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Abstract—This paper addresses the maximal lifetime scheduling for sensor surveillance systems with K sensors to 1 target. Given a
set of sensors and targets in an Euclidean plane, a sensor can watch only one target at a time and a target should be watched by k,
k � 1, sensors at any time. Our task is to schedule sensors to watch targets and pass data to the base station, such that the lifetime of
the surveillance system is maximized, where the lifetime is the duration up to the time when there exists one target that cannot be
watched by k sensors or data cannot be forwarded to the base station due to the depletion of energy of the sensor nodes. We propose
an optimal solution to find the target watching schedule for sensors that achieves the maximal lifetime. Our solution consists of three
steps: 1) computing the maximal lifetime of the surveillance system and a workload matrix by using linear programming techniques,
2) decomposing the workload matrix into a sequence of schedule matrices that can achieve the maximal lifetime, and 3) determining
the sensor surveillance trees based on the above obtained schedule matrices, which specify the active sensors and the routes to pass
sensed data to the base station. This is the first time in the literature that this scheduling problem of sensor surveillance systems has
been formulated and the optimal solution has been found. We illustrate our optimal method by a numeric example and experiments in
the end.

Index Terms—Energy efficiency, lifetime, scheduling, sensor network, surveillance system.
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1 INTRODUCTIONS

Awireless sensor network consists of many low-cost and
low-powered sensor nodes (called sensors for short)

that collaborate with each other to gather, process, and
communicate information using wireless communications
[4]. Applications of sensor networks include military
sensing, traffic surveillance, environment monitoring,
building structures monitoring, and so on. One important
characteristic of sensor networks is the stringent power
budget of wireless sensor nodes, because those nodes are
usually powered by batteries that may not be possible to be
recharged or replaced after they are deployed in hostile or
hazardous environments [15]. The surveillance nature of
sensor networks requires a long lifetime. Therefore, it is an
important research issue to prolong the lifetime of sensor
networks in surveillance services.

In this paper, we discuss a maximal lifetime problem in
sensor surveillance systems. Given a set of targets and sensors
and a base station (BS) in an area, the sensors are used to
watch (or monitor) the targets and collect sensed data to the
BS. Each sensor has an initial energy reserve, and a fixed
surveillance range and an adjustable transmission range. A
sensor can watch at most one target at a time. A target can be
inside the surveillance range of several sensors. A typical
example is the use of camera to continuously watch some
targets, such as cargo containers. In some applications, a
target needs to be watched by several sensors at any time for

the purpose of viewing the target from several directions, or
of locating the geographic position of a target [21]. Without
losing generality, we assume that each target should be
watched by k, k � 1, sensors at any time. Since sensors are
usually redundantly deployed, our problem is to schedule a
subset of sensors to be active at a time to watch the targets and
find the routes for the active sensors to send data back to the
BS, such that each target should be watched by k sensors at
any time and the lifetime of the entire sensor network is
maximized. The lifetime is the duration up to the time when
there exists one target that cannot be watched by k sensors or
data can not be forwarded to the BS due to the depletion of
energy of the sensor nodes.

The problem consists of two parts: scheduling the
sensors to watch targets and routing the sensed data to
BS. To our best knowledge, this is the first time in the
literature that this problem has been formulated and the
optimal solution has been found.

Our problem is different from the connected K-coverage
problem as discussed in [23], [24]. The connected K-coverage
problem is to select a minimum number of sensor nodes, such
that each point in the sensor network is covered by at lease
K different sensors, and the induced graph is connected. It
assumes that each sensor can cover several points at the same
time while each sensor can watch only one target in our
problem. Furthermore, the connected K-coverage problem is
to minimize the number of sensors to cover points while our
problem is not only to schedule sensors to watch targets, but
also to find routes to forward data to the BS, such that the
lifetime of the surveillance is maximized.

We assume the positions of targets and sensors are static
and given. There are many applications that the targets
positions are static and given, such as guarding cargo
containers, monitoring road traffic, monitoring specific
points of buildings, and so on. The location information of
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both sensors and targets can be obtained via a distributed
monitoring mechanism [10] or the scanning method [11].
Our method will compute a schedule for sensors to watch
targets and the routes to relay data to the BS. This schedule
and routes will be disseminated to sensor nodes by the BS at
the system initialization stage and all sensor nodes can
operate according to the schedule, such as when and for
what duration to sleep, watch targets, or relay messages.

The rest of the paper is organized as follows: Section 2 is
related work and Section 3 is is the problem definition.
Section 4 presents our solution that consists of three parts.
Section 4.1 gives a linear programming formulation that is
used to compute the maximal lifetime of the surveillance
system. In Section 4.2, we show that the maximal lifetime is
achievable, and detailed algorithms for finding the schedule
are presented. Section 4.3 discusses surveillance trees for
routing sensed data to BS. Section 5 presents a numeric
example solved by using our method. Simulations are
further conducted. We conclude our work in Section 6.

