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Approximation Algorithms for Data
Broadcast in Wireless Networks

Rajiv Gandhi, Yoo-Ah Kim, Seungjoon Lee, Jiho Ryu, Member, IEEE, and Peng-Jun Wan

Abstract—Broadcasting is a fundamental operation in wireless networks and plays an important role in the communication protocol
design. In multihop wireless networks, however, interference at a node due to simultaneous transmissions from its neighbors makes it
nontrivial to design a minimum-latency broadcast algorithm, which is known to be NP-complete. We present a simple 12-approximation
algorithm for the one-to-all broadcast problem that improves all previously known guarantees for this problem. We then consider the
all-to-all broadcast problem where each node sends its own message to all other nodes. For the all-to-all broadcast problem, we
present two algorithms with approximation ratios of 20 and 34, improving the best result available in the literature. Finally, we report
experimental evaluation of our algorithms. Our studies indicate that our algorithms perform much better in practice than the worst-case
guarantees provided in the theoretical analysis and achieve up to 37 percent performance improvement over existing schemes.

Index Terms—Ad hoc networking, approximation algorithms, broadcast algorithms, wireless scheduling.

1 INTRODUCTION

NETWORK-WIDE broadcasting is a fundamental operation
in wireless networks, in which a message needs to be
transmitted from its source to all the other nodes in the
network. There may be multiple messages to be broad-
casted from multiple sources. Several network protocols
rely on broadcasting, for example, information dissemina-
tion, service/resource discovery, or routing in multihop
wireless networks. Given that key applications of multihop
wireless networks include disaster relief and rescue opera-
tions, military communication, and prompt object detection
using sensors, the design of low-latency broadcasting
scheme is essential to meet stringent end-to-end delay
requirements for higher-level applications.

Interference is a fundamental limiting factor in wireless
networks. When two or more nodes transmit a message to a
common neighbor at the same time, the common node will
not receive any of these messages. In such a case, we say
that collision has occurred at the common node. Inter-
ference range may be even larger than the transmission
range, in which case a node may not receive a message from
its transmitter if it is within the interference range of
another node sending a message. Any communication
protocol for wireless networks should contend with the
issue of interference in the wireless medium.
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One of the earliest broadcast mechanisms proposed in the
literature is flooding [1], [2], where every node in the network
transmits a message to its neighbors after receiving it.
Although flooding is extremely simple and easy to imple-
ment, Ni et al. [3] show that flooding can be very costly and
can lead to serious redundancy, bandwidth contention, and
collision: a situation known as broadcast storm. Since then, a
large amount of research has been directed toward designing
broadcast protocols which are collision free and which
reduce redundancy by reducing the number of transmis-
sions. In this paper, we revisit the data broadcast problem
and present improved algorithms that guarantee collision-
free delivery and achieve low latency.

1.1 Our Contributions

We present algorithms for ONE-TO-ALL and ALL-TO-ALL
broadcasting problems. In one-to-all broadcast, there is a
source that sends a message to all other nodes in the
network. In all-to-all broadcast each node sends its own
message to all other nodes. Even the one-to-all broadcasting
problem is known to be NP-complete [4]. For both
problems, we develop approximation algorithms, which
improve the previous results.

e For ONE-TO-ALL BROADCAST problem, we present
a simple approximation algorithm (Section 4) that
achieves a 12-approximate solution, thereby improv-
ing the approximation guarantee of 16 due to Huang
et al. [5]. Our algorithm is based on the algorithm of
Gandhi et al. [4] and incorporates the following two
ideas that lead to the improvement: 1) processing the
nodes greedily—in nonincreasing order of the
number of receivers, and 2) allowing nodes to
transmit more than once. The latter is particularly
counter-intuitive as one would expect that the
latency would increase if a node transmits more
than once. Note that in [4] the analysis of their
algorithm gives an approximation guarantee that is
greater than 400.
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e We then consider the ALL-TO-ALL BROADCAST
problem and present two algorithms (called CDA
and ICDA) with approximation guarantees of 20 and
34, respectively (Section 5), thereby improving the
approximation guarantee of 27 by Huang et al. [6].
Our improved result is due to efficient scheduling
techniques to collect data and then perform pipe-
lined broadcasting. In ICDA, all nodes are scheduled
to participate in transmissions as early as possible.
Even though its theoretical bound is weaker than
that of CDA, experimental results show that it
provides comparable or better performance than
CDA, especially in larger networks.

e We study the performance of our broadcast algo-
rithms through simulations under various condi-
tions. Our results indicate that our algorithms
perform much better in practice than the worst case
guarantees provided. Our algorithms achieve up to
37 percent improvement on end-to-end latency over
existing schemes.

