coins of the ToSeek type, then
X :={c} where c is any coin in U, U :=U ~ {c};
else
split Y into two halves and compare them,
if Y is unique, then
X=Y, U:=U-Y;
else
X=XuUY, U:=U-Y;
until X is either unique or contains a single coin or U =10,
until U = 0;

Now we give a brief explanation of algorithm A. Each phase corresponds to the
outer repeat-until loop. Each phase begins with a set of coins X which either contains
a single coin or is a unique set. If X is a unique set, then the type of the unique coin
is given by the variable ToSeek, from the previous phase. A binary search is used to
identify the type of coins in X when X is a unique set. The first inner repeat-until
loop performs the doubling process. Each time a set Y of coins are picked from the
set of unidentified coins. The doubling process continues until a ¥ which contains the
coin of different type from the majority type of X. Then the algorithm takes a binary
search on Y. As we mentioned before, each phase except the last one find exactly two
heavy (or light) coins. After the binary search on Y, if the number of heavy (or light)
coins founded so far in the current phase, given by Found, is one, then it will either
find another one from Y if ¥ has any or it will start another this inner loop. Once the
phase finds two heavy (or light) coins, it will prepare the set X for the next phase to
begin with. The set X is chosen in two ways. One way is to choose any unidentified
coin if the algorithm can determine that the remaining unidentified coins contains at
least two coins of the type given by ToSeek. The other way is to find a unique set
in which the unique coins is of type given by ToSee¢k. The second inner repeat-until
loop performs such kind of preparing.

In the next section, we will give an analysis of the algorithm.

4. The competitive ratio of Algorithm A

We will count the number of weighings in each phase in term of the number of
coins identified in this phase. Lemma 4.1 will analyze the phases except the last one
and Lemma 4.3 will analyze the last phase.

Lemma 4.1. If all together % coins are identified in a phase other than the last one,
then the number of tests in this phase is at most 3logn.

Proof. Suppose that algorithm A finds two light coins and at least two heavy coins in
this phase and without loss of generality suppose that the phase starts with X containing

352 P.-J. Wan et al. | Theoretical Computer Science 181 (1997) 347-356

a single coin (or else fewer weighings than the following are needed). There are four
cases regarding how the two light coins are found.

Case 1: One light coin is found in the ith doubling and in the jth doubling it is
found that Y contains only one light coin.

If 7=2%"1 for some k > j, then the number of tests in this phase is at most

Qi—D+G -+ — 1) +2k —j)=2k+i—2<3k —3=3log(2*").

If 7=2/ and n=2/ 4+ n; with n; < 2/, then the number of tests in this step is at
most

Qi-D+G -+ -1 +2=i4+2j<3j— 1 < 3log(2’).

Case 2: One light coin is found in the ith doubling and in the jth doubling it is
found that Y contains at least two light coins.

Let 4; be the set of coins in ¥ identified by the binary search. In this case, 7=2/"'+
|41

The number of tests in this step is at most

Qi—D+G =D+ G —1)=2j+i—2<3log2/™" + |4]).

Case 3: In the ith doubling, ¥ contains exactly two light coins.
Suppose that 7 =2¢!. Then the number of tests in this step is at most

(3i — 3) + 2(k — i) < 3log(21).

Case 4: In the ith doubling, ¥ contains at least three light coins.
Let 4; and A4; be the two halves involved in the last equal weighing in the binary
search path of Y. Then n=2""" + |4| + |4;|. The number of tests is at most

(Bi—4)+ 1<310g(2~" + 41| + [42)). O

In this analysis the phase is assumed to begin with a set X containing only single
coin. If a phase begins with a unique set, then even fewer tests are needed. In fact,
instead of using 2/ — 1 tests to find the first light coin, the algorithm begins by binary
searching X. If |[X|>4, then the number of tests used for it is [log|X|]=/+ 1 and
i+1<2i—1 for i=2. If [X|<3, then one test is enough.

Lemma 4.2.
If0<d <ds \g
n n
then d, log — +d, <d;log — + d>.
d; d;
Proof. Let
f(x):xlog; + x.

Then f'(x)=2n/ex>= log% > 0. So f(x) is increasing for x< 5. [

P.-J. Wan et al. | Theoretical Computer Science 181 (1997) 347-356 353

Lemma 4.3. Suppose that Algorithm A uses t phases to solve an (n.d) problem
and in the ith phase it finds d; light coins and n; — d; heavy coins (i=1,...,t). Let
m; =min{d;. n; — d;}.

1. If m; =2 then the number of tests used in the last phase is at most 3logn,.

2. If m, =\, consider the last two phases. Let i=n,_, +n,. Let d and ni—d be the
number of light coins and heavy coins respectively and let m = min{d,ii — d}. Then
the total number of tests in the last two phases is at most %(ﬁlog% + m).

Proof. (1) There are two possible cases when m; =2.

Case 1: The algorithm finds one light (or heavy) coin in the ith doubling and then
another one in the jth doubling for j > i.

1. If n,>2/ then the number of tests used in this phase is at most

QRi— D+ (- +(j—1)y+2([logn,] — j)<2logn, + i < 3logn,.
2. If n,=2/"" + n', for n) <2/~ then the number of tests used in this phase is
at most
(2i = 1)+ (j— i)+ [logn] <3j — 3 < 3logn,.
Cuse 2: The algorithm finds two light (or heavy) coins in the ith doubling.
1. If n,>2' then the number of tests used in this phase is at most
(3i - 3)+ 2([logn,] —iY=2logn, +i—1 < 3logn,.