2 RELATED WORK

Extensive research has been done on extending the lifetime
of sensor networks. Bhardwaj et al. [12] studied the upper
bounds on the lifetime of sensor networks used in data
gathering in various scenarios. Both analytical results and
extensive simulations showed that the derived upper
bounds are tight for some scenarios and near-tight (about
95 percent) for the rest. The authors further proposed a
technique to find the bounds of lifetime by partitioning the
problem into the subproblems for which the bounds are
either already known or easy to derive. A differentiated
surveillance service for various target areas in sensor
networks was discussed in [15]. The proposed protocol
was based on an energy-efficient sensing coverage protocol
that makes full coverage to a certain geographic area. It is
also guaranteed to achieve a certain degree of coverage for
fault tolerance. Simulations showed that a much longer
network lifetime and a small communication overhead
could be achieved. An energy-efficient surveillance system
was designed and implemented in [16]. It was used to
detect and track the positions of moving vehicles in a
stealthy manner. The system was separated into five
phases: system initialization, neighbor discover, sentry
selection, report status, power management, and tracking
activity. Simulations showed that trade-off between energy-
awareness and surveillance performance is adaptable and
the extension of network lifetime is achievable.

Another important technique used to prolong the life-
time of sensor networks is the introduction of switch on/off
modes for sensor nodes. Recent works on energy efficiency
in three aspects, namely area coverage, request spreading
and data aggregation, were surveyed in [8]. It pointed out
that the best method for conserving energy is to turn off as
many sensors as possible, at the same time, however, the
system must maintain its functionality. A distributed
scheduling algorithm for stationary continuous monitoring
sensor networks was investigated in [1]. It assumed that
sensor networks are time synchronized. The proposed
scheme exploited the time scale difference between network
reconfiguration periods and data forwarding periods, to
enable sensors to be awake only when necessary. Simula-
tion results showed the network lifetime can be significantly
increased. Another node scheduling scheme was developed
in [3]. This scheme schedules the nodes to turn on or off
without affecting the overall service provided. A node

decides to turn off when it discovers that its neighbors can
help it to monitor its monitoring area. The scheduling
scheme works in a localized fashion where nodes make
decisions based on its local information. Similar to [3], the
work in [9] defined a criterion for sensor nodes to turn
themselves off in surveillance systems. A node can turn
itself off if its monitoring area is the smallest among all its
neighbors and its neighbors will become responsible for
that area. This process continues until the surveillance area
of a node is smaller than a given threshold. A deployment
of a wireless sensor network in the real world for habitat
monitoring was discussed in [13]. A network consisting of
32 nodes was deployed on a small island to monitor the
habitat environment. Several energy conservation methods
were adopted, including the use of sleep mode, energy
efficient communication protocols, and heterogeneous
transmission power for different types of nodes.

Different from the above work, we use both of the above
mentioned techniques to maximize the network lifetime in
our solution: we find the optimal schedule to switch on/off
sensors to watch targets in turn and we find the optimal
routes to forward data from sensor nodes to the BS. To the
best knowledge of the authors, this is the first work so far
that addresses how to schedule sensors to watch targets and
pass sensed data to the BS, such that the lifetime of the
system is maximized.

3 SYSTEM MODEL AND PROBLEM STATEMENT

We introduce the following notations before getting into
details of our method:

B = base station whose energy is unbounded.
S = set of sensors, and n … jSj.
T = set of targets, and m … jT j.
k = number of sensors that are required to watch a target

at any time.
SðjÞ = set of sensors that are able to watch target j,

j … 1; . . . ; m.
T ðiÞ = set of targets that are within the surveillance range

of sensor i, I … 1; . . . ; n.
Notice that SðiÞmay overlap with SðjÞ for i 6… j, and T ðiÞ

may overlap with T ðjÞ for i 6… j.
NðiÞ = set of direct neighbors of sensor i, i … 1; . . . ; n.

A direct neighbor of sensor i is a sensor that is within the
maximal transmission range of sensor i.

Ei = initial energy reserve of sensor i, i … 1; . . . ; n.
dij = distance between sensor i and j, i, j … 1; 2; . . . ; n; B.
R = data rate generated from sensors while watching

targets.
eS = energy required for sensing one unit data.
eT = energy required for transmitting one unit data.
eR = energy required for receiving one unit data.

There are two requirements for sensors watching targets:

1. Each sensor can watch at most one target at a time.
2. Each target should be watched by k, k � 1, sensors at

any time.
The problem of our concern is, for given S, T , and k, to

find a schedule that meets the above two requirements for
sensors watching targets and passing sensed data to the BS,
such that the lifetime of the surveillance is maximized.
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4 OUR SOLUTIONS

It is difficult to find an optimal schedule that maximizes the
lifetime without knowing the exact value of the maximal
lifetime. Therefore, we solve the problem in three steps.
First, we compute the upper bound on the maximal lifetime
of the system by using linear programming. Second, we
find a schedule that achieves the upper bound of the
maximal lifetime. Finally, we determine the sensor surveil-
lance trees based on the above optimal solution. We present
our optimal solutions step by step.

