
ELSEVIER Theoretical Computer Science 207 (1998) 193-201 

Theoretical 
Computer Science 

Conflict-Free channel set assignment for an optical 
cluster interconnection network based on rotator digraphs 

Peng-Jun Wan * 

Depurtment of Computer Science und Applied Mathematics. Illinois Institute of Technology. Chicugo. 

IL 60616. USA 

Abstract 

Recently a class of scalable multi-star optical networks is proposed in [2]. In this class of 

networks nodes are grouped into clusters. Each cluster employs a separate pair of broadcast and 
select couplers. The clusters are interconnected via fiber links according to a regular topology. 
Self links are provided to enable connectivity among nodes in the same cluster if the cluster size 
is more than one. These networks can efficiently combine time and/or wavelength division with 

direct space division. The key design issue for these networks is the optimal conflict-free channel 
set assignment to the output clusters for a given cluster interconnection topology. Such conflict- 
free channel assignment problem has been studied for various cluster interconnection topologies 
[ 1,2,9-l 11. In this paper, we propose the rotator digraph [5] as the cluster interconnection 
topology as it possesses many attractive properties. We will give an optimal conflict-free channel 

set assignment for this new interconnection topology. @ 1998-Elsevier Science B.V. All rights 
reserved 
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1. Introduction 

Emerging high bandwidth applications, such as voice/video services, distributed data 

bases, and network super-computing, are driving the use of single-mode optical fibers 

as the communication media for the future [3]. Optical passive stars [6] provide a 

simple medium to connect nodes in a local or metropolitan area network. The single- 

star optical networks with time and/or wavelength division multiplexing have been 

extensively studied in the past [4,7, 111. However, the scalability of the single-star 

configuration is constrained by the number of wavelengths that can be coupled and 

separated while maintaining acceptable crosstalk and power budget levels. Recently, a 

multi-star configuration which efficiently combines space with time and/or wavelength 
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division was proposed in [2] to overcome this limit. In this class of networks, nodes 

are grouped into clusters with time and/or wavelength multiplexing. Clusters are further 

interconnected via fiber links to form a cluster interconnection network (CIN) according 

to some interconnection topology. If the cluster size is more than one, self cluster links 

are provided to enable connectivity among nodes in the same cluster. Wavelength 

spatial re-use is exploited in the channel set assignment to clusters. This network 

class has several advantages including low link density, nice scalability and desirable 

reconfigurability [ 11. 

The key design issue of this class of networks is the conflict-free channel set as- 

signment to the output star couplers. As the channels sets are valuable resources, it’s 

desirable to share the channel sets among the output star couplers while maintaining 

the conflict-free transmission. The objective of the conflict-free channel set assign- 

ment problem is to find the minimal number of disjoint channel sets required by the 

conflict-free communication. This optimal conflict-free channel set assignment problem 

has been studied for various CIN topologies, such as perfect shuffle [l], hypercube and 

Star graphs [9-l 11. 

As the cluster interconnection network is multihop optical network, it’s desirable 

to have a CIN topology with short diameter to reduce the end-to-end delay and the 

intermediate processing. The rotator digraph is a perfect candidate for the CIN topology 

as it has the sub-logarithm diameter [5]. This motivates us to propose the rotator 

digraph as the GIN topology. This paper will present the optimal conflict-free channel 

assignment for the rotator digraphs. 

The rest of this paper proceeds as follows. Section 2 describes the network con- 

figuration. Section 3 introduces the interconnection and properties of rotator digraphs. 

Section 4 gives a graph-theoretic formulation of the conflict-free channel set assign- 

ment into a vertex coloring problem. Section 5 presents the optimal vertex coloring 

scheme for the vertex coloring problem described in Section 4. A conclusion discussion 

is presented in Section 6. 

