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Barrier Coverage by Sensors with Adjustable Ranges
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One of the most fundamental tasks of wireless sensor networks is to provide coverage of the deployment
region. We study the coverage of a line interval with a set of wireless sensors with adjustable coverage
ranges. Each coverage range of a sensor is an interval centered at that sensor whose length is decided by
the power the sensor chooses. The objective is to find a range assignment with the minimum cost. There
are two variants of the optimization problem. In the discrete variant, each sensor can only choose from a
finite set of powers, whereas in the continuous variant, each sensor can choose power from a given interval.
For the discrete variant of the problem, a polynomial-time exact algorithm is designed. For the continuous
variant of the problem, NP-hardness of the problem is proved and followed by an ILP formulation. Then,
constant-approximation algorithms are designed when the cost for all sensors is proportional to rκ for some
constant κ ≥ 1, where r is the covering radius corresponding to the chosen power. Specifically, if κ = 1, we
give a 1.25-approximation algorithm and a fully polynomial-time approximation scheme; if κ > 1, we give a
2-approximation algorithm. We also show that the approximation analyses are tight.
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1. INTRODUCTION

One of the most fundamental tasks of wireless sensor networks is to provide coverage
of the deployment region. In applications like highway monitoring, tunnel monitoring,
and seaway monitoring, the deployment region can be abstracted as a line interval.
In these monitoring tasks, although the sensors can be predeployed according to some
pattern to optimize certain performance, some sensors may malfunction due to various
reasons. Hence, at a certain moment, the distances between sensors do not follow any
pattern anymore, but the positions of workable sensors are still known to us. We aim
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to design coverage solutions that only use those workable sensors. Furthermore, the
unanticipated malfunction of sensors makes the solutions for instant energy minimiza-
tion more useful than maximizing coverage lifetime.

In this article, we study the coverage of a line interval I by a set V of wireless
sensors with adjustable coverage ranges. Each sensor v has a set R (v) of possible
coverage radii. For each r ∈ R (v), the coverage range of v is the interval C (v, r) of
length 2r centered at v, and its associated cost is c (v, r). The cost is proportional to
rκ , where κ is the path-loss exponent (a constant between 2 and 5 depending on the
wireless environment). According to different targeted monitoring quality, the cost can
be adjusted further. For example, the mean power assignment used by Wan et al. [2012]
can cut the exponent κ in half, resulting in a range of [1, 2.5]. Therefore, it is worthwhile
exploring the coverage problem with κ ∈ [1, 2.5]. For simplicity of treatment, we assume
that for each sensor v, 0 ∈ R (v) and c (v, 0) = 0. The objective is to choose a coverage
radius r (v) ∈ R (v) for each sensor v ∈ V such that

I ⊆ ⋃
v∈V

C (v, r (v))

and
∑

v∈V c (v, r (v)) is minimized. This optimization problem is referred to as min-cost
linear coverage (MCLC).

We consider two variants of MCLC. In the discrete variant, R (v) is finite for each sen-
sor v ∈ V ; in the continuous variant, R (v) is a finite interval for each sensor v ∈ V . For
the discrete variant of MCLC, we present a polynomial-time exact algorithm to com-
pute the optimal solution. For the continuous variant of MCLC, we develop constant-
approximation algorithms when the cost c (v, r) for all sensors v ∈ V is proportional to
rκ for some constant κ ≥ 1. Specifically, if κ = 1, we give a 1.25-approximation algo-
rithm and a fully polynomial-time approximation scheme (FPTAS); if κ > 1, we give a
simple 2-approximation algorithm.

Related works. Most prior works on wireless sensor coverage assume that each sensor
has a fixed circular coverage. For this setting, the coverage of the deployment region
can be reduced to the coverage of a finite number of representative points referred to
as targets. The problem min-weight disk cover seeks a subset of given disks with the
smallest cost to cover the targets. For the special case in which all disks have the same
radii normalized to one, the problem min-weight disk cover is known as min-weight
unit-disk cover. A series of successively improved approximation algorithms for the
unweighted variant of min-weight unit-disk cover were developed in Brönnimann and
Goodrich [1995], Călinescu et al. [2004], Narayanappa and Vojtechovský [2006], and
Carmi et al. [2007], and the best one among them has an approximation ratio of 38
[Carmi et al. 2007], where the points to cover are given as input. Subsequently, a series
of successively improved constant-approximation algorithms for min-weight unit-disk
cover were developed in Ambuhl et al. [2006], Huang et al. [2009], Dai and Yu [2009],
Zou et al. [2009], and Erlebach and Mihalák [2010]. Among them, the best one is a
(4 + ε)-approximation algorithm (here, there is a unit disk centered at every input
point), which was first presented in Zou et al. [2009] and rediscovered in Erlebach
and Mihalák [2010]. Recently, Wan et al. [2011] developed a PTAS for the unweighted
variant of min-weight disk cover, a randomized 2O(log∗ n)-approximation for the weighted
variant for the general min-weight disk cover, where log∗ n is the iterated logarithm of
n with base 2. Other variants of disk coverage problems have been studied in Abrams
et al. [2004], Gonzalez [1991], Hochbaum and Maass [1985], Wang and Zhong [2006],
and Yun et al. [2010]. In addition to these algorithmic studies, the probabilistic aspects
of wireless coverage have been studied in Hou et al. [2009] and Wan and Yi [2006].