2 RELATED WORK

Several techniques have been proposed for broadcasting in
wireless networks. In order to reduce the broadcast redun-
dancy and contentions, they make use of nodes’ neighbor-
hood information and determine whether a particular node
needs to transmit a message [7], [8], [9], [10], [11], [12], [13],
[14]. There has been some work on latency-constrained
broadcasting in wired networks [15] and some results do
exist for radio networks whose models are essentially the
same as ours. In particular, Chlamtac and Kutten [16] show
that minimum latency broadcast scheduling is NP-Complete
for general (nongeometric) graphs. This result does not
directly extend to ad hoc networks which are modeled by a
restricted class of geometric graphs called disk graphs.
Chlamtac and Weinstein [17] gave an algorithm for efficient
broadcasting in multihop radio networks. They proved that
for arbitrary graphs, the broadcast latency of their schedule is
within O(In(N /r)?) times the optimal, where N is the number
of network nodes and r is the maximum distance from the
source to any other node.

Basagni et al. [18] present a mobility transparent broad-
cast scheme for mobile multihop radio networks. In their
scheme, nodes compute their transmit times once and for all
in the beginning. They provide two schemes with bounded
latency. These schemes have approximation factors which
are linear and polylogarithmic in the number of network
nodes. In effect, they assume that the topology of the
network is completely unknown. Although their schemes
are attractive for highly mobile environments, their approx-
imation factors are far from what is achievable in static and
relatively less mobile environments where the broadcast
tree and schedule can be computed efficiently.

Gandhi et al. [4] show that minimizing broadcast latency
in wireless networks is NP-complete and then present an
approximation algorithm for one-to-all broadcasting. Their
algorithm simultaneously achieves a constant approxima-
tion both for the latency as well as the number of
transmissions. However, the approximation guarantee for
the latency of their algorithm is greater tan 400. In this work,
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we modify their algorithm to obtain a 12-approximation
ratio, thereby improving their result significantly. Huang et
al. [5] obtained a 16-approximation algorithm for one-to-all
broadcasting problem. They also present an algorithm with
latency at most R+ O(log R) where R is the maximum
euclidean hop distance from the source to any node.
However, the hidden constant in O(log R) is not small
(>150). Chen et al. [19] also address the problem of
minimizing broadcast latency when the interference range
is strictly larger than the transmission range. If « is the ratio
of the interference range to the transmission range, then for
a > 1, they give an O(o?)-approximation algorithm. In
particular, when « =2, their algorithm achieves a 26-
approximation. However, it is not clear how their algorithm
behaves when a =1. For all-to-all broadcast problem,
Gandhi et al. [4] present a constant approximation algorithm
where the constant factor is quite large (>1,000). Tiwari et al.
[20] consider the one-to-all broadcast problem in 3D space.
Mahjourian et al. [21] present an approximation algorithm
when both interference range and carrier sensing ranges are
larger than transmission range. The all-to-all broadcast
algorithm by Huang et al. [6] achieves the approximation
factor of 27. In this work, we further improve the approx-
imation guarantee for the all-to-all broadcasting.

Hung et al. [22] provide centralized and distributed
algorithms for broadcasting and experimental study of their
algorithms with respect to collision-free delivery, number of
transmissions and broadcast latency. While their centra-
lized algorithm is guaranteed to be collision free, their
distributed algorithm is not. They do not provide any
guarantees with respect to the number of transmissions and
latency of the broadcast schedule. Williams and Camp [23]
survey many wireless broadcast protocols discussed above.
They provide a neat characterization and experimental
evaluation of many of these protocols under a wide range of
network conditions.

3 PRELIMINARIES

3.1 Network Model

When the interference range and the transmission range are
identical, a wireless network can be modeled as a unit disk
graph (UDG), G = (V, E). The nodes in V are embedded in
the plane. Eachnode v € V has a unit transmission range. Let
|u, v| denote the euclidean distance between u and v. Let D(u)
denote the neighbors of uin G. A node v € D(u) iff |u,v| < 1.

We assume that time is discrete. Since the medium of
transmission is wireless, whenever a node transmits a
message, all its neighbors hear the message. We assume that
every message transmission occupies a unit time slot: i.e.,
the latency of a single successful transmission is one unit of
time. We say that there is a collision at node w, if w hears a
message from two transmitters at the same time. In such a
case, we also say that the two transmissions interfere at w. A
node w receives a message collision free iff w hears the
message without any collision.

We also consider the case when the interference range is
strictly larger than the transmission range. Let o denote the
ratio of the interference range to the transmission range.
Consider nodes u and w such that 1 < |u,w| < a. When w
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broadcasts a message, even though v will not receive the
message correctly (since it is not in D(w)), this can prevent
node u from receiving a message broadcast from a node in
D(u). Thus, for a node u to receive a message collision free,
a node in D(u) must transmit the message and no other
node within a distance of a from u must transmit the
message.