4.1 Find Maximal Lifetime
We use linear programming (LP) technique to find the
maximum lifetime of the system. Let L denote the lifetime
of the surveillance system. We introduce two variables:

xij: total time sensor i watching target j, where i 2 S, j 2 T .
fij: amount of data transmitted from sensor i to sensor j

(the receiver can be BS).

The problem of finding the maximum lifetime for sensors
watching targets can be formulated as the following:
Objective: Max L

s:t:
X

i2SðjÞ

xij … kL 8j 2 T ; ð1Þ

X

j2T ðiÞ

xij � L 8i 2 S; ð2Þ

esR
X

j2T ðiÞ

xijþ
X

j2NðiÞ[fBg

ðdijÞ�fijþeR
X

j2NðiÞ

fji�Ei 8i 2 S; ð3Þ

R
X

j2T ðiÞ

xij þ
X

j2NðiÞ

fji …
X

j2NðiÞ[fBg

fij 8i 2 S; ð4Þ

xij � 0; fij � 0: ð5Þ

Notice that in the above constrains, topology information
that indicates which sensor is connected to which target (or
other sensors) is contained in SðjÞ, T ðiÞ, and NðiÞ; i … 1; . . . ;
n; j … 1; . . . ; m.

Equation (1) specifies that for each target j in T , since it
requires k sensors to watch target j at anytime, the total time
that target j under surveillance is k times of lifetime of the
system. That is, each target should be watched by k sensors
throughout the lifetime.

Inequality (2) implies that for each sensor i in S, its total
working time should not exceed lifetime of the system.

Inequality (3) implies that the total energy cost of a
sensor node shall not exceed its initial energy reserve. There
are three components of energy cost of a sensor node, which
are the cost for sensing data (i.e., watching targets), the cost
for transmitting data (which is dependent on the transmis-
sion distance), and the cost for receiving data.

Equation (4) is for flow conservation. It implies that for
each sensor i in S, the total amount of data sensed and data
received should be equal to the amount of data transmitted.

The above formulation is a typical LP formulation, where
xij, 1 � i � n, and 1 � j � m, and fij; i; j … 1; 2; . . . ; n; B; are
real number variables and the objective is to maximize L.
So, the optimal results of xij, fij, and L can be computed in
polynomial time.

However, L, obtained from computing the above LP
formation, is the upper bound on the lifetime, and each xij
specifies only the total time that sensor i should watch target j
in order to achieve this upper bound L. Each fij specifies only
the total amount of data transmitted from sensor i to sensor j.

What we need is to find a schedule that specifies from what
time up to what time which sensor watches which target and
through which route to pass the sensed data to the BS. In the
next two steps, we will find the schedule and routes that will
finally achieve the optimal lifetime L.

The values of xij, 1 � i � n and 1 � j � m, obtained from
the LP, can be represented as a matrix:

Xn�m …

x11x12 . . . x1m
x21x22 . . . x2m
. . . . . .
xn1xn2 . . . xnm

2

664

3

775

n�m

:

We call matrix Xn�m workload matrix, for it specifies the
total length of time that a sensor should watch a target. There
are two important features about this workload matrix:

1. the sum of all elements in each column is equal to kL
(from (1) in the LP formulation).

2. the sum of all elements in each row is less than or
equal to L (from (2) in the LP formulation).

In the next step, we need to find the detailed schedule for
sensors to watch targets based on the workload matrix.

4.2 Decompose Workload Matrix
The lifetime of the surveillance system can be divided into a
sequence of sessions. In each session, a set of sensors are
scheduled to watch their corresponding targets; and in the
next session, another set of sensors are scheduled to work
(some sensors may work continuously for multiple ses-
sions). Suppose a sensor cannot switch to watch another
target within a session. Thus, the schedule of sensors during
a session can be represented as a matrix. In this matrix,
there are exactly k positive numbers in each column,
representing each target should be watched by k sensors;
and at most one positive number in each row, representing
each sensor can watch at most one target at a time and there
is no switching to watch other targets in a session. The rest
numbers in the matrix are zeros. Furthermore, all the
nonzero elements in this matrix have the same value, which
is the time duration of this session. Now, our task becomes
to decompose the workload matrix into a sequence of
schedule matrices of sessions, represented as:

x11x12 . . . x1m

x21x22 . . . x2m

x31x32 . . . x3m

. . . . . .
xn1xn2 . . . xnm

2

6666664

3

7777775

n�m

…

0c10 . . . 0
c100 . . . 0
000 . . . c1

. . . . . .
00c1 . . . 0

2

6666664

3

7777775
þ

c200 . . . 0
000 . . . c2

0c20 . . . 0
. . . . . .
0c20 . . . 0

2

6666664

3

7777775

þ . . .þ

ct00 . . . 0
00ct . . . 0
ct00 . . . 0
. . . . . .
0ct0 . . . 0

2

6666664

3

7777775
… P1 þ P2 . . .þ Pt;

where ci, i … 1; 2; . . . ; t is the length of time of session i, and t
the total number of sessions. We call this sequence of session
schedule matrices Pi, i … 1; 2; . . . ; t, the schedule matrices.
Considering the schedule matrix of session i, all elements in it
are either “0” or ci, each column has exactly k nonzero
elements, and each row has at most one non-zero element (it
could be all “0,” indicating the sensor is idle in this session).