2. Network configuration 

The network consists of ml clusters where each cluster is a set of mo nodes, as 

shown in Fig. 1, with the total network size of M = rnlrno nodes. A node represents 

the lowest abstraction level and may consist of a single processor, multiple time- 

multiplexed processors, an interface to a space switch, or a broadband network interface 

unit. Each node possesses a single fixed-wavelength transmitter (light source) and a 

receiver that is capable to simultaneously monitor a subset of separable channels. A 

channel here can be a reserved time slot, a dedicated wavelength, or a reserved time slot 

over a given wavelength. Assume that W wavelengths are available and that the time 

frame is divided into T slots, a total of C = WT channels are available. The receiver 

can be realized using a multichannel acousto-optic tunable filter or a detector array 

and a passive (grating based) wavelength demultiplexer [8]. Each cluster possesses its 
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Fig. I. Multi-sar network with discrete broadcast-select domains: ml clusters, each with rno nodes transmitting 

through output couplers and receiving through input couplers, interconnected via a regular CIN topology. 

own broadcast and select domains realized by an output and an input star couplers, 

respectively. The cluster interconnection network (CIN) refers to the fiber connection 

pattern from output couplers to input couplers. Each cluster is provided with an extra 

self link to enable connectivity among nodes in the same cluster. The dimension of 

the output coupler is mo : F and that of the input coupler is F : mo, where 

F = 1 + the degree in the GIN topology. 

Nodes in a cluster transmit over an ordered set of ma distinct channels through the 

output broadcast star coupler. At the input coupler side, several distinct channel sets 

are monitored depending on the CIN topology. Transmit channel sets are assigned to 

the output couplers such that no conflicts may happen at the input coupler. That is, the 

assignment is such that the channel sets which can be listened to through any input 

coupler are disjoint to provide a collision-less environment. 

The network configuration efficiently combines space with time and/or wavelength 

division. It has several advantages including low link density, nice scalability and 
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desirable reconfigurability. It reduces to an all-spaced network when 1110 = 1 node per 

cluster and to a time and wavelength division multiplexed (TWDM) network when 

ml = 1 cluster with mo nodes. 

3. Rotator digraphs 

As the cluster interconnection network is multihop optical network, it’s desirable 

to have a CIN topology with short diameter to reduce the end-to-end delay and the 

intermediate processing. Various topologies have been proposed as the CIN topologies 

including perfect shuffle [l], hypercube and Star graph [9-l 11. The rotator digraph 

is a perfect candidate for the CIN topology as it has the sub-logarithm diameter [5] 

which has shorter diameter than the perfect shuffle, hypercube and star graph with 

the same network size. This motivates us to propose the rotator digraph as the CIN 

topology. 

The rotator digraph is a member of a class of graphs called Cuyley &graphs. This 

class of graphs uses a group-theoretic approach as a basis for defining digraphs. Let 

G be a finite group and S a set of generators for G. The Cayley graph of G with 

generating set S, denoted by Cuy(S : G), is defined as follows. 

1. Each element of G is a vertex of Cuy(S : G). 

2. For x and y in G, there is a link from x to y if and only if xs = y for some s E S. 

The rotator digraph is defined through the permutation group. Let P, be the set 

consisting of all permutations on n symbols { 1,2,. . . ,n}. A permutation o E P, is 

represented by a( 1)0(2) . . . o(n). For example, the permutation (T = 2143 represents 

that a( 1) = 2,0(2) = l,a(3) = 4 and o(4) = 3. The permutation 1234.. . n is called 

the identity permutation. A special class of cycles is the rotations. The permutation 

& = 23. ’ .k1(k+l)...n=(1,2,...,k) 

is called the left rotation of length k, where 2 <k <n. The permutation 

/&=k12”‘(k-l)(k+l)“‘n=(k,k-l,...,l) 

is called the right rotation of length k, where 2 6 k <n. 

Traditionally, the product of two permutations has two different definitions. The two 

definitions differ at the order in which the multiplication is taken. 

1. The multiplication is taken from left to right. We use “.” to denote this multiplication 

operation. The product of any two permutations CI and p is given by 

a. B(i) = P(a(i)) 

for any 1 <i<n. 