When the coverage target is a line interval, it is usually called barrier coverage. Along
this direction, various works have been done. If sensors are allowed to move, Czyzowicz
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et al. [2009] studied the objective of minimizing the maximum sensor movement to
achieve the coverage. They proposed an O(n2) algorithm to compute the optimal move-
ment of sensors when all the sensors have the same sensing range. Recently, Chen et al.
[2013] improved the complexity to O(n log n) and also designed an O(n2 log n) algorithm
to compute the optimal movement for sensors with arbitrary ranges. Czyzowicz et al.
[2010] considered covering a line interval with the goal of minimizing the sum of dis-
tances traveled by all the sensors. Mehrandish et al. [2011] considered the objective of
minimizing the number of sensors that must move to cover the barrier. Bar-Noy and
Baumer [2011] studied the lifetime maximization problem when sensors can adjust
their ranges. Then, Bar-Noy et al. [2012] studied another lifetime maximization prob-
lem when all sensors can be activated only once. In the most recent paper by Bar-Noy
et al. [2013], they introduced a parameter a to beautifully connect sensors’ ability to
move and adjust ranges, and obtained profound theoretical results to maximize the
network lifetime.

In the following discussion, we study the problem of covering a line interval us-
ing immobile sensors. Suppose that n sensors are distributed on a line at positions
{x1, x2, . . . , xn} (xi ≤ xi+1 for 1 ≤ i ≤ n − 1). We want to assign each sensor a power so
that each point in the whole line interval can be covered by at least one sensor; the
objective is to minimize the total energy consumption of the sensors, which is the dual
problem of the lifetime maximization problem studied by Bar-Noy and Baumer [2011].
We divide our discussion into two parts based on whether the different powers that a
sensor can choose are either finite (as input) or arbitrary.

2. FINITE CHOICES OF POWERS

A sensor usually is equipped with an eight-bit register to memorize the power at which
it is working. Therefore, it is reasonable to assume that each sensor can choose to work
at one power selected from a set {P1, P2, . . . , Pk}. If a sensor chooses power P j and
locates at xi, then it can cover the interval [xi − r j, xi + r j]. Denote the power chosen by
sensor at xi as P ji . We want to minimize

∑n
i=1 P ji while guaranteeing that any point in

the interval [0, m] can be covered by at least one sensor. Here, m is an integer greater
than 1.

To solve this problem, we construct a corresponding directed weighted graph G =
(V, E, c) as follows. The node set V = {vi j |1 ≤ i ≤ n, 1 ≤ j ≤ k} ∪ {s, t}, where s
represents position 0, t represents position m, and vi j means that the sensor at position
xi chooses power P j . Initially, let E = ∅. Add a directed edge e = (s, vi j) into E if and
only if r j ≥ xi, and assign c(e) = 0; add a directed edge e = (vi j, t) into E if and only if
xi + r j ≥ m, and assign c(e) = P j ; add a directed edge e = (vi j, vab) into E if and only
if xa > xi and r j + rb ≥ xa − xi, and assign c(e) = P j . We set c(e) to be 0 for edges that
are connected to s to avoid double counting the power of the left-most sensor. Now the
power minimization problem is equivalent to finding a shortest path from s to t in graph
G, because a path in G corresponds to one coverage solution for the interval [0, m] and
the weight summation along that path is the power consumed by that solution.

Since the graph G has kn + 2 nodes in total, which is polynomial in k and n, the
shortest path algorithm can be done in polynomial time.

3. ARBITRARY CHOICE OF POWERS

When the sensors can choose to work at any power, then the energy minimization
problem to maintain the coverage of the line becomes difficult. First, we introduce the
problem statement as follows.

We put n sensors μ1, μ2, . . . , μn in the interval [0, m] and suppose that x1, x2, . . . xn
are their coordinates, respectively. Additionally, let x0 = 0 and xn+1 = m. Each sensor
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Table I. Notations and Meaning

Notations Meaning
n Number of sensors
μi Sensor i
m Right-most position of the interval I
xi Coordinate of sensor i
ri Radius of sensor i
ri Range of sensor i
R Range assignment
C(R),R Cost of R
κ Power ratio (a positive constant)
R∗ Optimal range assignment
R∗ Cost of the optimal assignment
ri

∗ Range of sensor i in optimal solution (R∗)
di i-th segment
di Length of i-th segment (di)
Sk

∑n+1
i=1 dκ

i

xW Coordinate of point W in the interval
S1 The total length of all segments when κ = 1 (

∑n+1
i=1 di)

P The left-most point of the line interval I.
Q The right-most point of the line interval I.

μi has a transmission radius ri. We define ri = [xi − ri, xi + ri] as μi ’s range. If ri > 0,
we say that μi is chosen and range ri is nontrivial. In the following, whenever we say
“range,” we mean nontrivial ranges. For any point x in [0, m], we say that ri covers x if
and only if |x − xi| ≤ ri.

Define R = (r1, r2, . . . , rn) as a range assignment of [0, m] if ∀x ∈ [0, m], there exists
an ri that covers x. The cost of R is defined to be C(R) = ∑n

i=1 rκ
i , where κ is a positive

constant. We also use R to represent C(R). If a range assignment has the minimal
cost among all possible assignments, then we say that this assignment is the optimal
assignment and denote it by R∗ = (r∗

1, r∗
2, . . . , r∗

n).
We say that di = (xi−1, xi) is the i-th segment for i = 1, 2, . . . , n + 1 and use di to

denote xi − xi−1. If some ri covers every point in a segment d j (∀ j ∈ {1, 2, . . . , n + 1}),
we say that ri covers d j . We call that ri partly covers d j if ri covers partial points in
segment d j .

Let Sκ = ∑n+1
i=1 dκ

i . In this article, we use xW to denote the coordinate of any point W
in [0, m].

3.1. κ = 1

In this section, we study the problem when κ = 1. We first prove the NP-hardness of
the problem. Then, we give an ILP formulation of the problem and discuss possible
approximations.

3.1.1. NP-Hardness. We make a reduction from the Partition problem to our problem.
Define S(A) = ∑

a∈A a.
Partition problem: Given a set of integers I = {a1, a2, . . . , an}, the objective is to find

a subset A ⊆ I so that
∑

ai∈A ai = 1
2

∑n
i=1 ai.

