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Abstract—Connected dominating set (CDS) has a wide range of applications in mutihop wireless networks. The Minimum CDS

problem has been studied extensively in mutihop wireless networks with uniform communication ranges. However, in practice, the

nodes may have different communication ranges either because of the heterogeneity of the nodes, or due to interference mitigation, or

due to a chosen range assignment for energy conservation. In this paper, we present a greedy approximation algorithm for computing

a Minimum CDS in multihop wireless networks with disparate communications ranges and prove that its approximation ratio is better

than the best one known in the literature. Our analysis utilizes a tighter relation between the independence number and the connected

domination number.

Index Terms—Connected dominating set, independent set, disk graph, wireless network, virtual backbone

Ç

1 INTRODUCTION

CONNECTED dominating set (CDS) has a wide range of
applications in multihop wireless networks (cf. a recent

survey [2] and references therein). It plays a very important
role in routing, broadcasting, and connectivity management
in wireless ad hoc networks. Consider a multihop wireless
network with undirected communication topology
G ¼ ðV ;EÞ. A CDS of G is a subset U � V satisfying that
each node in V n U is adjacent to at least one node in U and
the subgraph of G induced by U is connected. A minimum
CDS (MCDS) of G is a CDS of G with the smallest size. The
problem of computing a MCDS in a multihop wireless
networks with uniform communications ranges has been
intensively studied in the literature. This problem is NP-
hard [3], and a number of distributed algorithms for
constructing a small CDS in wireless ad hoc networks have
been proposed in [1], [5], [7], [8] among others.

However, in practice, the nodes may have different
communication ranges either because of the heterogeneity
of the nodes, or due to interference mitigation, or due to a
chosen range assignment for energy conservation. In this
paper, we assume all the nodes V lie in an euclidean plane,
and each node v has a communication radius rv. The
communication topology of such a network is defined by a
graph G ¼ ðV ;EÞ in which there is an edge between two
nodes u and v if and only if they are within each other’s
communication range. By proper scaling, we assume that
the smallest communication radius is one and the largest
communication radius is R.

MCDS in multihop wireless networks with disparate
communication ranges have been studied in [6] and [9].
Thai et al. [6] applied the approximation algorithm given
in [7] for MCDS in multihop wireless networks with
uniform communication ranges to compute a CDS in a
multihop wireless network with disparate communication
ranges. The approximation bound of this algorithm
involves the relation between the independence number
� (the size of a maximum independent set) and connected
domination number �c (the size of a minimum connected
dominating set) of the communication topology. It was
shown in [6] that

� � 10blogg Rc�c;

where g ¼ 1þ
ffiffi
5
p

2 is the golden ratio. With such a bound on �,
an approximation bound

10blogg Rc þ 2þ logð10blogg RcÞ

was derived in [6]. Xing et al. [9] targeted at obtaining a
tighter approximation bound of the same approximation
algorithm. They claimed (in [9, Theorem 3.1]) a tighter
upper bound

4
5

6
þ 8

2

3
dlogg Re

� �
�c

on �. However, their proof of [9, Theorem 3.1] contains a
critical error, which has no apparent fix. An explanation
of this error and a counterexample are included in the supp-
lementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2012.58. Thus, the improved approxima-
tion bound based on the above bound of � in [9] becomes
baseless.

In this paper, we first derive an improved upper bound
on the number of independent nodes in the neighborhood
of any node. For any R � 1, let

R� ¼ 5þ 8dlogg Re:
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We show that the number of independent nodes in the
neighborhood of any node is at most R�. Based on this
upper bound, we then prove a tighter upper bound ðR� �
1Þ�c þ 1 on �. Since the approximation bounds of the
algorithms presented in [6] and [9] are directly derived
from the upper bound of �, the approximation bounds of
these two algorithms can be improved accordingly. We will
adapt the two-phased greedy approximation algorithm
presented in [8, Section 4] to multihop wireless networks
with disparate communication ranges, and show that its
approximation ratio is at most R� þ lnðR� � 2Þ þ 1.

The remaining of this paper is organized as follows: In

Section 2, we present an improved upper bound on the

independence number � in terms of the connected

domination number �c. In Section 3, we analyze the

approximation bound of a two-phased greedy approxima-

tion algorithm for MCDS adapted from an algorithm

originally proposed in [8] for computing MCDS with

uniform communication radii. In Section 4, we summarize

the paper and discuss future studies for potential improve-

ments. Throughout this paper, Dðu; rÞ denotes the closed

disk of radius r centered at u. The euclidean distance

between two nodes u and v is denoted by kuvk. The

cardinality of a finite set S is denoted by jSj.