1528 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

Authorized licensed use limited to: CityU. Downloaded on July 23, 2009 at 11:54 from IEEE Xplore.  Restrictions apply. 



Next, we discuss how to decompose the workload matrix
into a sequence of schedule matrices. Since each target
should be watched by k sensors throughout the lifetime of
the system, we have n � km. We first consider a special case
of n … km, i.e., the number of sensors is exactly k times of
the number of targets in the system. Then, we extend the
results to the general cases of n > km.

4.2.1 A Special Case n … km
We consider the case n … km. Let Ri, i … 1; 2; . . . ; n, and Cj,
j … 1; 2; . . . ; m, denote the sum of row i and the sum of
column j in the workload matrix, respectively. According to
(1) and (2) of the LP formation, we have:

Cj … kl; j … 1; 2; . . . ; m: ð6Þ
Ri � L; i … 1; 2; . . . ; n: ð7Þ

Notice that the sum of all elements in the workload matrix
equals to the sum of Ri, and also equals to the sum of Cj. That
is,

Pn
i…1 Ri …

Pm
j…1 Cj … m� kL. Since n … km, we have:

Xn

i…1
Ri … n� L: ð8Þ

Combining (7) and (8), we have:

Ri … L; i … 1; 2; . . . ; n: ð9Þ

Equations (6) and (9) give an important feature of the
workload matrix when n … km that the sum of each column
is equal to 2L and the sum of each row is equal to L. This
feature will guarantee the possibility of decomposing the
workload matrix into schedule matrices in Theorem 1.

The basic idea of decomposing the workload matrix is to
represent Xn�m as a bipartite graph GðS [ T; EÞ, where one
side are sensors S … ðs1; s2; . . . ; snÞ and the other are targets
T … ðt1; t2; . . . ; tmÞ, n … km. For each nonzero element xij in
Xn�m, there is an edge from si to tj and the weight of the edge
is xij.

Considering each schedule matrix of session i, each row
has exactly one nonzero element that specifies each sensor
should work at session i, each column has exactly k nonzero
elements that specify k sensors watching this target at session
i. That is, there should be k distinct sensors to watch one target
at each session, which can be represented as k sensors
matching one target in the bipartite graph G. Thus, the
problem of finding a schedule matrix is transformed into the
problem of finding kk-matchings in G, i.e., k sensors matching
one target.

The k-matching algorithm is not well studied (even though
it can be designed by following the idea of the perfect
matching algorithm). We make a transformation of the
bipartite graph by replacing each target node by k duplicate
nodes. The links adjacent to the original target node are
adjacent to each of the duplicate nodes. Thus, in the new
bipartite graph, one target (duplicate) need match exactly one
sensor. The problem of finding a k-matching is transformed to
finding a perfect matching in the new bipartite graph. There
are many perfect matching algorithms, such as the one
presented in [19], can be used to find a perfect matching. Fig. 1
shows an example of replacing target nodes by duplicates.
Eachtarget tj is replacedbykcopies,denotedby tj1; tj2; . . . ; tjk.
An edge from si to tj is replaced by edges from si to each of
tj1; tj2; . . . ; tjk. We denote the resulting bipartite graph by Gk.

The algorithm works as follows: Each time G is converted
to Gk, we find a perfect matching on Gk and merge the
duplicate targets to obtain a k-matching where there are
exactly k sensors match each target. Each k-matching is
corresponding to a schedule matrix. Let ci be the smallest
weight of edges in the k-matching. We deduct ci from the
weight of the n edges in the k-matching in G and remove the
edges whose weight becomes zero. This operation is repeated
until there is no matching can be found in Gk.

For example, suppose we obtain a workload matrix

1 2
2 1
0 3
3 0

2

664

3

775

from the LP ð1Þ � ð2Þ for k … 2. The matrix is first
represented as a bipartite graph GðS [ T; EÞ, where T …
ft1; t2g and S … fs1; s2; s3; s4g (See Fig. 1a). Then, targets t1
and t2 are replaced by duplicates t11, t12 and t21, t22,
respectively, resulting a new graph Gk (See Fig. 1b). A
perfect matching is found in Gk as shown in Fig. 2a and a
k-matching is obtained by merging the duplicates targets
back as shown in Fig. 2b. The schedule matrix is

Pi …

1 0
0 1
0 1
1 0

2

664

3

775

based on the k-matching.
The details of the algorithm for finding a k-matching are

given below.

kk-Matching Algorithm
Input: a workload matrix Xn�m.
Output: a schedule matrix Pi.
Begin
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Represent Xn�m as a bipartite graph GðS [ T; EÞ;
Transform G to Gk by replacing each node in T by
k duplicate nodes;
Find a perfect matching in Gk;
Merge duplicate targets in the perfect matching and
obtain a schedule matrix Pi;

End
Because we try to decompose the workload matrix by

using the technique of finding the perfect matchings, we are
facing two questions:

1. Does it guarantee that there exists a perfect matching
in every round of the decomposition?

2. Does it guarantee that the number of decomposition
rounds is bounded?

Theorems 1 and 2 will give answers to the two questions,
respectively. To prove Theorem 1, we need the following
lemma.