3.2 Problem Statement

We are given a disk graph G = (V, E) and a set of messages
M =1{1,2,...,m}. We also have a set of sources for these
messages: sources = {s;|s; is the source of message j}. A
node can transmit message j only after it receives message
Jj collision free. A schedule specifies, for each message j and
each node i, the time at which node ¢ receives message j
collision free and the time at which it transmits message j. If
a node does not transmit a message then its transmit time
for that message is 0. The latency of the broadcast schedule
is the first time at which every node receives all messages.
The number of transmissions is the total number of times
every node transmits any message. Our goal is to compute a
schedule in which the latency is minimized.

We consider one-to-all and all-to-all broadcasting pro-
blems. One-to-all broadcasting is the operation where there
is one source node s which has a message to send all other
nodes. In all-to-all broadcasting, each node v has its own
message m(v) to send all other nodes. Even the one-to-all
broadcasting problem is known to be NP-complete [4].

4 ONE-TO-ALL BROADCAST ALGORITHM

The algorithm takes as input a UDG G = (V,E) and a
source node s. The algorithm first constructs a broadcast tree,
T, rooted at s in which if a node u is a parent of a node w
then u is responsible for transmitting the message to w
without any collision at w. It then schedules the transmis-
sions so that every node receives the message collision free.
The two key differences from the algorithm in [4] that lead
to a significantly improved approximation guarantee are

1. Processing the nodes in a greedy manner while
constructing the broadcast tree.
2. Allowing a node to transmit more than once.

Both these properties are crucial to the proof of Lemma 4.4
which is central to showing that our algorithm yields a 12-
approximate solution. Note that in [4] the analysis of their
algorithm gives an approximation ratio of at least 400.

The broadcast tree T}, is constructed as follows: the set of
nodes V is partitioned into primary nodes P and secondary
nodes S (these nodes are also referred to as dominators and
connectors in the literature [5]). Let Tprg be the breadth-first
search tree rooted at s. Let L;,i =0,1,2,...,¢, be the set of
nodes at level ¢ in the BFS tree. P is a maximal independent
set in G constructed by considering one level at a time
starting from L in Tsrg. The nodes in P form a dominating
setin G, i.e., each node in § is within the transmission range
of some node in P. The parent-child relationships in 7} are
determined as follows: let P, = PN L; and S; =SNL; be
the set of primary nodes and secondary nodes, respectively,
at level i in the BFS tree. At any level 4, the algorithm first
considers each node w € P, in nonincreasing order of the
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number of nodes in D(u) that do not have a parent yet (in [4]
the nodes were processed in an arbitrary manner). The
children of w in T}, C(u), are all the secondary nodes in D(u)
that do not have a parent when v is considered (line 20 in
BROADCASTTREE). After considering all nodes in P;, the
secondary nodes are considered in the same way (ie.,
nonincreasing order of the number of nodes in P,;; that do
not have a parent) and assigned its children. This algorithm
runs in O(|V]*) time as each node maintains a set of its
potential children for lines 19 and 25 and this set needs to be
updated when any node is assigned to its parent (lines 22
and 28 in BROADCASTTREE).

BROADCASTTREE (G = (V, E), s)
1 P« Py~ {s} // P is the set of primary nodes.
2  Tpgrg «— BFS tree in G with root s
3 ¢+ maximum number of levels in Tgrg
// s belongs to level 0
4 fori<— 1to{do
5 L; — set of all nodes at level i in Tpg
6 P—0
7 for each w € L; do
8 if (PN D(w) =0) then

9 P, — P,U{w}
10 P — PU{w}
11 Si— Li\ P,

12 Py 0

13 S—V\P

14 for each node u € V do
15 parent(u) — NIL

16 fori < 0to ¢ do
17 P{(—Pz

18 while (P! # () do

19 u < node in P/ with maximum
{w € D(u) | parent(w) = NIL}|
20 C(u) — {w € D(u) | parent(w) = NIL}
21 for each w € C(u) do
22 parent(w) «— u
23 Pl P\ {u}
24 while (3w € P s.t. parent(w) = NIL) do
25 u « node in S; with maximum
{w € D(u) N Py | parent(w) = NIL}|
26 C(u) < {w € D(u) N Py | parent(w) = NIL}
27 for each w € C(u) do
28 parent(w) «— u
29 V<~V