2. If n,=2"" 4 n} and n, <2~ then the number of tests used in this phase is
at most

i+2[logn;| —1<3i — 3 < 3logn,.

(2) If m; =1, we consider the last two phases. We first consider the case m=3.
Without loss generality, we suppose that 7 =d. The second to last phase does not end
until the algorithm finds a set X containing exactly one light coin and the ¢th phase
begins with X.

1. If |X|>4 the total number of tests used in the last two phases is at most

3logn,—y + ([logn,] — [log|X|[]) + [log |X|]

<3logn,—y +logn, + 2
3

R
=2 (21
2()

3 i
e log —
<2<3 og3+3>

3(, n _)
=—|mlog=+m]).
2 m

2. If |[X|<3, then the total number of tests used in the last two phases is at most

1 1
+2+logn,+l)—510gn,+§

3 _
3logn,| + [logn| + 1<3logn,— + logn, +2<§ <ﬁlog% +ﬁ>.

354 P.-J. Wan et al | Theoretical Computer Science 181 (1997) 347-356

Now we assume that 7 >4. Suppose we seek two light coins in the second to the
last phase. Since m, =1 and there are at least two light coins remaining, the last phase
should have to start beginning with X containing only a single coin, and the algorithm
will seek a heavy coin. The total number of tests used in the last two phases is at
most 3logn,_| + 2logn, + 1 by Lemma 4.1.

Case 1: If n,<16 then

3 M 1
3logn,— + 2logn, + 1 = 3 (210g#2—1 +2+logn,) + Elogn,+1
3 _
<5<3logf+2)+3
3 7]
== ~+4
2<3l<)g3—|—)
3 n
s_ —
2(410g4~l—4>
3(_ 7] _)
< = |mlog—=+m}.
2 m

The last inequality holds since 7 >4 and % >2m (by Lemma 4.2).
Case 2: If n, > 16 then

3 _ 1
3logn,—| +2logn, +1 = 3 (210g%+10gn,+2) + Elogn,+1
3 7]
<5 3log§—|—logn,+2 —logn, +1
<E 410 ﬁ+n,+2 logn; + 1
S2\M% g 08 M
<§ 41o E+6 logn, +1
S2\708) &
3 n
<§ 4logZ+4 —logn, +4
3 _
< - |4log— +4
2
3/_.. n _
< - |mlog—+m). O
2 m

Now we can bound the number of weighing in our algorithm as follows.
Theorem 4.4. Let m=min{d,n —d}. Then My(n: d)<3(mlog % + m).

Proof. Suppose that Algorithm A takes ¢ phases to solve an (n,d) problem and in
the ith phase it identifies d; light coins and n; —d; heavy coins. Let m; =min{d},n; —d;}

P.-J. Wan et al.| Theoretical Computer Science 181 (1997) 347-356 355
fori=1,2,...,t. If m, =2 then
My(n:d) < 3(logn, +logn, +---+logn,) by Lemmas 4.2 and 4.3(1)

3 ny ny 1y
= = (2log — =+ 2+ +2log — 2)
2(20g2+2+210g2+ o 0g21L

N

3
2 (2: log% + 21) by Lemma 2.4.
Since m; =2, we have m>2¢ and
3
My(n:dy< = (mlog a +m)
2 m

by Lemma 4.2.
If m, =1 then by Lemmas 4.2, 4.3(2), and 2.4

3 n
My(n:d)<= t—2y+mlog ———— + (20t — m
in s d) <5 ((2() log 2+ (2 2>+m>>
As m=2(t —2)+ m, we have
3 n
S y< D n
Ma(n: d)<3 (mlogm +m)
by Lemma 4.2 and since n=2m.]
The next theorem gives the main result of this paper.
Theorem 4.5. M, <3(log3)M(n:d)+3.
Proof. Since M(n: 1)=[logn] (Lemma 2.3), we have
3
Myn:1)<2[logn] —1<2logn+1< E(log3)M(n 1)+ 3.

Now, without loss of generality, suppose m=d. For d 22, by Lemma 2.1, we have

%(1og3)M(n cd)+3 2 %(10g3)M(n,d) +3

3 n 3 e\/§
> 2 (diogt v d) + 2 (1022 — 1)
2(d°gd+)+2<°g 2)

3logd 3 3
- — 70567~ 7 +3
Let
3 eV3 3logd 3 3
=z —_ — - — 2(0.567) — = + 3.
h(d) 2(log > 1>d 2 2(05 N-7+
Then

356 P.-J. Wan et al. | Theoretical Computer Science 181 (1997) 347-356

Note that #'(d) > 0 and A(d) is increasing when d >4. Moreover, 4(2), h(3), and h(4)
are all positive. Thus we have that

My(n: d) < % (dlogg +d)

< %(log3)M(n:d)+3. O

References

[1] S.S.Cairns, Balance scale sorting, Amer. Math. Monthly 70 (1963) 136—148.

[2] D.Z. Du and H. Park, On competitive group testing, SIAM J. Comput. 23 (1994) 1019-1025.

[3] X.D. Hu, P.D. Chen and F.K. Hwang, A new competitive algorithm for the counterfeit coin problem,
Inform. Process Lett. 51 (1994) 213-218.

[4] X.D. Hu and F.K. Hwang, A competitive algorithm for the counterfeit coin problem, preprint, 1992.

[5] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging rules, Comm. ACM 28
(1985) 202-208.