2. The multiplication is taken from right to left. We use “0” to denote this multipli- 

cation operation. The product of any two permutations a and B is given by 

a 0 B(i) = a(B(i>> 

for any 1 Qi<n. 
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Fig. 2. The 3.dimensional and 4-dimensional left rotator digraphs 

Fig. 3. The 3-dimensional and 4-dimensional right rotator digraphs. 

P,, is a group under both multiplication operations. It is well-known that the set of 

n - 1 left rotations {E*,N~,..., a,} is a generator set of Pn under both multiplication 

operations. 

An n-dimensional rotator digraph R,, also refered to as n-rotator, is the Cayley di- 

graph Cuy(S : G) where G is P,, and S consists of n - 1 left rotations (tll, 23,. . . , r,}. 
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The topology of R, under the multiplication “.” is different from that under the mul- 

tiplication “0”. Fig. 2 illustrates the 4-star under the multiplication “.“, and Fig. 3 

illustrates the 4-star under the multiplication “0”. 

It is easy to see that the n-rotator R, consists of n! nodes, and each node has in-degree 

n - 1 and out-degree n - 1. The rotator digraphs have a lot of attractive properties. All 

rotator digraphs are vertex and edge symmetric. In [5], it is proved that the diameter 

of the n-rotator is n - 1, and it has a simple and optimal routing algorithm. They 

share the fault handling capacity of hierarchical Cayley graphs, including the Star and 

Pancake graphs and the binary hypercubes, with good performance possible because of 

the small diameter and average routing distance. 

4. Conflict-free channel set assignment: A coloring problem 

It is easy to verify that for any UN topology a channel set assignment is conflict- 

free if and only if for any input clusters, all the output clusters it connects from and 

itself have different channel sets form each other. If we regard clusters as vertices and 

the channel sets as colors, we can formulate the conflict-free channel set assignment 

problem to the following vertex coloring problem. 

%VC Given a regular digraph G, a vertex coloring scheme is called a ?-VC of G if 

for any vertex u, its parents and itself have different colors from each other. 

The minimal number of colors required by any 2-VC of G is denoted by x?(G). Then 

x?(G) represents the minimal number of disjoint channel sets to satisfy the conflict-free 

communication for a given CIN topology G. 

We first find the lower bound for x?(G). 

Lemma 1 (Lower-bound). For any regular digraph with nodal degree d, XT(G) 2 d+ 1. 

Proof. Since the nodal degree of G is d, each node has d parents. As all these d 

parents and the node itself must have distinct colors, the minimum number of colors 

required by any %VC of G is at least d + 1. 0 

Since the n-rotator R, has nodal degree of n - 1, so as a direct application of the 

above lemma, we can get the lower bound for x$R,) in the following corollary. 

Corollary 1. xz(Rn ) 3 n . 

In the next section, we will show that the lower bound in the above corollary is 

actually achievable for any rotator digraph. 

5. Coloring scheme for rotator digraphs 

In this section, we will give a %VC for R, under each multiplication which uses 

exactly n colors. Therefore, such %VC is optimal according to Corollary 1. 
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5.1. Multiplication is taken from left to right 

In this section, we will give an optimal 2-VC for R, under the multiplication “.“. 

Scheme-I Coloring the vertex CI with color a-‘(l). 

We first prove that the Scheme-I is a 2-VC for R, under multiplication “.“. 

Lemma 2. Scheme-I is a ?-V/c for R, under the multiplication “.“. 

Proof. Let LX and j be two vertices in R, that have distance of at most two. We 

consider two cases. 

Case 1: The distance between t( and p is one. Then there exist some 2 6 i <n such 

that p = c( . s,. In this case, 

p-1 = (a. si)-’ = s,-’ a-’ = si . a-‘. 

So we have 

p-‘( 1) = (Sj . x-l )(l) = Cc-‘(Si(1)) = U’(i) # U-i(l). 