30 B — {(ww)lu  parent(u)}
31 return T}, = (V}, Ey)

In ONE-TO-ALL BROADCAST, the transmissions are
scheduled in two phases. In Phase 1, the algorithm schedules
transmissions only to the nodes in set (denoted by X) which
contains all primary nodes and nonleaf secondary nodes in
Ty. In Phase 2, transmissions are scheduled to send the
message to all other nodes. Note that this leads to some nodes
transmitting more than once which is again a significant
departure from the algorithm in [4] in which each node
transmits the message at most once. The intuition behind this
is that it is not necessary to send a message to terminal nodes
early as they are not responsible for relaying the message
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further. On the other hand, by reducing the number of
recipients in the first phase, a node will need to avoid a
smaller number of potential conflicts before sending a
message to nonterminal nodes, thus reducing the broadcast
time. In Phase 1, nodes are considered one level at a time
starting from L. Only those primary nodes that have a child
in X will transmit the message in this phase. Clearly, for any
primary node u if C(u) # 0 and C(u) N X =0 then v will
transmit the message in Phase 2. At any level L;, the
secondary nodes are scheduled for transmission only after all
transmissions of primary nodes in P; have been scheduled.
While scheduling transmissions, the nodes in P, as well as
S; N X are considered in nonincreasing order of the number
of their children in 7j. The algorithm then follows a greedy
strategy to schedule the collision-free transmissions to nodes
in X. Any transmitting node, u, transmits at the minimum
time ¢ that satisfies the following collision-free con-
straints—1) u must have received the message collision free
before time ¢, 2) no node in C(u)NX is hearing any
transmissions at time ¢, 3) no node in D(u) N X is receiving
the message collision-free at time ¢.

In Phase 2, transmissions are scheduled so that the nodes
in Y=V \ X receive the message. Nodes are considered
one level at a time. For each v € Y, parent(v) is responsible
for transmitting the message collision free to v. Since
PNY =0, the secondary nodes do not transmit in Phase 2.
Any transmitting node, u, transmits at the minimum time ¢
that satisfies the above three collision-free constraints.

ONE-TO-ALL BROADCAST (G, Trs,Tp, s)

1 for each node v € V do

2 trTime;(u) < 0 //u's transmission time in Phase 1

3 trTimes(u) < 0 //u's transmission time in Phase 2

4 X—PU{weS|C(w)+#0} // setof transmitters

5 Y« V\X// setof terminals

6 // Phase 1 - transmitters will receive the message

7 fori—0tol—1do

8 Pl —{ueP |FweClu)ynX}

9 X; < nodes in P/ U (X NS;) with all primary
nodes ordered before the secondary nodes
and the primary and secondary nodes listed
in the order they were chosen in lines 19
and 25 resp. in BROADCASTTREE.

10 while (X; #0) do

11 u < first node in X;

12 Li(u) — {t| 3w € C(u) \ Y that hears a message
at time ¢}

13 I(u) «— {t| 3w € D(u) \ Y that receives a
message coll-free at time ¢}

14 I(u) « I (u) U Iy(u) // Interference set of u

15 trTime; (u) < min{t| t > rcvTime(u) and

t & I(u)}

16 for each w € C(u) \'Y do

17 revTime(w) «— triTime; (u)

18 Xi — X; \ {u}

// Phase 2—the terminals will receive the message
19 Y=Y
20 fori« 0to/do
21 foreachu € S;NY’ do
22 v« parent(u)
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(c) (a)

Fig. 1. An illustration of our algorithm. (a) Shows the example network.
(b) Shows the BFS tree, Tppg along with the primary nodes (high-
lighted). (c) Shows the broadcast tree, 7;. (d) Shows the transmission
schedule. Besides each node is a 3-tuple, whose members are
revTime(-), trTime;(-), and trTimes(-), respectively. For instance,
source node receives a message at time 0 (as it is the original source of
the message) and transmits at time 1 for Phase 1 and at time 4 for
Phase 2.

23 Li(v) — {t|Jwe C(v)NY’ that hears a
message at time ¢}

24 I (v) « {t| 3w € D(v) that receives a message
coll-free at time ¢}

25 I(v) — I;(v) U Ir(v)

26 trTimes(v) < min{t|t > rcvTime(v) and

t & I(v)}

27 for each u € C(v)NY’ do

28 rcvTime(u) — trTimes(v)

29 Y — Y\ C(v)

30 return trlime;, trTimes

Fig. 1 illustrates our algorithm. Note that for any node,
the rcvTime(-) that is shown in the figure is the time at
which the node is guaranteed to receive the message
collision free in our algorithm. For example, consider node
b. While b receives the message collision free at time 1, in
our algorithm it is guaranteed to receive the message
collision free at time 4. Similarly, nodes d and h receive
message collision free at time 3, but in our algorithm they
are guaranteed to receive message collision free at times 5
and 6, respectively. While it is easy to eliminate this
slackness from our algorithm, we leave it as is for clarity in
exposition.