2 INDEPENDENCE NUMBER VERSUS CONNECTED

DOMINATION NUMBER

In this section, we present an improved upper bound on the

independence number � in terms of the connected

domination number �c.

Theorem 1. � � ðR� � 1Þ�c þ 1.

To prove Theorem 1, we need the following lemma

which gives an upper bound on an independent set of

nodes adjacent to an arbitrary node u.

Lemma 2. Suppose that I is an independent set of nodes adjacent

to a node u. Then, Ij j � R�.

Now, we prove Theorem 1 by using Lemma 2 which will

be proved later. Let M be any maximum independent set of

G, and OPT be any MCDS of G. Then, jMj ¼ � and

jOPT j ¼ �c. Consider an arbitrary preorder traversal of

G½OPT � given by vj with 1 � j � �c. Let M1 be the set of

nodes in M that are adjacent to v1. For any 2 � j � �c, let Mj

be the set of nodes in M that are adjacent to vj but none of

v1; v2; . . . ; vj�1. Then, the �c sets Mj with 1 � j � �c form a

partition of M. By Lemma 2, jM1j � R�. For any 2 � j � �c,
there exists an index 1 � j0 � j� 1 such that vj0 is adjacent

to vj. Since vj0 is not adjacent to any node in Mj, the set

fvj0 g [Mj is an independent set of nodes adjacent to vj.

Again by Lemma 2, we have

jMjj þ 1 � R�

and, consequently,

jMjj � R� � 1:

Therefore,

jMj ¼
X�c
j¼1

jMjj � R� þ ðR� � 1Þð�c � 1Þ

¼ ðR� � 1Þ�c þ 1:

This completes the proof of Theorem 1.
The rest of this section is devoted to the proof of Lemma 2.

Consider an arbitrary node u 2 V and an independent set I

of nodes adjacent to a node u. Let I1 be the set of nodes in I

lying in the closed disk of radius g centered at u, and for each

j � 2 let

Ij ¼ fv 2 I : gj�1 < kuvk � gjg:

From [4], we have jI1j � 12. The following lemma on jIjj for

j � 2 was proved in [9].

Lemma 3. For any j � 2, jIjj � 9.

We shall further prove the following lemma on jIj [ Ijþ1j
for j � 2.

Lemma 4. For any j � 2, jIj [ Ijþ1j � 16.

These two lemmas together imply Lemma 2 immedi-

ately. If dlogg Re is odd, then

jIj ¼
[dlogg Re

j¼1

Ij

������
������

¼ I1j j þ
Xðdlogg Re�1Þ=2

i¼1

jI2i [ I2iþ1j

� 12þ 16 � ðdlogg Re � 1Þ=2
¼ 8dlogg Re þ 4 < R�:

If dlogg Re is even, then

Ij j ¼
[dlogg Re

j¼1

Ij

������
������

¼ jI1j þ jI2j þ
Xdlogg Re=2�1

i¼2

jI2i�1 [ I2ij

� 12þ 9þ 16ðdlogg Re=2� 1Þ
¼ 8dlogg Re þ 5 ¼ R�:

So, Lemma 2 holds in both cases.
Next, we prove Lemma 4 by using a subtle angular

argument. Fix a j � 2. We begin with the following two

simple geometric lemmas.

Lemma 5. Suppose that v and w are two distinct nodes in Ij
satisfying that kuvk � kuwk. Then, ffwuv > 36
. In addition,

for any 36
 � � < 60
,

1. If kuwk � 2gj�1 cos�, then ffwuv > arccos g
4 cos� ;

2. If kuvk � 2gj�1 cos�, then ffwuv > �.

Proof. Since v and w are two independent neighbors of u,

we have

kvwk > minfrv; rwg � minfkuvk; kuwkg ¼ kuwk:

Thus, v is outside the disk Dðw; kuwkÞ. Since
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2kuwk > 2gj�1 > gj;

the two circles @Dðu; gjÞ and @Dðw; kuwkÞ intersect. Let z
denote their intersection point which lies on the same
side of line uw as v (see Fig. 1). Then,

cos ffwuz ¼ kuzk
2kuwk <

gj

2gj�1
¼ g

2
¼ cos 36
;

which implies ffwuz > 36
. Hence,

ffwuv � ffwuz > 36


:

Clearly, ffwuv ¼ 36
 if and only if w 2 @Dðu; gj�1Þ and v is
coincide with the point z.