Given a Partition problem with the preceding specified input, we construct an
instance of our problem as follows. Define εi = ai

(n+1) max aj
and θ = 3. Let I2 =

{θ, θ2, . . . , θn, θ − ε1, θ
2 − ε2, . . . , θ

n − εn}. We put 2n sensors on the line with di = θ i
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Fig. 1. Transformed instance. There are 2n sensors on the line with di = θ i if i ≤ n and di = θ2n+1−i −ε2n+1−i
if n < i ≤ 2n.

if i ≤ n and di = θ2n+1−i − ε2n+1−i if n < i ≤ 2n, as shown in Figure 1. Let m be at the
position of the right-most sensor, which implies that m = S(I2).

First, we will show that dividing I2 into two disjoint sets B and I2 − B with equal sum
directly corresponds to a solution for the Partition problem and vice versa. To show
this, it is sufficient to prove that if S(B) = S(I2 − B) = 1

2 S(I2), then exactly one element
in the pair (θ i, θ i − εi) is in B and the other element is in I2 − B (because that will force
θ j to appear exactly once in both S(B) and S(I2 − B), which will then imply that the
summation of ε’s in both B and I2 − B be the same, leading to a corresponding solution
for the Partition problem). Suppose on the contrary that it is not true, then define imax
to be the largest i, where both θ i and θ i − εi are in B. Without loss of generality, assume
that for every imax < j ≤ n, exactly one element in the pair (θ j, θ j − ε j) is in B. Then,

S(B) ≥
n∑

j=imax

(
θ j − ε j

) + θ imax .

Since

θ imax >

imax−1∑
j=1

θ j + 1

and n∑
j=1

ε j < 1,

we have

S(B) >

n∑
j=1

θ j >
1
2

S(I2),

which is a contradiction.
Then, we will show that I2 can be partitioned into two disjoint equal-sum sets if and

only if our problem has a solution with cost m/2.
For the if direction, since the total cost is m/2, we know that there is no overlap

between any two chosen ranges. Suppose that μi1 , μi2 , . . . , μik are sensors chosen from
left to right in the optimal assignment. We have

ri1 = d1 + · · · + di1 ;
ri1 + ri2 = di1+1 + · · · + di2 ;
. . .
rik−1 + rik = dik−1+1 + · · · + dik;
rik = dik+1 + · · · + d2n.

The dj ’s appearing in alternative lines exactly add up to
∑k

j=1 rij = m/2. This maps
to a solution for partitioning I2.

For the only if direction, for all the items selected into B, we combine those cor-
responding segments into sup-segments according to their adjacency relationship as
shown in Figure 2.

We also use D1, D2, . . . , Dk to denote the lengths of these sup-segments if the context
is clear. Without loss of generality, we assume that D1 does not touch point 0. For items
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Fig. 2. Sup-segments. We merge successive subsegments that belong to the same set into sup-segments Ei
and Di . Ei and Di will also be used to represent the lengths of the corresponding sup-segments if the context
is clear.

not selected into B, we can do similar merging to get sup-segments E0, E1, . . . , Ek, where
Ek is optional depending on the configuration. We also use E0, E1, . . . , Ek to represent
the lengths of the corresponding sup-segments if the context is clear. Two groups of
sup-segments alternate on the line as shown in Figure 2. We have

k∑
i=1

Di =
k∑

i=0

Ei = m/2.

Notice that the end points of Di are all sensors. Define rui and rvi to be the ranges of
left and right end points of Di for each i = 1, 2, . . . , k.

Let i0 = argmax1≤i≤kDi, j0 = argmax0≤ j≤kEj .
In our transformed instance, θn and θn − εn are two adjacent longest segments that

are longer than the summation of all segments on their left or on their right. Further,
by the previous discussion that one element in pair (θn, θn − εn) is in B and the other
one is in I2 − B, we know that to ensure

∑k
i=1 Di = ∑k

i=0 Ei = m/2, one element in pair
(θn, θn − εn) must be in Di0 and the other one must be in Ej0 . Therefore, we know that
either j0 = i0 − 1 or j0 = i0.

Case 1: j0 = i0 − 1
Let ru1 = E0 and rv1 = D1 − ru1 .
For each 2 ≤ i < i0, let rui = Ei−1 − rvi−1 and rvi = Di − rui .
Let rvk = Ek and ruk = Dk − rvk.
For each i0 ≤ i < k, let rvi = Ei − rui+1 and rui = Di − rvi .
Notice that according to the length assignment, for each i < i0, we have

Di >

i−1∑
l=1

(Dl + El) + E0,

and for each i ≥ i0, we have

Di >

k∑
l = i+1

(Dl + El).

On the other hand, for each j ≤ j0, we have

Ej >

j−1∑
l=1

(Dl + El),

and for each j > j0, we have

Ej >

k∑
l= j+1

(Dj + El).

Therefore, for each i, we have rui > 0, rvi > 0.
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From these equalities, we have

rvi0−1 + rui0
− Ei0−1 =

k∑
i=1

Di −
k∑

i=1

Ei = 0,

which means that the sup-segment Ej0 is totally covered like all of the other sup-
segments.

Therefore, R = (ru1, rv1 , ru2 , rv1 , . . . , ruk , rvk ) covers each point in [0, m], and the cost

R =
k∑

i=1

(rui + rvi ) = m/2.

Thus, R is the optimal solution.
Case 2: j0 = i0
The proof of this case is similar to Case 1.

3.1.2. ILP Formulation. We put two virtual sensors, μ0 and μn+1, on 0 and m, which are
chosen by default and have r0 = rn+1 = 0 in any assignment. We use yi to represent
whether sensor μi is chosen in the assignment (yi = 1 if μi is chosen and yi = 0
otherwise). Let y0 = yn+1 = 1. We use fij to represent the adjacency relationship of
the chosen sensors: fij = 1 if μ j is chosen, and μi is the closest sensor chosen in the
assignment on the left of μ j and fij = 0 otherwise.