4.1 Analysis

For any node u, recall that D(u) is the set of nodes in the
neighborhood of u. Let D(u, 2) (D,(u, 2)) be the set of nodes
(primary nodes) at a distance of at most 2 from u. We will
use the facts that for any node v, the number of primary
nodes in D(v), |D,(v)| <5 [5] and |Dy(v,2)| < 19 [24]. Let
Pj(u) denote the primary neighbors of u that belong to L;.
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Primaries

Secondaries

A

(a) (b)

Fig. 2. (a) Proof of Lemma 4.4. An edge between two nodes implies that
the nodes are within each other’s transmission range. Nodes z and u
belong to P, and we X NC(z). z interferes with v at w. Node j, a
primary child of w, is guaranteed to exist since w e X. j does not
interfere with u since it belongs to L;; U L; . (b) Proof of Lemma 4.6.
For any secondary node w interfering with v, there should be a primary
node z in D(v) N D(w). There are four cases discussed in Lemma 4.6
and in all cases, rcvTime(w) < t;_1 + 8.

Since our BROADCASTTREE algorithm is an implementa-
tion of the algorithm in [4], the properties of T} proven in [4]
hold and we state them in Lemmas 4.1 and 4.2.

Lemma 4.1 ([4]). T}, is a connected tree rooted at s.
Lemma 4.2 ([4D. If {u,w} € E} then |{u,w} N P| =1.

Lemma 4.3. Consider a node v € P;,, 0 < ¢ < {. Recall that the
set X (line 4 in ONE-TO-ALL BROADCAST) is the set of
transmitters. If C(u) N X = 0 then trTime;(u) = 0.

Proof. If C(u) N X = (), then u ¢ P! (line 8 in ONE-TO-ALL
BROADCAST), hence trTime;(u) = 0. O

The following is our key lemma:

Lemma 4.4. Let u € P,. Suppose that in Phase 1, a transmission
from w is delayed due to the transmission from a primary node z
in D,(u,2) () P as z interferes with u at a node w (see Fig. 2a).
Then the following is true:

1. wis not in C(u).
2. For each z, there is at least one unique primary node in
Dy (u,2) that does not interfere with .

Proof. The first property is true because the order in which
the children of primary nodes are decided in T; (lines 19-
20 in BROADCASTTREE) and the order in which the
transmissions are scheduled (line 9 in ONE-TO-ALL
BROADCAST) are the same. That is, if there is a primary
node z that is scheduled before v and w € D(u) N D(z),
then w should be in C(z) and not in C(u).

Now let us consider the second property. Let w €
D(u) be a secondary node at which some node in P,
interferes with u. Clearly, w € L; U L;1,. Since nodes in Y’
are ignored when computing interference (lines 12 and
13 in ONE-TO-ALL BROADCAST), it must be that w € X.
This means that |C(w)| > 1. Also, since w is a secondary
node in L; U L;1, C(w) € P11 U Pyo. Thus, the children
of w which are primary nodes in D,(u, 2) do not interfere
with . This means that for every primary node z in P,
that interferes with u there is at least one unique primary
node in D,(u,2) that does not interfere with w. ]

In the following, we use Lemma 4.4 and show that even
though for any primary node u, |D,,(u, 2)| can be as big as 19
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[24], at least half of them are not interfering with . Let ¢;,
0 < i </, be the time at which all transmitters in L, finish
transmitting once, i.e., Yu € L;, trTime; (u) < t;.

Lemma 4.5. Consider a node we P, 0<i<4{. Let v be a
secondary mnode in C(u)NX. Then trTime;(u) <ty +
L7 = [Usecqupnx (P (v) U Pia(v)) /2] +1 <ty +9.

Proof. Since parent(u) € L;,—; and all transmitters in L, ;
transmit the message by time t;,_y, rcvlime(u) <t;_;.
Since the secondary transmitters in L, are scheduled only
after transmitters in P,, secondary nodes in \S; do not
interfere with u. This means that in Phase 1, while
scheduling the transmission for u after time ¢;_;, we must
only be concerned about the transmission times of the
nodes in P; that interfere with u and whose transmissions
are already scheduled when w is considered. Let w € D(u)
be a secondary node at which some node in P, interferes
with u, which prevents u from transmitting. Then w
is not in C(u) by the first property in Lemma 4.4 and
11(u)| < [(1D,(10,2)| =2~ Uyecuyor (Pt (0)UPa(0))]) /2],
where I(u) (line 14 in ONE-TO-ALL BROADCAST) is the
set of times such that for each ¢ € I(u), a transmission
from wu at time ¢t would interfere with an already
scheduled transmission at time ¢. The 2 in the numerator
accounts for u and parent(parent(u)). The 2 in the
denominator follows from the second property in
Lemma 4.4. Finally, the claim follows because
| Dy (u,2)| <19, |Piiq(v) U Piya(v)| > |C(v)| > 1 and since
trTime; (u) < ti—1 + |I(u)] + 1. 0

Lemma 4.6. Let v be a secondary transmitter in L;, 0 <i < /.
Then trTime;(v) < t;—1 + 12.