1) Suppose that kuwk � 2gj�1 cos�. We have

cos ffwuz ¼ kuzk
2kuwk �

gj

4gj�1 cos�
¼ g

4 cos�
;

which implies ffwuz � arccos g
4 cos� . Since v is outside the

disk Dðw; kuwkÞ, we have

ffwuv > ffwuz � arccos
g

4 cos�
:

2) Suppose that kuvk � 2gj�1 cos�. Let y be the
intersection point of the line segment vw and @Dðw;
kuwkÞ. Then,

kuyk < kuvk � 2gj�1 cos�:

So,

cos ffwuy ¼ kuyk
2kuwk <

2gj�1 cos�

2gj�1
¼ cos�;

which implies ffwuy > �. Thus, we have

ffwuv > ffwuy > �:

This completes the proof for lemma. tu
Lemma 6. Suppose that w 2 Ij and v 2 Ijþ1:

1. If kuwk � 2gj�1 cos� for some 36
 � � � arccos g
2

4 ,

then ffwuv > arccos g2

4 cos� ;
2. If kuvk � 2gj cos� for some arccos 1

g � � < 60
, then
ffwuv > arccosðg cos�Þ.

Proof. Since v and w are two independent neighbors of u
and kuvk > kuwk, we have

kvwk > minfrv; rwg � minfkuvk; kuwkg ¼ kuwk:

Thus, v is outside the disk Dðw; kuwkÞ.
1) Since

� � arccos
g2

4
;

we have

2kuwk � 4gj�1 cos� � 4gj�1 g
2

4
¼ gjþ1:

Thus, the two circles @Dðu; gjþ1Þ and @Dðw; kuwkÞ
intersect. Let z denote their intersection point which lies
on the same side of line uw as v (see Fig. 2). Since

kuwk � 2gj�1 cos�;

we have

cos ffwuz ¼ kuzk
2kuwk �

gjþ1

4gj�1 cos�
¼ g2

4 cos�
;

which implies that

ffwuz � arccos
g2

4 cos�
:

Thus,

ffwuv > ffwuz � arccos
g2

4 cos�
:

2) Since

� � arccos
1

g
;

we have

kuvk � 2gj cos� � 2gj
1

g
¼ 2gj�1 < 2kuwk:

Thus, the two circles @Dðu; kuvkÞ and @Dðw; kuwkÞ
intersect. Let y denote their intersection point which lies
on the same side of line uw as v (see Fig. 3). Since

kuvk � 2gj cos�;
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Fig. 1. v and w are two distinct nodes in Ij satisfying that kuvk � kuwk.

Fig. 2. Figure for Lemma 6(1).



we have

cos ffwuy ¼ kyuk
2kwuk <

2gj cos�

2gj�1
¼ g cos�;

which implies that

ffwuy > arccosðg cos�Þ:

Thus,

ffwuv > ffwuy > arccosðg cos�Þ:

This completes the proof for lemma. tu

We remark that Lemma 3 follows from Lemma 5
immediately. We further apply Lemma 5 to derive some
necessary conditions for jIjj ¼ 9 below.

Lemma 7. Suppose that Ij consists of nine nodes v1; v2; . . . ; v9

sorted in the increasing order of the distances from u. Then,

1. kuv1k � 2gj�1 cos 58:6
 and kuv9k � 2gj�1 cos 39
;
2. kuv2k � 2gj�1 cos 58:2
 and kuv8k � 2gj�1 cos 39:8
;
3. kuv3k � 2gj�1 cos 56:29
 and kuv7k � 2gj�1 cos 43:2
.

Proof. We will use the following fact multiple times in this
proof: Suppose that I 0 is a subset of five nodes in Ij.
Then, among five consecutive sectors centered at u

formed by the five nodes in I 0, at least one of them does
not contain any other node in Ij. This is because jIj n
I 0j ¼ 4 < 5 and hence at least one of those five sectors
does not contain any node in Ij n I 0.