Lemma 1. For any square matrix Wn�n of nonnegative real
numbers, if Ri … Cj for 1 � i, j � n, there exists a perfect
matching in the corresponding bipartite graph, where Ri and Cj
are the sum of row i and the sum of column j of Wn�n,
respectively.

Proof. Let L be the sum of all elements in a row in Wn�n, and
An�n denotes matrix An�n … 1

L�Wn�n. It is obvious to see
that An�n is a doubly stochastic matrix [18], where the sum
of all elements in any row or column is equal to 1.

Now, we prove the lemma by contradictory. Assum-
ing there does not exist a perfect matching in the
corresponding bipartite graph of An�n, there does not
exist n positive entries An�n that no two entries in the
same column or row. According to the König theorem
[19], [20], we can cover all of the positive entries in the
matrix with e rows and f columns, such that eþ f < n.
However, since the sum of all lines of An�n is equal to 1,
it follows n � eþ f < n. This contradicts to the assump-
tion. Lemma 1 is proved. tu

Theorem 1. The k-Matching algorithm can always find a
k-matching so long as there are edges in Gk and its time
complexity is Oðn3Þ.

Proof. For any workload matrix Xn�m, according to (6) and
(9), the sum of each column is equal to kL and the sum of
each row is equal to L. In the k-Matching algorithm, we
represent Xn�m as a bipartite graph G. Then, G is
transformed to Gk by replacing each target by k duplicate
nodes. This is equivalent to repeatedly appending matrix
Xn�m ðk� 1Þ times to the right hand side of the original
matrix, resulting a new n� n workload matrix:

Wn�n … ‰Xn�mXn�m . . . Xn�m�
z�������������������}|�������������������{k

: ð10Þ

Wn�n consists of k matrices of Xn�m as shown in (10) and
n … km.

Let R0i and C0j denote the sum of row i and the sum of
column j of Wn�n, respectively, and Ri and Cj the sum of
row i and the sum of column j of Xn�m, respectively.
From the construction of Wn�n, we can see the sum of
each column remains the same as Xn�m, i.e., C0j … Cj.
From (6), for Xn�m, we have:

C0j … kL; j … 1; 2; . . . ; n: ð11Þ

From (10), we can see the sum of each row of Wn�n is
k times of that of Xn�m, i.e., R0i … k Ri. From (9) for Xn�m,
we know Ri … L. Thus, we have

R0i … kL; i … 1; 2; . . . ; n: ð12Þ

Therefore, we have R0i … C0j for 1 � i; j � n. According
to Lemma 1, there exists a perfect matching on the
bipartite graph Gk.

Since, in each round i, we deduct ci from the weight of
the n edges in the perfect matching, it is equivalent to
deducting the schedule matrix Pi from the workload
matrix Wn�n. Thus, the resulting matrix Wn�n (after
deducting Pi) still holds the condition R0i … C0j for
1 � i; j � n. According to Lemma 1, there exists a perfect
matching on Gk in every round of the decomposition
process. This process stops at the last round where all the
remaining edges in Gk make up an exact perfect
matching, and they are all removed at this last round.

According to [5], [19], it takes Oðn3Þ to find a perfect
matching if we use depth-first search. Furthermore, it is
not difficult to see that the k-Matching algorithm and the
algorithm of finding a perfect matching have the same
time complexity. Theorem 1 is proved. tu
The following theorem states that the number of

decomposing of the workload matrix can be bounded by
using the k-Matching algorithm.

Theorem 2. The workload matrix can be exactly decomposed into
a sequence of schedule matrices by using the k-Matching
algorithm and the number of decomposition rounds is bounded
by the number of nonzero elements in Xn�m.

Proof. According to theorem 1, a perfect matching can be
found in Gk at each round of decomposition until there is
no edge left in Gk.

Since each edge in G has k duplicated edges in Gk, at
each time of finding a perfect matching, at least k edges
in Gk (they are duplicates of the same edge in G) are
removed. Therefore, it takes at most jEj number of
rounds to remove all edges in Gk, where jEj is the
number of edges in G (not Gk), which is the number of
nonzero elements in Xn�m.

Theorem 2 is proved. tu

Thus, the maximal lifetime scheduling problem for
sensor surveillance systems with K sensors to 1 target can
be solved when n … km, where m, n are the number of
targets and the number of sensors, respectively. In the next
section, we will discuss the general cases of n > km and
propose a complete decomposition algorithm.