Proof. Ifv € L,thenvisnotin X.Hence, trTime; (v) = 0. Now
assume that v € L;, i < £. By Lemma 4.5, we know that all
secondary nodes in S; N X receive the message by time
ti—1 + 9. After this time, some secondary nodes in S; N X
may interfere with v at primary nodes in I(v) =
Pii1(v) \ C(v). Therefore, trTime;(v) <1 +9+|I(v) |
+1. Since |D,(v)| <5 and parent(v) ¢ Pii1(v), |I(v)] < 3.
If |I(v)] < 2 then we are done.

Suppose now that |I(v)| =3. Since |I(v)| =3 and
|C(v)] > 1, by Lemma 4.5, rcvTime(v) < t;—1 + (17 —
4)/2] +1=1t;_1+ 7. Let w be any secondary node in
D(v)NS;NX (see Fig. 2b). In the following, we will
show that for any w, rcvTime(w) <t;_; +8 and thus
trTime;(v) <t + 8+ [I(v)| +1 < t;—1 +12.

First observe that D(w) and D(v) must share a
primary node, otherwise in D(v) there will be more than
five nodes (three in I(v), at least one in C(v), parent(v)
and w) with pairwise distance of greater than 1, which is
not possible [5]. Let z € D,(w) N D,(v). We consider the
four different cases:

1. =z is parent(v) but not parent(w): w receives the
message (strictly) earlier than v as parent(w) is
scheduled before parent(v). Therefore, rcvTime(w)
<tii+8.

2.z is parent(v) and parent(w): since both v and w
are in X, we have |P1(v)| >|C(v)| >1 and
|Pit1(w)| > |C(w)| > 1. By Lemma 4.5, we have
revTime(w) < t;_1 + 8.
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3. zisin Pyq(v) but not in C(w): since |C(w)| > 1 (as
w is in X), we get |P;y1(w)| > 2. Plugging this
value in the expression in Lemma 4.5, we get
revTime(w) = trTime; (parent(w)) < t;—1 + 8.

4. zisin Py(v) N C(w): if z € C(w) then in line 25 of
BROADCASTTREE w must be chosen before v. At
that point in the algorithm v would have at least
two primary nodes (z and C(v)) in D(v) which
don’t have a parent. This means that |C(w)| > 2
and again by Lemma 4.5, rcvTime(w) < t;_1 + 8.

Thus, when |I(v)| = 3 all secondary nodes in D(v) N .S; N
X (including v) receive the message by time #;_; + 8.
Hence, trTimey(v) < t;-1 + 8+ [I(v)|+1 <ty +12. O

Lemma 4.7. For 0 < ¢ < ¢ —1, the time by which all transmit-
ters in L; transmit the message once is t; < t;_1 + 12.

Proof. Follows from Lemmas 4.3, 4.5, and 4.6. a

We now analyze the transmission times for Phase 2.
Lemma 4.8. For a secondary node v € S, trTimes(v) = 0.

Proof. In Phase 2, the nodes that transmit the message have
a child in Y. Combining Lemma 4.2 with the facts that
C(v) CPand PNY =0 we get trTimes(v) = 0. O

Lemma 4.9. For 0 < ¢ < ¢ — 2, let uw € S; be a terminal node, i.e,
w € S;NY. Then rcvTime(u) < t;1o + 19.

Proof. Let v = parent(u). Note that v € P;, j € {i — 1,:}. The
nodes that may interfere with v belong to the set D(v, 2).
Let Bl('l}) = D(U, 2) N (L]',Q (@] Lj;l U L]) and BQ('U) = D(U,
2) n (Lj+1 U Lj+2). Thus,

[I(v)] < {(trTime;(w), trTimes(w)) | w € Bi(v)}
U {trTime;(w) | w € Ba(v)}].

We know that for any node w € By (v), trTime;(w) < .
By Lemma 4.8, trTimey(w) = 0 for all w € S. Hence, after
time ¢;, v is guaranteed a collision-free second transmis-
sion if v avoids transmitting at trTimes(w) for each
primary node in w € By(v) \ {v} and at ¢rTime;(w) for
each w € By(v). Thus after time ¢;, v must avoid 1) at
most one time corresponding to each primary node in
D, (v,2) \ {v}, cardinality of which is at most 18, and 2) at
most one time (trTime;(-)) for each secondary node
w € D(v,2) N (Si41 U Sit9). There are at most (¢;11 — t;) +
(tito — tit1) times when all secondary nodes in S;4; U
Sit2 transmit the message. Hence trTimes(v) < t; + 18 +
(tiv1 — ) + (tivz — tip1) + 1 < 40 + 19, O

Lemma 4.10. For any v € X, rcvTime(v) < ty_1.