1) We prove the first part of lemma by contradiction.
Assume to the contrary that either

kuv1k > 2gj�1 cos 58:6


or

kuv9k < 2gj�1 cos 39
:

We first claim that the angle separation of any two nodes
in Ij at u is greater than 39 degree. Indeed, if

kuv1k > 2gj�1 cos 58:6
;

then

kuvik > 2gj�1 cos 58:6


for all 1 � i � 9, and hence the claim holds by Lem-

ma 5(1). If

kuv9k < 2gj�1 cos 39
;

then

kuvik < 2gj�1 cos 39


for all 1 � i � 9, and hence the claim holds by Lem-

ma 5(2). So, our claim is true. We proceed in two cases.
Case 1: kuv5k � 2gj�1 cos 50
. Let vi and vk be the two

nodes in fv5; v6; . . . ; v9g such that the sector ffn viuvk
centered at u does not contain any other node in Ij.
Then, by Lemma 5(1), ffviuvk > 51
. So, the total of the
nine consecutive angles at u formed by the nodes in Ij is
greater than

51
 þ 8 � 39
 ¼ 363
 > 360
;

which is also a contradiction.
Case 2: kuv5k < 2gj�1 cos 50
. Let vi and vk be the two

nodes in fv1; v2; . . . ; v5g such that the sector ffn viuvk
centered at u does not contain any other node in Ij.
Then, by Lemma 5(2), ffviuvk > 50
. So, the total of the
nine consecutive angles at u formed by the nodes in Ij is
greater than

50
 þ 8 � 39
 ¼ 362
 > 360
;

which is a contradiction.
In either case, we have reached a contradiction.

Therefore, the first part of the lemma holds.
2) We prove the second part of the lemma by

contradiction. Assume to the contrary that either

kuv2k > 2gj�1 cos 58:2


or

kuv8k < 2gj�1 cos 39:8
:

We first claim that there exists a node va 2 Ij such that

the angle separation of any two nodes in Ij n fvag at u is
greater than 39.8 degree. Indeed, if

kuv2k > 2gj�1 cos 58:2
;

then

kuvik > 2gj�1 cos 58:2


for all 2 � i � 9, and hence the claim holds for a ¼ 1 by
Lemma 5(1). If

kuv8k < 2gj�1 cos 39:8
;

then

kuvik < 2gj�1 cos 39:8


for all 1 � i � 8, and hence the claim holds for a ¼ 9 by

Lemma 5(2). So, our claim is true. We remark that the
angle separation between va and any other node is still

greater than 36 degree. We proceed in two cases.
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Case 1: kuv5k � 2gj�1 cos 50
. Let vi and vk be the two
nodes in fv5; v6; . . . ; v9g such that the sector ffn viuvk
centered at u does not contain any other node in Ij.
Then, by Lemma 5(1), ffviuvk > 51
. Let k be the number
of consecutive angles at u formed by the nodes in Ij other
than ffviuvk with va on the boundary. Then, k � 2. So, the
total of the nine consecutive angles at u formed by the
nodes in Ij is greater than

51
 þ ð8� kÞ � 39:8
 þ k � 36


¼ 51
 þ 8 � 39:8
 � k � 3:8


� 51
 þ 8 � 39:8
 � 2 � 3:8


¼ 361: 8
 > 360
;

which is also a contradiction.
Case 2: kuv5k < 2gj�1 cos 50
. Let vi and vk be the two

nodes in fv1; v2; . . . ; v5g such that the sector ffn viuvk
centered at u does not contain any other node in Ij.
Then, by Lemma 5(2), ffviuvk > 50
. Let k be the number
of consecutive angles at u formed by the nodes in Ij other
than ffviuvk with va on the boundary. Then, k � 2. So, the
total of the nine consecutive angles at u formed by the
nodes in Ij is greater than

50
 þ ð8� kÞ � 39:8
 þ k � 36


¼ 50
 þ 8 � 39:8
 � k � 3:8


� 50
 þ 8 � 39:8
 � 2 � 3:8


¼ 360: 8
 > 360
;

which is a contradiction.
In either case, we have reached a contradiction.

Therefore, the first part of the lemma holds.
3) We prove the third part of the lemma by contra-

diction. Assume to the contrary that either

kuv3k > 2gj�1 cos 56:29


or

kuv7k < 2gj�1 cos 43:2
:

We claim that there exist two nodes va; vb 2 Ij such that

ffvauvb > 58:2
 and the angle separation at u of any two

nodes in I 0 ¼ Ij n fva; vbg is greater than 43.2 degree.