Suppose that in the optimal assignment, we choose k sensors from μ1, μ2, . . . , μn,
then we have k + 1 of the fij ’s being 1, which gives the following constraint:

∑
0≤i< j≤n+1

fij =
n∑

i=1

yi + 1. (1)

For any μi (1 ≤ i ≤ n), on its left and right, there is one closest chosen sensor,
respectively, which gives us the following constraints:∑

0≤t<i
fti = yi∑

i<s≤n+1
fis = yi. (2)

To cover the whole interval [0, m], we should have ri + rj ≥ xj − xi if fij = 1, which
gives us the following constraint:

ri + rj ≥ xj − xi + ( fij − 1)m. (3)

Finally, we have additional constraints as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y0 = 1
yn+1 = 1
yi = 0 or 1 for 1 ≤ i ≤ n
r0 = 0
rn+1 = 0
ri ≥ 0 for 1 ≤ i ≤ n.

(4)

The objective of the ILP is to minimize
∑

1≤i≤n ri.
Next we prove some lemmas about the relation between R∗ and segments.

LEMMA 3.1. In the optimal range assignment R∗ = (r∗
1, r∗

2, . . . , r∗
n), there are at most

two ranges that partly cover di ∀i = 1, 2, . . . , n + 1.
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Fig. 3. The relative position of a, b, and c.

PROOF. We prove this lemma by contradiction. Suppose that there are more than
two ranges that partly cover di in the optimal assignment. Then, among those sensors
whose ranges partly cover di, there are at least two sensors on the same side of this
segment. Without loss of generality, we assume that μA and μB are on the left side of
di and xA < xB.

If xA + rA ≥ xB+rB, then we can remove sensor μB, which contradicts the assumption
that this assignment is optimal.

If xA + rA < xB + rB, then we can get a new assignment with r′
A = rB + (xB − xA) and

r′
B = 0. It is easy to see that sensor μA with new range r′

A can cover what the original
μA and μB cover. Since rA > xB − xA, we get r′

A + r′
B = rB + (xB − xA) < rB + rA, which

contradicts our assumption that this assignment is optimal.
Therefore, for each segment di, there are at most two ranges that partially cover

it.

LEMMA 3.2. ∀i ∈ {1, 2, . . . , n+ 1}, R∗ ≥ di, and especially, if there exists some di ≥ S1/2,
then we have R∗ = di.

PROOF. By Lemma 3.1, there are at most two ranges that partly cover di in R∗.
Suppose that ri1 and ri2 partly cover di. Let ri1 cover a length L1 in di (ri1 ≥ L1), and
ri2 must cover a length L2 = di − L1 in di (ri2 ≥ L2). Therefore,

R∗ ≥ ri1 + ri2 ≥ L1 + L2 = di.

If there exists some di ≥ S1/2, let ri−1 = xi−1, ri = di − xi−1, r1 = r2 = · · · = ri−2 =
ri+1 = · · · = rn = 0, then (r1, r2, . . . , rn) is an assignment with total cost di. Hence,
R∗ ≤ di. On the other hand, we already proved that R∗ ≥ di. Therefore, we have
R∗ = di.

LEMMA 3.3. Let a, b, c ∈ {di, i = 1, 2, . . . , n+ 1} (their locations are shown in Figure 3),
we use a, b, c to denote their lengths. Sort a, b, c to an ordered sequence X3 ≤ X2 ≤ X1,
then we have R∗ ≥ max(X1, X2 + X3).

PROOF. If X1 ≥ X2 + X3, then we have R ≥ X1 = max(X2 + X3, X1) by Lemma 3.2.
If X1 < X3 + X2, since there are at most two ranges that cover a in R∗ by Lemma 3.1,
we suppose that ri1 and ri2 cover a from left and right, respectively. By symmetry, we
assume that ri1 > 0. Then, we need to discuss two cases as follows:

Case 1: ri2 = 0.
Case 2: ri2 > 0.
To prove the lemma, it is sufficient to prove that R∗ ≥ a+b or R∗ ≥ b+c or R∗ ≥ a+c.
For Case 1, if ri1 also partly covers c, then ri1 covers a and b, so

R∗ ≥ ri1 ≥ a + b.

Otherwise (ri1 does not cover any point in c), we need ri3 ≥ c to cover c (ri3 is different
from ri1 and ri2) or two other ranges with the summation of radius larger than c to
cover c, then

R∗ ≥ ri1 + c ≥ a + c.

For Case 2, ri1 + ri2 ≥ a, if ri2 does not cover any point in c, we need ri3 ≥ c to cover
c (ri3 is different from ri1 and ri2), then

R∗ ≥ ri1 + ri2 + ri3 ≥ a + c.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 14, Publication date: July 2014.
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Fig. 4. Rl process illustration. Sensors are chosen from left to right. First, we choose the left-most sensor,
which is A. The dashed circle centered at A is the area covered by A. Then, we choose the left-most sensor
that is out of A’s range, which is C. Next, we choose sensor E following the same process. After choosing
E, we extend the default radius that covers the remaining part on the left to a radius that can cover the
right-most point of the interval and then finish the whole process.

Otherwise (ri2 also partly covers c) ri2 cover b, if ri2 covers b from left, let ri2 and ri3
cover b and c (ri2 is different from ri3), then

R∗ ≥ ri2 + ri3 ≥ b + c.

Otherwise, if ri2 covers b from right, then ri1 and ri2 cover a and b, which implies

R∗ ≥ ri1 + ri2 ≥ a + b.