Proof. Nodes in X N L;, 0 < i < £ — 1, receive their message
by the time ¢;. Note that X N L, = P, and these nodes
have their parents in L,_;. Hence, they receive their
message by time t,_;. ]

Lemma 4.11. Let v be any vertex in L;, 0 <i < {—2. Then
revTime(v) < tp_y + 19.

Proof. If v € X then by Lemma 4.10, rcvTime(v) < t,_y. If
v € S then by Lemmas 4.6 and 4.9, and the fact that
i <l—2,we get revTime(v) < tio+19<t,1+19. O
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Lemma 4.12. For { — 2 < ¢ </, for any u € L;, rcvTime(u) <
tr—1 + 19.

Proof. If u € X then by Lemma 4.10, rcvTime(u) < tp_;.
Otherwise, if u € Y, let v = parent(u). Since trTime; (w) <
ti—1 for all w € V, and secondary nodes transmit at most
once (Lemma 4.8), v is guaranteed collision-free second
transmission after ¢,_; if v avoids second transmission
times of nodes in Dy(v,2) \ {v}. Hence, trTimes(v) <
te—1 + \Dp(v, 2)| —14+1<ty+19. O

Theorem 4.13. Our algorithm gives a 12-approximate solution
for the latency. The number of transmissions in our algorithm
is at most 21 times those in an optimal solution.

Proof. Let v € V. From Lemmas 4.11 and 4.12 rcvTime(v) <
ti—1 4+ 19. Using Lemma 4.7 we get

rcvTime(v) <t +12(¢€ — 2) + 19. (1)

We know that t, = 1. For each secondary node w € L;,
secondary nodes at a distance of at most 2 from w can
interfere at most three primary nodes in D(w). Hence,
t1 <ty+3+1=>5. Combining this with (1), we get
revlime(v) < 12(¢ —2) +24 = 12¢. Since ¢ is a lower
bound on an optimal solution we get a 12-approximate
solution. 0

Lemma 4.14. The number of transmissions in our algorithm is at
most 3| P| where |P| is the size of the primary set.

Proof. Each primary node transmits at most twice, at most
once in Phase 1 and at most once in Phase 2. Since
secondary nodes do not transmit in Phase 2, each
secondary node transmits at most once. By Lemma 4.2,
each secondary node that transmits has a unique child
that is a primary node. Hence, the number of transmit-
ting secondary nodes is at most |P|. Hence, the total
number of transmission is at most 3|P|. O

Lemma 4.15 ([4]). The number of transmissions in any optimal
algorithm is at least |P|/7.

The above lemmas imply the following theorem:

Theorem 4.16. The number of transmissions in our algorithm is
at most 21 times those in an optimal solution.

4.2 General Interference Range Model

Our algorithm and analysis can be easily extended to the
case when the interference range of a node is different than
its transmission range. The only changes are in lines 13 and
24 of the pseudocode ONE-TO-ALL BROADCAST, where
D(u) (line 13) and D(v) (line 24) are to be replaced by
“interference range of u” and “interference range of v,”
respectively. Note that if o, the ratio of interference range to
the transmission range is a constant, then so is | D), (v, o + 1)|
(note that | D, (v)| remains the same). The rest of the analysis
is very similar to the case when a = 1; only the values of
some constants will change.

Theorem 4.17. If the ratio of the interference range to the
transmission range of a node, o is bounded by a constant, our
algorithm yields a constant factor approximation for latency
and the number of transmissions.
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5 ALL-TO-ALL BROADCAST ALGORITHM

We now consider all-to-all broadcasting, in which each
node v has a message m(v) to send to all other nodes. We
present two algorithms. By adopting efficient scheduling
scheme for pipelined broadcasting, the first algorithm
achieves an approximation guarantee of 20, which improves
the previous best known guarantee of 27 in the literature [6].
The second algorithm achieves an approximation factor of
34, which performs well in our experiments (Section 6).

A Lower Bound. Let G be a unit-disk graph with n nodes.
Denote by ~. the connected domination number of G. That
is, 7. = |CD(G)| where C'D(G) is a minimum size connected
dominating set of G. Then we have the following lower
bound on the latency of all-to-all broadcasting.

Lemma 5.1. The minimum latency of all-to-all broadcasting in G
is at least n — 1 + ~..