4.2.2 General Cases n > km
When n > km, our basic idea is to transform the case to n …
km by introducing some dummqytargets and sensors into the
system. That is to “fill” the workload matrix Xn�m with some
dummy columns and rows, such that the sum of all elements
in each row is equal to L and the sum of each column is kL. Let
Z denote the dummy matrix. There are two cases.

1. The numbqer of sensors is in multiple of k, i.e.,
n%k … 0. We append Zn�ðn=k�mÞ to the right-hand
side of Xn�m, the resulting matrix, denoted by
Wn�n=k, is in the form as:

1530 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

Authorized licensed use limited to: CityU. Downloaded on July 23, 2009 at 11:54 from IEEE Xplore.  Restrictions apply. 



Wn�n=k …

x11x12 . . . x1m z11z12 . . . z1n=k�m
x21x22 . . . x2m z21z22 . . . z2n=k�m
. . . . . . . . . . . .
xn1xn2 . . . xnm zn1zn2 . . . znn=k�m

2

664

3

775

n�n=k

:

2. Otherwise, i.e., n%k > 0. We first append n%k
dummy rows, which are all ð0; 0; . . . ; 0Þ vectors, to
the bottom of Xn�m. It is equivalent to adding n%k
dummy sensors with energy Ei … 0 to the network.
It does not affect our optimal solution. Then, we
append Zðnþn%kÞ�ððnþn%kÞ=k�mÞ to the right-hand side
of Xðnþn%kÞ�m. The resulting matrix, denoted by
Wðnþn%kÞ�ðnþn%kÞ=k, is in the form as shown in Fig. 3.

Let p … nþ n%k, q … ðnþ n%kÞ=k, the dummy matrix
can be denote by Zp�ðq�mÞ and the filled matrix can be
denote by Wp�q. To make the matrix Wp�q having the
features of (6) and (9), i.e., the sum of each column is equal
to kL and the sum of each row is equal to L, the dummy
matrix Zp�ðq�mÞ should satisfy the following conditions:

1.

R0i …
Xq�m

j…1
zij … L�Ri for 8i … 1; 2; . . . ; p: ð13Þ

2.

C0j …
Xp

i…1
zij … L for 8j … 1; 2; . . . ; q �m: ð14Þ

We propose a simple algorithm to compute the dummy
matrix Zp�ðq�mÞ. The algorithm starts to assign values to the
elements of Zp�ðq�mÞ from its top-left corner. Let R�i and C�j
record the sum of the remaining undetermined elements of
row i and column j, respectively, for i … 1; 2; . . . ; p and
j … 1; 2; . . . ; q �m. Initially, R�i  ðL�RiÞ and C�j  L,
where Ri and L are computed from matrix Xn�m. The
strategy of the algorithm is to assign the remaining sum of the
row (or column), as much as possible, to an element without
violating conditions (13) and (14), and assign the rest
elements of the row (or column) to 0. Then, we move down
to the next undetermined element from the top-left of the
matrix. For example, we start with z11. Now, R�1 is ðL�R1Þ
and C�1 is L, i.e., R�1 < C�1 . Thus, we can assign R�1 to z11, and
assign 0 to the rest of elements of row 1 (so, (13) is met). Then,
C�1 should be updated to ðC�1 � z11Þ, because the remaining
sum of column 1 now becomes ðC�1 � z11Þ and this value is
used to ensure that (14) will be met during the process.
Suppose we now come to element zij, (i.e., elements of zkl, for

k … 1; . . . ; i� 1 and l … 1; . . . ; j� 1, are already determined
so far). We compare R�i with C�j . There are three cases:

1. C�j > R�i : It means zij can use up the remaining
value the sum of row i, i.e., R�i . Thus, zij  R�i and
the rest elements of this row should be assigned to 0.
So, all elements of row i have been assigned and
condition (13) is met for row i.

2. R�i > C�j : It means zij can use up the remaining
value the sum of column j, i.e., C�j . Thus, zij  C�j
and the rest elements of this column should be
assigned to 0, i.e., zkj … 0; k … 2; 3; . . . ; p. By doing so,
all elements of column j have been assigned and
condition (14) is met for column j.

3. R�i … C�j : We can determine elements in both
row i and column j by zij  R�i and setting the
rest elements in row i and in column j to 0. It is
easy to see that condition (13) is met for row i and
condition (14) is met for column j.

After determining each row (or column), we need to
updateC�j (orR�i ), beforemoving to the next row (or column).
Each step, we can determine the elements in one row (or
column).Thisprocess is repeateduntil all elements inZp�ðq�mÞ
are determined. The details of the algorithm are given below.