We now design an algorithm to approximate R∗.
First, we define three candidate range assignments. Recall that S1 = ∑n+1

i=1 di. For the
first range assignment, we search from the left of the axis and let r1 = d1. Then, the first
range covers the region [0, 2r1]. If 2r1 is larger than or equal to S1, we stop the search.
Otherwise, we can find the smallest integer i2, 2 ≤ i2 ≤ n, satisfying xi2−1 ≤ 2r1 < xi2
(in other words, it is the first sensor on the right of the already covered part). The next
range will start from 2r1, using sensor μi2,

and let ri2 = xi2 −2r1 so that the new coverage
does not overlap with the previous one. The search will stop if xi2 + ri2 ≥ S1. Otherwise,
we can find the smallest integer i3, satisfying xi3−1 ≤ xi2 + ri2 < xi3 · · · . We continue the
process until there is no sensor on the right of the covered interval. If at this moment
the whole interval [0, m] is covered, we stop the algorithm. Otherwise, suppose that
μi j is the sensor we found in the last round, then let rij = S1 − xij . We have a range
assignment Rl with cost Rl = ∑ j

k=1 rik. An intuitive example is shown in Figure 4.
If we search from right to left using the same method, we get a range assignment Rr

with cost Rr.
We design the third range assignment as follows. Let k = argmini(|xi − S1/2|). If

xk ≤ S1/2, let rk = S1 − xk; otherwise, let rk = xk. We denote this range assignment as
Rc with cost Rc = rk.

Among the three range assignments, we choose the one with the minimum cost as
the output of our algorithm R′

.
We prove the following theorem.

THEOREM 3.4. The range assignment R′ is a 5
4 -approximation.

PROOF. By Lemma 3.2, if there exists one di ≥ S1/2, then we can easily find the opti-
mal solution. Therefore, we assume that di < S1/2 for all i in the following discussion.
Denote P and Q as the left-most point and right-most point of the line interval I.
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If there exists a sensor in the region [ 3
8 S1,

5
8 S1], then Rc ≤ 5

8 S1, which implies

R′ ≤ 5
4

S1/2 ≤ 5
4

R∗.

Otherwise, there is no sensor in [ 3
8 S1,

5
8 S1], which means that there exists a segment

that is larger than S1
4 in the “center” of PQ. Suppose that B1, B2 are the left and right

end points of the segment. We divide the proof into three cases.
Case 1: There is no other segment whose length is at least S1

4 .
Define b = |B1 B2|, a = |PB1|, and c = |B2 Q|. Since b < S1/2, we have

a + c = S1 − b > S1/2.

Without loss of generality, suppose that c > S1
4 . We consider the range assignment Rl.

Since there is no other segment with length at least S1
4 , the sensor μ j at B2 must be

chosen to cover part of segment B1 B2 because the previous choice of active sensors in
assignment Rl have radii smaller than S1

4 . Furthermore, we have rj ≤ b. Considering
the last range that may go beyond Q or cause some overlap of coverage, we have

2Rl ≤ S1 + max(rj − c, c − r′
j, ri) ≤ S1 + max(b − c, ri),

where the term rj − c corresponds to the case when μ j is the last sensor chosen in Rl
and the coverage extends to the right of point Q, c − r′

j corresponds to the case when
μ j is the last sensor chosen in Rl but covering the remaining part on the left of B2 is
not sufficient to reach point Q (in this case, we use r′

j to represent the radius that is
sufficient to cover the remaining part on the left of B2 and therefore sensor μ j needs to
use a radius rj larger than r′

j by c−r′
j , causing an overlap of coverage with length c−r′

j ,
and since there is no other segment larger than S1/4 in c, we know that c − r′

j ≤ S1/4),
and ri corresponds to the case when some sensor μi instead of μ j is the last sensor
chosen in Rl.

Since b − c < S1/2 − S1/4 = S1/4 and ri < S1/4 because no other segment on the
right of B2 is larger than S1/4, we have

2Rl ≤ 5
4

S1.

Therefore, we have

R′ ≤ 5
4

R∗.

Case 2: There is only one other segment that is at least S1
4 .

Let A1,A2 be the left and right end points of this segment. Because we consider both
Rl and Rr, without loss of generality, we suppose that [A1, A2] locates in the region
[0, 3S1

8 ). Since xA2 < 3S1
8 , we have

xA1 <
S1

8
.

If we use Rl, there exists a range r j that partly covers A1 A2 from the left, and rj < S1
8 .

It is easy to see that

xA2 + rA2 ≥ S1

2
.

Therefore, the range rA2 at least partly covers [B1, B2].
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If the range rA2 totally covers [B1, B2] or the range rA2 partly covers [B1, B2] but
xB2 + rB2 ≤ S1, more sensors are needed to cover the whole interval. We assume that μi

is the last sensor chosen. Since no more segment is at least S1
4 on the right of B2, we have

ri < S1
4 no matter whether μi uses the radius sufficient to cover the remaining uncovered

part on its left or extending that to cover point Q. Then, 2Rl ≤ S1+ri < S1+S1/4 = 5
4 S1.

Otherwise, the sensor at B2 is chosen and xB2 + rB2 > S1. Since

S1

4
< |B1 B2| <

S1

2
,

we have

xB2 <
7S1

8
.

Furthermore, because

xB2 >
5S1

8
,

we have

rB2 < S1 − 5S1

8
= 3S1

8
.

Therefore, we have

2Rl ≤ xB2 + rB2 <
7S1

8
+ 3S1

8
= 5S1

4
.

Hence, we have

R′ ≤ 5
4

S1/2 ≤ 5
4

R∗.

Case 3: There are two other segments that are at least S1
4 .

We assume that these two segments are [A1, A2] and [C1, C2] with [A1, A2] on the
left. Because we consider both Rl and Rr, without loss of generality, we assume that
|A1 A2| ≥ |C1C2|, then we have

xB1 ≥ xA2 >
2S1

8
and

xB2 ≤ xC1 <
6S1

8
.

We still use Rl in this case. If the sensor at xB2 is chosen and xB2 + rB2 > S1, then by
similar argument, we have

R′ ≤ Rl ≤ (xB2 + rB2 )/2 ≤ 9
8

R∗.