Indeed, if

kuv3k > 2gj�1 cos 56:29
;

then

kuvik > 2gj�1 cos 56:29


for all 3 � i � 9 and hence the angle separation at u of any

two nodes in Ij n fv1; v2g is greater than 43.2 degree by

Lemma 5(1). By the second part of this lemma, we have

kuv2k � 2gj�1 cos 58:2
;

which implies ffv1uv2 > 58:2
 by Lemma 5(2). Thus, the

claim holds with a ¼ 1 and b ¼ 2. Similarly, if

kuv7k > 2gj�1 cos 43:2
;

then

kuvik > 2gj�1 cos 43:2


for all 1 � i � 7 and hence the angle separation at u of any
two nodes in Ij n fv8; v9g is greater than 43.2 degree by
Lemma 5(2). By the second part of this lemma, we have

kuv8k � 2gj�1 cos 39:8
;

which implies that ffv8uv9 > 58:2
 by Lemma 5(1). Thus,
the claim holds with a ¼ 8 and b ¼ 9. So, our claim is
true. We proceed in two cases.

Case 1. The sector ffn vauvb centered at udoes not contain
any node in I 0. Then, among the nine consecutive angles
at u formed by the nodes in Ij, ffvauvb is greater than
58.2 degree, the two other angles with va and vb on the
boundary, respectively, are each greater than 36 degree,
and the rest six angles are all greater than 43.2 degree. So,
the total of these nine angles is greater than

58:2
 þ 2 � 36
 þ 6 � 43:2
 ¼ 389: 4
 > 360
;

which is a contradiction.
Case 2. The sector ffn vauvb centered at u contains at

least one node in I 0. Then, among the nine consecutive
angles at u formed by the nodes in Ij, the four angles
with va and vb on the boundary, respectively, are each
greater than 36 degree, and the rest five angles are all
greater than 43.2 degree. So, the total of these nine angles
is greater than

4 � 36
 þ 5 � 43:2
 ¼ 360
;

which is also a contradiction.
In either case, we have reached a contradiction.

Therefore, the first part of the lemma holds. tu

Now, are ready to prove Lemma 4. Assume to the
contrary that jIj [ Ijþ1j ¼ l � 17. Let

Ij [ Ijþ1 ¼ fvi : 1 � i � lg;

where v1; v2; . . . ; vl are sorted in the increasing order of the
distances from the node u. By Lemma 3, we have

maxfjIjj; jIjþ1jg � 9:

Since l � 17, we must have

maxfjIjj; jIjþ1jg ¼ 9;

minfjIjj; jIjþ1jg � 8:

We consider two cases:
Case 1: jIjj ¼ 9. Then, jIjþ1j � 8. By Lemma 7, we have

kuv7k � 2gj�1 cos 43:2
:

Let J ¼ fv7; v8; v9g. By Lemma 5(1), the angle separation
between any two nodes in J at u is greater than 56.29 degree.
We further consider two subcases:

Subcase 1.1. There exist two nodes va; vb 2 J such that
the sector ffn vauvb centered at u does not contain any node in
Ijþ1 (see Fig. 4). Let vi and vk be the two nodes in Ijþ1 such
that the sector ffn viuvk contains va and vb but does not
contain any other node in Ijþ1, and vi; va; vb, and vk are in
the clockwise direction with respect to u. By Lemma 6(1),

WANG ET AL.: MINIMUM CDS IN MULTIHOP WIRELESS NETWORKS WITH DISPARATE COMMUNICATION RANGES 913



minfffvkuvb; ffvauvig > 26
:

Thus,

ffvkuvb þ ffvbuva þ ffvauvi
> 2 � 26
 þ 56:29


¼ 108:29
:

Hence, the total of the jIjþ1j consecutive angles at u formed

by the nodes in Ijþ1 is greater than

108:29
 þ ðjIjþ1j � 1Þ � 36


� 108:29
 þ 7 � 36
 ¼ 360: 29


> 360
;

which is a contradiction.
Subcase 1.2. For any two nodes va; vb 2 J , the sector

ffn vauvb centered at u contains at least one node in Ijþ1 (see

Fig. 5). For each a ¼ 7, 8, and 9, let v0a; v
00
a 2 Ijþ1 satisfying that

va is the only node contained in the sector ffn v0auv00a centered at

u among all the nodes in Ijþ1 [ J . Then, by Lemmas 6(1) and

7, we have

minfffv07uv7; ffv7uv
00
7g > 26
;

minfffv08uv8; ffv8uv
00
8g > 31:5
;

minfffv09uv9; ffv9uv
00
9g > 32:5
:

Thus,

ffv07uv007 þ ffv08uv008 þ ffv09uv009
> 2 � ð26
 þ 31:5
 þ 32:5
Þ
¼ 180
:

Hence, the total of the jIjþ1j consecutive angles at u formed

by the nodes in Ijþ1 is greater than

180
 þ ðjIjþ1j � 3Þ � 36


� 180
 þ 5 � 36
 ¼ 360
;

which is a contradiction.
Case 2: jIjj ¼ 8. Then, jIjþ1j ¼ 9. By Lemma 7, we have

kuv11k � 2gj cos 56:29
:

Let J ¼ fv9; v10; v11g. By Lemma 5(2), the angle separation

between any two nodes in J at u is greater than 56.29 degrees.

We further consider two subcases:
Subcase 2.1. There exist two nodes va; vb 2 J such that

the sector ffn vauvb centered at u does not contain any node in

Ij (see Fig. 6). Let vi and vk be the two nodes in Ij such that

the sector ffn viuvk contains va and vb but does not contain any

other node in Ij, and vi; va; vb, and vk are in the clockwise

direction with respect to u. By Lemma 6(2),

minfffvkuvb; ffvauvig > 26
:

Thus,

ffvkuvb þ ffvbuva þ ffvauvi
> 2 � 26
 þ 56:29


¼ 108:29
:

Hence, the total of the eight consecutive angles at u formed

by the nodes in Ij is greater than

108:29
 þ 7 � 36
 ¼ 360: 29
 > 360
;

which is a contradiction.
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Fig. 4. Figure for Subcase 1.1: a sector ffn vauvb for a; b 2 f7; 8; 9g does
not contain any node in Ijþ1.

Fig. 5. Figure for Subcase 1.2: every sector ffn vauvb for each a ¼ 7, 8,
and 9 contains a node in Ijþ1.

Fig. 6. Figure for Subcase 2.1: a sector ffn vauvb for a; b 2 f9; 10; 11g does
not contain any node in Ij.



Subcase 2.2. For any two nodes va; vb 2 J , the sector
ffn vauvb centered at u contains at least one node in Ij (see
Fig. 7). For each a ¼ 9, 10, and 11, let v0a; v

00
a 2 Ij satisfying

that va is the only node contained in the sector ffn v0auv00a
centered at u among all the nodes in Ij [ J . Then, by
Lemmas 6(2) and 7, we have

minfffv09uv9; ffv9uv
00
9g > 32:5
;

minfffv010uv10; ffv10uv
00
10g > 31:5
;

minfffv011uv11; ffv11uv
00
11g > 26
:

Thus,

ffv09uv009 þ ffv010uv
00
10 þ ffv011uv

00
11

> 2 � ð32:5
 þ þ31:5
 þ 26
Þ
¼ 180
:

Hence, the total of the eight consecutive angles at u formed
by the nodes in Ij is greater than

180
 þ 5 � 36
 ¼ 360
;

which is a contradiction.
Thus, in every case, we have reached a contradiction. So,

we must have jIj [ Ijþ1j � 16. This completes the proof of
Lemma 4.

3 GREEDY APPROXIMATION ALGORITHM FOR

MCDS

In this section, we present a greedy algorithm adapted
from the two-phased greedy approximation algorithm
originally proposed in [8] for computing a CDS in a
multihop wireless network with uniform communication
ranges to multihop wireless networks with disparate
communication ranges.

The greedy algorithm consists of two phases. The first
phase selects a maximal independent set (MIS) I of G.
Specifically, we construct an arbitrary rooted spanning tree
T of G, and select an MIS I of G in the first-fit manner in
the breadth-first-search ordering in T . The second phase

selects a set C of connectors to interconnect I. For any

subset U � V n I, fðUÞ denotes the number of connected
components in G½I [ U �. For any U � V n I and any

w 2 V n I, the gain of w with respect to U is defined to be

fðUÞ � fðU [ fwgÞ. The second phase greedily selects C

iteratively as follows: Initially C is empty. While fðCÞ > 1,

choose a node w 2 V n ðI [ CÞ with maximum gain with
respect to C and add w to C. When fðCÞ ¼ 1, then I [ C is

a CDS. Let C be the output of the second phase. Then,

I [ C is the output CDS.
The correctness of the second phase follows from the

following bound on the gain established in [8].