FillMatrix Algorithm
Input: a workload matrix Xn�m.
Output: a filled matrix Wp�q.
Begin

p … nþ n%k; q … ðnþ n%kÞ=k;
R�i … L�Ri, for i … 1 to p;
C�j … kL, for j … 1 to q �m;
i … 1; j … 1;
while ði � pÞ && ðj � q �mÞ do

if C�j > R�i then
//determine elements in row i.
zij … R�i ;
zik … 0, for k … jþ 1 to q �m;
// set the rest of row i to 0.
C�j … C�j � zij;
i … iþ 1;

else if R�i > C�j
//determine elements in column j.
zij … C�j ;
zkj … 0, for k … iþ 1 to p;
// set the rest of column j to 0.
R�i … R�i � zij;
j … jþ 1;

else
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Authorized licensed use limited to: CityU. Downloaded on July 23, 2009 at 11:54 from IEEE Xplore.  Restrictions apply. 



//determine elements in both row i and
column j.
zij … R�i ;
zik … 0, for k … jþ 1 to q �m;
zkj … 0, for k … iþ 1 to p;
i … iþ 1; j … jþ 1;

endwhile
End

Theorem 3. For a given workload matrix Xn�m, FillMatrix
Algorithm can compute the filled matrix Wp�q, such that the
sum of each column and the sum of each row have the features
defined in (6) and (9), respectively.

Proof. At the beginning of the FillMatrix Algorithm, row
sums and column sums of the dummy matrix are
initialized, and then the dummy matrix is worked out
step by step to satisfy (13) and (14). So, we can prove a
general case: Given row sums R0i and column sums C0j of a
matrix Zn�m, i … 1; 2; . . . ; n, j … 1; 2; . . . ; m, the proposed
algorithm can compute all elements zij that satisfy (13) and
(14). We use the induction method to prove the theorem.

1. When n … 1, m … 1, according to the FillMatrix
algorithm, since C�1 … R�1 , we have z11 … R�1 …
C�1 … R01 … C01. Conditions (13) and (14) are both
met.

2. We assume when n � p� 1, m � q � 1, the
proposed algorithm can compute Zn�m, such that
(13) and (14) are both met.

3. When n … p, m … q, according the algorithm, we
first compare C�1 with R�1 , there are three cases:

a. If C�1 … R�1 , then set z11 … R�1 , z1k … 0, k …
2; 3; . . . ; m and zk1 … 0, k … 2; 3; . . . ; n. For the
row 1 and column 1 where zij have been
determined, we have

Pm
j…1 z1j … z11 … R�1 …

R01 and
Pn

i…1 zi1 … z11 … C�1 … C01. So, (13) and
(14) are both met in row 1 and column 1. The
remaining undetermined elements zij; i … 2;
3; . . . ; n; j … 2; 3; . . . ; m, are in the matrix
Zðp�1Þ�ðq�1Þ. According to assumption 2), the
remaining matrix Zðp�1Þ�ðq�1Þ can be correctly
worked out.

b. If C�1 > R�1 , then set z11 … R�1 , z1k … 0, k …
2; 3; . . . ; m and C�1 … C�1 �R�1 . For the row 1
where zij have been determined, we haveP m

j…1 z1j … z11 … R�1 … R01, (13) is met. For
column 1 which is updated, we have C�1 þ z11
… C01, it does not violate (14). The remaining
undetermined elements zij, i … 2; 3; . . . ; n,
j … 1; 2; 3; . . . ; m, are in the matrix Zðp�1Þ�q.
We continue run the algorithm to compute
the remaining elements in Zðp�1Þ�q that
satisfies (13) and (14). Note that C�1 mono-
tonously decreases after each round of
assignment and

Pn
i…2 R�i …

Pm
j…1 C�j > C�1 .

There must exist R�l � C�1 in round l, we set
zl1 … C�1 , zk1 … 0; k … lþ 1; lþ 2; . . . ; n and
R�l … R�l � C�1 . Then, the remaining matrix
is Zðp�lþ1Þ�ðq�1Þ. According to assumption 2),
the remaining matrix Zðp�lþ1Þ�ðq�1Þ can be
correctly worked out.

c. If R�1 > C�1 , similar to b, we can prove this
case.

4. The proof of cases n … p, m … q � 1 and n … p� 1,
m … q are similar to 3.

Combining 1, 2, and 3 with 4, the proposed algorithm
can correctly compute all elements in the matrix Zn�m,
such that (13) and (14) are both met.

Theorem 3 is proved. tu

Theorem 4. The time complexity of the FillMatrix Algorithm is
Oðn2Þ.

Proof. It is not difficult to see that the time complexity of the
proposed algorithm is Oðn2Þ. Theorem 4 is proved. tu

Thus, the case of n > km can be smoothly transformed to
the case of n … km. Integrating together with FillMatrix
algorithm and k-Matching algorithm, we have the algo-
rithm of decomposing the workload matrix for general
cases of n � km.