If B2 is chosen and xB2 + rB2 < S1 or rA2 totally covers [B1, B2], let a = |A1 A2|,
b = |B1 B2| and c = |C1C2| and sort a, b, c to an ascending sequence X3 ≤ X2 ≤ X1. By
Lemma 3.3., we have

R∗ ≥ max(X2 + X3, X1).

Since for each i = 1, 2, 3,
S1

4
≤ Xi <

S1

2
,
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Fig. 5. The sensors’ locations: xP = 0; xA1 = 1
4 S1; xA2 = 3

8 S1; xB1 = 5
8 S1; xB2 = 3

4 S1; xQ = S1.

we have

R∗ ≥ X2 + X3.

On the other hand, we have

2R′ ≤ S1 + max(di),

where di can be the distance of any segment in the interval [xB2 + rB2 , S1]. Hence, we
have

2R′ ≤ S1 + max(di) ≤ S1 + c.

Since A1 A2 ≥ C1C2, we have c ≤ X2, which implies

2R′ ≤ S1 + X2.

Then,

R′

R�
− 5

4
≤ S1 + X2

2(X2 + X3)
− 5

4
= 2S1 − (3X2 + 5X3)

4(X2 + X3)
.

Since

X2 ≥ X3 ≥ S1

4
,

we have

3X2 + 5X3 ≥ 2S1.

Then, we have

R′

R∗ − 5
4

≤ 0.

Finally, we have

R′ ≤ 5
4

R∗.

Next, we show that R′ can do no better than 5
4 -approximation for general inputs by

providing one example.
As shown in Figure 5, We assume that there are six sensors in the range with length

S1. We name these sensors P, A1, A2, B1, B2, and Q, from left to right. Their locations
are

xP = 0; xA1 = 1
4

S1; xA2 = 3
8

S1;

xB1 = 5
8

S1; xB2 = 3
4

S1; xQ = S1.

First of all, we consider the range assignment Rl, as shown in Figure 6.
In this case, we choose sensors A1, B1, and Q. The first sensor A1 covers the region

[0, 1
2 S1] with its radius rA1 = 1

4 S1. The second sensor B1 has a radius of rB1 = 1
8 S1. The

last sensor Q covers the rest of this range with a radius of rQ = 1
4 S1.
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Fig. 6. The range assignment Rl. Sensors A1,B1, and Q are chosen. Rl = 1
4 S1 + 1

8 S1 + 1
4 S1 = 5

8 S1.

Fig. 7. The range assignment Rr . Sensors P, A2, and B2 are chosen. Rr = 1
4 S1 + 1

8 S1 + 1
4 S1 = 5

8 S1.

Fig. 8. The range assignment Rc. Only sensor A2 is chosen. Rc = 5
8 S1.

Therefore, the cost of this range assignment is

Rl = 1
4

S1 + 1
8

S1 + 1
4

S1 = 5
8

S1.

Then, we consider the range assignment Rr, as shown in Figure 7.
This time we choose three sensors: B2, A2, and P. Their radii are rB2 = 1

4 S1, rA2 =
1
8 S1, and rP= 1

4 S1 correspondingly.
The cost of this assignment is

Rr = 1
4

S1 + 1
8

S1 + 1
4

S1 = 5
8

S1.

For the third assignment shown in Figure 8, only one sensor A2 is chosen. Because
xA2 < 1

2 S1, the radius of A2 is rA2 = 5
8 S1. Obviously, the cost is

Rc = rA2 = 5
8

S1.

The optimal solution can be achieved by selecting sensors A1 and B2 as shown in
Figure 9. Both of them have the radii rA1 = rB2 = 1

4 S1. The cost of the optimal assign-
ment is R∗ = 1

4 S1 + 1
4 S1 = 1

2 S1.
Since

R′ = min(Rl, Rr, Rc) = 5
8

S1,

we have

R′ = 5
4

R∗.

3.1.3. Dynamic Programming. If all of the xi ’s are integers, we can use dynamic program-
ming to find an exact optimal solution for the κ = 1 case in pseudo–polynomial time.

Let function Cost(i, l) denote the minimum cost of the assignment that covers the
range [0, l] using the first i sensors only. Let A(i, l) represent the corresponding assign-
ment of Cost(i, l). Note that we allow l to take integer values only.

If we want to find the optimal assignment that covers the range [0, l] with at most i
sensors from {μ1, . . . , μi}, then we can either use sensor μi or do not use μi. In the first
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Fig. 9. The optimal solution. Sensor A1 and B2 are chosen. R∗ = 1
4 S1 + 1

4 S1 = 1
2 S1. Therefore, R

R∗ =
5
8 S1/ 1

2 S1 = 5
4 .

case, we have two choices: using μi alone or using μi and some other sensors in the
first i − 1 sensors. We separate these two cases because the right-most point covered
by μi may be greater than l if we use μi alone. However, it is also possible that the
right-most point covered by the optimal solution is greater than l if we use μi and some
other sensors. But, if that happens, we can force μi to decrease its radius and cover
l exactly and adjust the first i − 1 sensors’ radii to cover the remaining part. Then,
we can obtain an assignment whose cost is the same as the optimal solution, and the
right-most point covered by the assignment is l. Hence, if the optimal solution to cover
[0, l] covers beyond l, then we can assume that it only uses one sensor. If we use μi
alone, the total cost is max(xi, l − xi). If we use μi and some sensors from the first i − 1
sensors, since we use μi and it is the right-most selected sensor, its range is at least
[xi −(l−xi), xi +(l−xi)] if l > xi. And the remaining range [0, xi −(l−xi)] must be covered
by the first i −1 sensors. Hence, in this case, the total cost is Cost(i −1, 2xi − l)+ (l− xi).
Notice that if l ≤ xi, then selecting μi will cause waste, and we can just use the first
i − 1 sensors to get better cost. In the second case, where we do not use μi, the cost is
just Cost(i − 1, l). Therefore, we can give the recurrence of Cost as follows:

Cost(i, l) =
{
min{Cost(i − 1, l), max(xi, l − xi), Cost(i − 1, 2xi − l) + (l − xi)} if l > xi,
Cost(i − 1, l) otherwise.