Lemma 8. Suppose that there are fðUÞ > 1 for some U � V n I.

Then, there exists a w 2 V n ðI [ UÞ whose gain with respect

to U is at least

maxf1; dfðUÞ=�ce � 1g:

We apply the above lemma to derive the following upper

bound on jCj.
Lemma 9. jCj � ðlnðR� � 2Þ þ 2Þ�c.
Proof. For each 1 � i � jCj, we denote by Ci the sequence of

the first i nodes in C. We also set C0 ¼ ;. Let k be the first
(smallest) nonnegative integer such that

fðCkÞ < 2�c þ 2:

We claim that

jC n Ckj � 2�c � 1:

By Lemma 8, each node in C n Ck has gain at least one. If

fðCkÞ � 2�c, then

jC n Ckj � fðCkÞ � 1 � 2�c � 1:

If fðCkÞ ¼ 2�c þ 1, then the first node in C n Ck has gain

at least two with respect to Ck by Lemma 8, and hence

2þ ðjC n Ckj � 1Þ � fðCkÞ � 1 ¼ 2�c;

which also implies that

jC n Ckj � 2�c � 1:

Thus, the claim holds.
The previous claim implies that

jCj ¼ kþ jC n Ckj
� kþ 2�c � 1

¼ ðk� 1Þ þ 2�c:

Thus, it is sufficient to show that

k� 1 � �c lnð�� 2Þ:

This inequality holds trivially if k � 1. So, we assume

that k > 1. For each 0 � i � k, let

‘i ¼ fðCiÞ � �c:

Then,

jIj � �c ¼ ‘0 > ‘1 > � � � > ‘k � �c þ 2:

By Lemma 8, for each 0 � i � k,
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Fig. 7. Figure for Subcase 2.2: every sector ffn vauvb for each a ¼ 9, 10,

and 11 contains a node in Ij.



‘i�1 � ‘i ¼ fðCi�1Þ � fðCiÞ

� fðCi�1Þ
�c

� 1

¼ ‘i�1

�c
;

and hence

‘i�1 � ‘i
‘i�1

� 1

�c
:

Therefore,

k

�c
�
Xk
i¼1

‘i�1 � ‘i
‘i�1

� ln
‘0

‘k

� ln
jIj � �c
�c þ 2

:

By Theorem 1,

jIj � �c
�c þ 2

� ðR
� � 1Þ�c þ 1� �c

�c þ 2

¼ ðR
� � 2Þ�c þ 1

�c þ 2

� R� � 2:

Thus,

k

�c
� lnðR� � 2Þ;

which implies

k � �c lnðR� � 2Þ:

This completes the proof of the lemma. tu
From Theorem 1 and Lemma 9, we obtain the following

bound on the size of the CDS output by the greedy algorithm.

Theorem 10. jI [ Cj � ðR� þ lnðR� � 2Þ þ 1Þ�c þ 1.

4 DISCUSSION

The relation between the independence number � and the

connected domination number �c plays a key role in

deriving the approximation bounds of various two-phased

greedy approximation algorithms adapted for MCDS of

multihop wireless networks with disparate communication

ranges [6], [8], [9]. In this paper, we first proved that

� � ðR� � 1Þ�c þ 1, where R� ¼ 5þ 8dlogg Re for any R � 1.

From this relation, we then derived an approximation bound

R� þ lnðR� � 2Þ þ 1 of the two-phased greedy approxima-

tion algorithm adapted from [8]. This approximation bound

is better than the known ones obtained in [6] and [9].
Tighter relation between � and �c may be derived with

more sophisticated analyses. A possible approach of

obtaining tighter relation between � and �c is to develop a

tighter bound on the number of independent nodes that can

be packed in the neighborhood of a pair of adjacent nodes.

An attempt along this approach has been made in [9], but

the argument in [9] contains a critical error. However, we

do believe that this approach is very promising to achieve
tighter relation between � and �c.
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