This implies that a and fl have different colors. 

Case 2: The distance between CI and p is two. Then there are two different integers 

2 <i, j <n such that fl = ~1 . si . sj. In this case, 

fi-’ = (a Si Sj)-’ Ix Sj-’ . sj 
-1 . cI-l -I 

=Sj.Si.X . 

So we have 

/T’( 1) = (Sj ’ Si . a-‘)( 1) = Cc-‘(Si(Sj( 1))) 

= LY- '(Siti)) = (Y-l 0) # c(-‘( 1). 

This also implies that c1 and fl have different colors. 

Thus in both cases CY and fi have different colors. Therefore, Scheme-I is a ?-VC for 

R, under the multiplication “.“. 0 

The number of colors used by Scheme-I is n. From Corollary 1 we can immediately 

obtain the following theorem. 

Theorem 1. Under the multiplication “.“, 

XT(R~) = n, 

and Scheme-I is an optimal 2-VC for R,. 

A vertex coloring scheme is said to be blanced if each color is assigned to the same 

number of vertices. Balance is a desired property for vertex colorings. The next lemma 

shows that the Scheme-I has this nice property. 

Lemma 3. Scheme-I assigned each color to exactly (n - l)! vertices. 
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Proof. It is easy to see that for any 1 <i 6n, all the (n - I)! vertices which map i to 

1 have the color i. 0 

5.2. Multiplication is taken from right to left 

In this section, we will give an optimal %VC for R, under the multiplication “0”. 

Scheme-II Coloring the vertex TL with color n( 1). 

We first prove that the Scheme-I is a 2-VC for R, under multiplication “0”. 

Lemma 4. Scheme-II is a ?-VC for R, under the multiplication “0”. 

Proof. Let rc and (T be two vertices in R,. We consider two cases. 

Case 1: CJ is a parent of 7~. Then there exist some 2 <i <n such that z = G o cli. In 

this case, 

71(l) = (00 G+)(l) = a(cr;(l)) = O(2) # O(1). 

This implies that 71 and o have different colors. 

Case 2: CJ and rc have a common child. Then there are two different intergers 

2 <i, j <n such that z = g o d~i o /?j. In this case, 

~(l)=(~"~io~j)(l)=~(~i(~j(~))) 

= CT(Cljo)) # CT(C$(i)) = a(l). 

This also implies that a and p have different colors. 

Thus in both cases CI and /I have different colors. Therefore, Scheme-II is a 2-VC 

for R, under the multiplication “0”. Cl 

The number of colors used by Scheme-II is also n. From Lemma 4 we can imme- 

diately obtain the following theorem. 

Theorem 2. Under the multiplication “o”, 

XT(R,) = n, 

and Scheme-II is an optimal 2- VC for R,. 

Scheme-II also has the nice balance property as Scheme-I. 

Lemma 5. Scheme-I assigned each color to exactly (n - l)! vertices. 

Proof. It is easy to see that for any 1 <i <n, all the (n - I)! vertices which map 1 to 

i have the color i. q 

Another interesting property is that the n - 1 children of any node has the same 

color. 
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Lemma 6. Jn the coloring given by Scheme-If, the n - 1 children of’ any node has 

the sume color. 

Proof. We only need to prove that for any vertex 7c and any 2 <i 6 n, the value of 

(71 o cq)( 1) depends only on ?I rather than on i. In fact, 

(nOa,)(I)=n(nj(l))=n(2). 

Therefore, the lemma is true. q 

6. Conclusion 

This paper studied a passive optical network based on rotator digraphs. The con- 

sidered configuration is cluster-based and has the potential of combining both time 

and wavelength division multiplexing with a space-connected structure to achieve ef- 

ficient scalability. The focus of this paper is on deriving optimal conflict-free channel 

sets assignments. For each of the two models of rotator digraph, we find an optimal 

conflict-free channel set assignment. Both schemes are simple and balanced. 
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