(5)

The initial value for Cost(1, l) is defined as follows:

Cost(1, l) =
{0 if l ≤ 0

x1 if 0 < l ≤ 2x1
l − x1 if l > 2x1

. (6)

The optimal assignment for range [0, m] using at most n sensors corresponds to
A(n, m), and the minimum cost of this optimal assignment is Cost(n, m). To get the
optimal solution, we need to create a table whose (i, l) entry records the value of Cost(i, l)
and assigns ri for sensor μi. Since each entry can be computed in constant time, the
whole table can be computed in O(mn) time. Because m may not be bounded by a
polynomial of n, the preceding dynamic programming runs in pseudo–polynomial time.

3.1.4. FPTAS. If m is bounded by a polynomial of n, then the dynamic programming
gives the optimal solution in polynomial time. Hence, we scale down the value of each
coordinate in the following way.

Choose a constant number ε > 0. Let K = εm
3n+1 . We scale each coordinate xi to

x′
i = � xi

K �. Because m′ = � m
K � = � 3n+1

ε
� is bounded by poly( n

ε
), the scaled instance can be

solved by dynamic programming in O(m′n) = O( n2

ε
).

Suppose that S′ = (r′∗
1 , r′∗

2 , . . . , r′∗
n ) is the optimal assignment of the scaled instance.

Let ri = r′∗
i ∗ K + K/2 for all ri that is neither the first nor last nonzero ri in the

sequence, and let ri = r′∗
i ∗ K + K otherwise. Then, S = (r1, r2, . . . , rn) is an assignment

of the original instance as proved in Lemma 3.5. Suppose that O = (r∗
1, r∗

2, . . . , r∗
n) is the

optimal assignment of the original instance. Let r′
i = � r∗

i
K �+1. Then, O′ = (r′

1, r′
2, . . . , r′

n)
is an assignment of the scaled instance.
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LEMMA 3.5. To obtain a feasible assignment for the original instance from a feasible
solution of its scaled instance, we need to add at most n+1

2 K to the summation of all radii.

PROOF. If the distance between the adjacent chosen sensors in the scaled instance
is d, then after we transform the instance back to the original one, the corresponding
distance will increase to at most dK + K. Therefore, assigning ri = Kr′

i + K/2 can guar-
antee the coverage of all intermediate segments. However, for the left-most segment
and the right-most segment, only one sensor is chosen to cover each of them, so these
two sensors’ radii need to be Kr′

i + K to cover these two segments.
Hence, we need to add at most n+1

2 K to recover the original instance.

We have the following deductions:

C(S) ≤ K · C(S′) + K · n + 1
2

(7)

≤ K · C(O′) + K · n + 1
2

(8)

≤ C(O) + K · n + K · n + 1
2

(9)

≤ C(O) + εm
2

(10)

≤ C(O) + εC(O). (11)

Because S′ is the optimal assignment of the scaled instance, we have C(S′) ≤ C(O′).
Since the union of the ranges in the assignment has to cover the whole interval [0, m],
the summation of these ranges is at least m/2, which implies Inequality (11).

Therefore, we can scale down the instance in O(n) time and use dynamic program-
ming to get an optimal solution S for the scaled instance. In addition, the cost of S in
the original instance is at most (1 + ε) larger than the optimal solution. The running
time of the dynamic programming is O( n2

ε
), which is polynomial in both n and 1,

ε
and

therefore the proposed method is an FPTAS.

3.2. κ > 1

In this section, we discuss the range assignment problem when the cost of assignment
R = ∑

rκ
i (κ > 1).

The following inequality is a special instance of the generalized mean inequality.

LEMMA 3.6. If x, y > 0 and κ ≥ 1, then (x + y)κ ≤ 2κ−1(xκ + yκ ).

Since Sκ = ∑n+1
i=1 dκ

i , if R∗ = (r∗
1, r∗

2, . . . r∗
n) is an optimal assignment, then we have

the following lemma.

LEMMA 3.7. Sκ ≤ 2κ R∗ − (2κ−1 − 1)
(
dκ

1 + dκ
n+1

)
.

PROOF. In the optimal assignment R∗, suppose that r∗
i1, r∗

i2 , . . . , r∗
i j

are nontrivial
ranges with i1 < i2 < . . . < i j . Then, we have the following inequalities:

d1 + · · · + di1 ≤ r∗
i1,

di1+1 + · · · + di2 ≤ r∗
i1 + r∗

i2 ,

. . .

dij−1+1 + · · · + dij ≤ r∗
i j−1

+ r∗
i j
,

dij+1 + · · · + dn+1 ≤ r∗
i j
.
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Fig. 10. The sensors’ locations: xA = xB = 1
4 ; xC = xD = 3

4 .

Fig. 11. The solution output by Theorem 3.8. All sensors are chosen. R = ( 1
4 )2 + ( 1

4 )2 + ( 1
4 )2 + ( 1

4 )2 = 1
4 .

Hence, by Lemma 3.6, we have

Sκ ≤ (d1 + · · · + di1 )
κ + (di1+1 + · · · + di2+1)κ + · · · + (dij−1+1 + · · · + dij )

κ

+ (dij+1 + · · · + dn+1)κ

≤ (r∗
i1 )

κ + (r∗
i1 + r∗

i2 )
κ + · · · + (r∗

i j−1
+ r∗

i j
)κ + (r∗

i j
)κ

≤ (r∗
i1 )

κ + 2κ−1((r∗
i1 )

κ + (r∗
i2 )

κ ) + 2κ−1((r∗
i2 )

κ + (r∗
i3 )

κ ) + · · · + 2κ−1((r∗
i j−1

)κ + (r∗
i j

)κ ) + (r∗
i j

)κ

= 2κ R∗ − (2κ−1 − 1)((r∗
i1 )

κ + (r∗
i j

)κ )

≤ 2κ R∗ − (2κ−1 − 1)
(
(d1 + · · · + di1 )

κ + (dij+1 + · · · + dn+1)κ
)

≤ 2κ R∗ − (2κ−1 − 1)
(
dκ

1 + dκ
n+1

)
.