Proof. The broadcasting of each message requires at least .
transmissions. So, the total number of transmissions in
any all-to-all broadcast schedule is at least n+. This
implies that some node must take at least 7. transmis-
sions. On the other hand, every node must take n — 1
receptions. Therefore, some node takes at least n — 1 + .
transmissions or receptions. This implies that n — 1 + .
is a lower bound on the minimum latency of all-to-all
broadcasting. ]

5.1 Collect-and-Distribute Algorithm (CDA)

The graph radius of G with respect to a node v is the
maximum depth of the BFS tree rooted at v. A graph center
of G is a node in G with respect to which the graph radius
of G is the smallest. Let s be a graph center of G, and R be
the graph radius of G with respect to s. Clearly, 7. > R. We
call transmissions of message m from a node v upward if the
message m is originated from the descendant of wv.
Otherwise, a transmission is called downward. Our schedule
consists of two phases. In Phase 1, s collects all the packets
by performing upward transmissions. In the Phase 2, s
broadcasts all the n packets to all other nodes via down-
ward transmissions.

Phase 1. Node s collects all messages by using the data
collection algorithm based on the one by Florens and
McEliece [25]. We simplify their algorithm as follows: first
construct a BFS tree from s, and sort messages m(v) in
nondecreasing order of the level of v in the BFS tree. That is,
messages that are closer to s appear first in the sorted list.
Let us assume that message j be the jth message in the
sorted order. We now greedily schedule transmissions by
giving priority to message j over any message ¢ > j. The
latency of the collection algorithm is at most 3(n — 1) [25].

Phase 2. We construct a broadcast tree Tj, using BROAD-
CASTTREE in Section 4. Next, we describe transmission
scheduling algorithm. In the algorithm by Gandhi et al. [4],
the root node collects all messages and perform one-to-all
broadcasting for each message. The root node needs to wait
until the previous message reaches L3 before initiating a
broadcast for another message to make sure there are no
collisions in their algorithm. In our algorithm, we find a
schedule by a vertex coloring, which makes sure that all the
nodes with the same color can broadcast a message without
collision, and show that 17 colors are enough to obtain a
collision-free schedule.
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Let H; (resp., H>) be the graph over the primaries (resp.,
secondaries) in which there is an edge between two
primaries (resp., secondaries) if and only if one of them
has a child adjacent to the other in G.

The scheduling for H; can be done by computing a
vertex coloring of H; in the first-fit manner in the smallest-
degree-last ordering. By proper renumbering of the colors,
we assume that s has the first color. Let k; be the number of
colors used by this coloring. Then, k; < 12 [5].

We compute a vertex coloring of H, in the first-fit
manner by considering nodes in the same order as used
when computing the broadcast tree 7;, and let k; be the
number of colors. Then, ko < 5 [5].

Let k= k; + ky. We define a superstep to be a group of
consecutive k time slots. In each superstep, the first k; slots
are for scheduling transmissions from primaries, and the
remaining ks slots will be for secondaries. Each primary
(resp., secondary) with color ¢ is only allowed to transmit in
the ith slot of a primary (resp., secondary) slot in a superstep.
The source node s transmits one packet in each superstep.
Each secondary receiving a packet in a superstep transmits
the received packet in the corresponding secondary slot in
the same superstep. Each primary node receiving a packetin a
secondary slot transmits the received packet in a primary
slot of the subsequent superstep. Note that any message that
the primaries at level ¢ received in a given superstep will be
forwarded to the primaries at level ¢ 4+ 1 or ¢ + 2 in the next
superstep. Therefore, a message which has been sent from a
source will be broadcasted to all nodes within R supersteps
where R is the number of levels in the BFS tree.

Lemma 5.2. The second phase takes no more than 17(n — 1 + R)
time steps.

Proof. We show that in n — 1 + R supersteps, all n messages
are broadcast. After n supersteps, the source node
transmits the last packet. After another R — 1 supersteps,
the last packet reaches all nodes. Hence, the latency of
the second schedule requires at most (n — 1 + R) super-
steps. As each superstep consists of 17 time slots, we
have the lemma. O

Theorem 5.3. Our all-to-all broadcasting algorithm gives a 20-
approximation.

Proof. Recall that the first phase takes at most 3(n — 1) time
slots. The second phase takes no more than 17(n — 1 + R)
time steps as in n — 1 + R supersteps, all n messages are
broadcasted and each superstep consists of 17 time slots.
Therefore, the total latency of our all-to-all broadcast
schedule is at most 30OPT + 17(n — 1+ R) < 200PT. O

5.2 Interleaved Collect-and-Distribute Algorithm

(ICDA)
In the 20-approximation algorithm proposed in Section 5.1,
all messages are first sent to the root node s in the broadcast
tree, and then s sends the messages one by one. Note that in
the early stages of the algorithm, until s receives all the
messages and starts propagating them, most nodes are idle,
thus increasing the broadcast time significantly. We now
describe