The lemma can also be easily verified if there is only one active sensor in the optimal
assignment.

THEOREM 3.8. Let r1 = max(d1,
d2
2 ), r2 = max( d2

2 , d3
2 ), . . . , rn−1 = max( dn−1

2 , dn
2 ), and

rn = max( dn
2 , dn+1), then the range assignment R = (r1, r2, . . . rn) is a 2−approximation.

PROOF. When n = 1, R is the optimal assignment. When n ≥ 2, we have

R ≤ max
(
dκ

1 , 2−κdκ
2

) + max
(
2−κdκ

2 , 2−κdκ
3

) + · · · + max
(
2−κdκ

n−1, 2−κdκ
n

)
+ max

(
2−κdκ

n, dκ
n+1

)
< dκ

1 + 21−κ ∗ (
dκ

2 + dκ
3 + · · · dκ

n

) + dκ
n+1

= 21−κ Sκ + (1 − 21−κ )
(
dκ

1 + dκ
n+1

)
.

Since Sκ ≤ 2κ R∗ − (2κ−1 − 1)(dκ
1 + dκ

n+1), by Lemma 3.7, we have

R < 21−κ
(
2κ R∗ − (2κ−1 − 1)

(
dκ

1 + dκ
n+1

)) + (1 − 21−κ )
(
dκ

1 + dκ
n+1

)
= 2R∗ − (1 − 21−κ )

(
dκ

1 + dκ
n+1

) + (1 − 21−κ )
(
dκ

1 + dκ
n+1

)
= 2R∗.

Therefore, R
R∗ < 2.

In fact, approximation ratio 2 is also the best that we can prove for the preceding
range assignment. Consider the example shown in Figure 10, where the whole interval
is [0, 1]. The first two sensors are at 1/4, and the last two sensors are at 3/4. In this
example, the cost of the assignment in Theorem 3.8 (Figure 11) is exactly twice the cost
of the optimal assignment (Figure 12).

4. EXPERIMENTS

In this section, we evaluate the performance of our approximation algorithms with
randomly generated sensor positions (uniformly chosen along the line).
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Fig. 12. The optimal solution. Sensors A and C are chosen. R∗ = ( 1
4 )2 + ( 1

4 )2 = 1
8 . Therefore, R

R∗ = 1
4 / 1

8 = 2.

Fig. 13. This graph shows the comparison between our algorithm and the optimal solution when κ = 1.
The x-axis is the number of sensors, and the y-axis is the average value of our solution over the optimal
solution (Mean(R/R∗)). The two horizontal dashed lines are the theoretical upper bound and lower bound of
our algorithm.

In the experiment, R∗ is the cost of optimal range assignment, which is achieved by
calculating all possible assignments without any range overlapping on both sides. R is
the cost of range assignment obtained by our 5

4 -approximation algorithm. We uniformly
choose the locations of sensors at random and calculate R∗, R, and R

R∗ .
The purpose of this experiment is to compare the result given by our algorithm with

the optimal solution for cases when κ = 1 and κ = 2. To the best of our knowledge,
very few researchers are doing exactly the same problem. In Bar-Noy and Baumer
[2011], the authors proposed an algorithm called RoundRobin, where each round uses
a single sensor to cover the line interval. Our center assignment algorithm is a special
case of their methods with the minimum energy consumption, and because our 5

4 -
approximation algorithm takes the best from three assignments, the performance of
our algorithm can only be better, and therefore we do not compare our algorithm
experimentally with other algorithms.

4.1. κ = 1

We vary the number of sensors from 1 to 10. For every fixed number of sensors, 10,000
cases are generated; the average ratio is recorded in Figure 13. In the figure, the x-axis
is the number of sensors, and the y-axis shows the mean value of R

R∗ . The distribution
is shown in Figure 14.
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Fig. 14. Distribution graph when κ = 1. 1.25 is our theoretical upper bound when κ = 1. From this graph,
we find that very few cases go beyond 1.1, and more than 90% of cases are between 1.00 and 1.05. Our
algorithm works well for random inputs.

Fig. 15. This graph shows the comparison between our algorithm and the optimal solution when κ = 2.
The x-axis is the number of sensors, and the y-axis is the average value of our solution over the optimal
solution (Mean(R/R∗)). The two horizontal dashed lines are the theoretical upper bound and lower bound of
our algorithm.
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Fig. 16. Distribution graph when κ = 2. The value 2.0 is the theoretical upper bound of our algorithm
when κ = 2. However, very few cases reach the upper bound. Most cases fall in the range from 1 to 1.2. Our
algorithm works well for random inputs.

4.2. κ = 2

We vary the number of sensors from 1 to 10. For every fixed number of sensors, 1,000
cases are generated; the average ratio is recorded in Figure 15. We can see that the
actual average performance of our algorithm is much better than the theoretical ap-
proximation ratio 2. The distribution is shown in Figure 16.

5. CONCLUSION

In this article, we study the coverage of a line interval with a set of wireless sensors
with adjustable coverage ranges. The objective is to find a range assignment with
the minimum cost. For the discrete variant, we present a polynomial-time algorithm
to compute the optimal solution. For the continuous variant, we develop constant-
approximation algorithms when the cost for all sensors is proportional to rκ for some
constant κ ≥ 1, where r is the covering radius corresponding to the chosen power.
Specifically, if κ = 1, we give a simple 1.25-approximation algorithm and an FPTAS;
if κ > 1, we give a simple 2-approximation algorithm. Possible future directions are
improving the approximation ratio for the continuous variant for different values of κ
and extend the results to covering a 2D region.
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