DecomposeMatrix Algorithm
Input: a workload matrix Xn�m.
Output: a sequence of schedule matrices P1; P2; . . . ; Pt.
Begin

if n > km then
Run FillMatrix on Xn�m to obtain Wp�q, where
p … nþ n%k, q … ðnþ n%kÞ=k;

Construct a bipartite graph G from Wp�q;
while there exist edges in G do

Run k-Matching to find a schedule matrix Pi;
Deduct Pi from Wp�q and removeedges with weight
0 in G;

endwhile
Output Wp�q … P1 þ P2 þ . . .þ Pt;

End

Theorem 5. The total time complexity of the DecomposeMatrix
algorithm is OðjEj � n3Þ.

Proof. Proof is similar to the proof of Theorem 2. tu
Given a workload matrix Xn�m, using the proposed

algorithm, we can fill the matrix to make it a square matrix
Wp�q and decompose Wp�q into a sequence of schedule
matrices as follows:

Wp�q … P1 þ P2 þ . . .þ Pt; ð15Þ

where Pi is the schedule matrix which is corresponding to a
perfect matching in Gk. According to the Theorem 2, t can
be bounded by p� q.

Let P 0i denote the matrix which contains the first n rows
and m columns in Pi (i.e., the information for the n valid
sensors and m valid targets by dropping the dummy parts),
i … 1; 2; . . . ; t. By removing the dummy columns and rows
in Pi, we have following valid schedule matrices:

Xn�m … P 01 þ P 02 þ . . .þ P 0t : ð16Þ

The above discussions conclude that a workload matrix is
decomposable to a sequence of schedule matrices such that
each value of xij and fij, can be actually met. In the next
section, we will determine a sensor surveillance tree for each
schedule matrix that specifies the routes for active sensors to
pass sensed data to BS, such that the maximal lifetime L can be
finally achieved.

1532 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

Authorized licensed use limited to: CityU. Downloaded on July 23, 2009 at 11:54 from IEEE Xplore.  Restrictions apply. 



4.3 Determine Surveillance Tree
We have obtained a sequence of schedule matrices. Each
schedule matrix specifies the active sensors watching
targets in this session. That is, the number of sessions is
the number of schedule matrices. To allow the active
sensors send their sensed data to the BS at each session, we
need to construct a sensor surveillance tree whose root is
the BS and all leaf nodes are the active sensors. The sensed
data flow from active sensors to the BS along the tree. Some
active sensors can perform both duties of watching targets
and forwarding data for other sensors at the same time.

From computing the LP formulation in Section 4.1, we
have obtained a data flow fij from any sensor node i to
sensor node j. To forward data to the BS, each sensor node,
say i, needs to follow its outgoing flow fij in order to
achieve the maximal lifetime L. Suppose sensor i has l
downstream nodes, denoted by s1; s2; . . . ; sl, to forward its
data to the BS (i.e., fi1; fi2; . . . ; fil have nonzero values).
Since there is no ordering of data flow fi1; fi2; . . . ; fil, we
simply let sensor i pass its outgoing data first to s1 until
flow fi1 is saturated, then it switch to s2 until the value of fi2
is met, . . . , and finally it pass the last flow fil to sl. The
outgoing data of sensor i include its own sensed data and
the data it helps others to forward to the BS, as shown in the
left-hand side of (4). By following the data flow obtained
from the LP formulation in forwarding data to the BS, the
optimal routes, in terms of energy efficiency, are used and
thus the maximal lifetime L is achieved.

In the sensor surveillance system, after computing the
schedule matrices and the data flow, the BS will dissemi-
nate this schedule and flow to sensor nodes at the system
initialization stage. When the system starts operation, each
sensor will watch targets, turn off to sleep, receive, and
forward data according to its schedule. Notice that some
sensors may work continuously for multiple sessions. There
is no need to synchronize sensors to switch target watching
at the end of session. Each sensor works according to its
own schedule independently from the others. A sensor can
watch a target continuously until it is time to switch to
another target or turn itself off.

Since clock synchronization is now achievable in sensor
networks by using some localized method [14] or time
synchronization scheme [17], sensors can cooperate cor-
rectly for the surveillance work.

5 EXPERIMENTS AND SIMULATIONS

5.1 A Numeric Example
We randomly place a BS, six sensors (in clear color in Fig. 4)
and three targets (in gray in Fig. 4) in a 10 � 10 two-
dimensional free-space region. For simplicity, we assume
that each target requires one sensor to watch at any time, i.e.,
k … 1, and the surveillance range and the maximal transmis-
sion range of sensors are set to 0:4� 10 and 0:8� 10 (our
solution can work for systems with nonuniform surveillance
ranges and maximal transmission ranges), respectively. Fig. 4
shows neighbors of sensors and the surveillance relationship
between sensors and targets. An edge between a sensor and a
target represents the target is within the surveillance range of
the sensor. An arc from sensor si to sj represents sj is within
the maximal transmission range of si (in this example,
maximal transmission ranges for all sensors are uniform, so
arcs are replaced by edges in Fig. 4). The initial energy
reserves of sensors are random numbers generated in the
range of [0, 100] with the mean at 50, as shown in Table 1. To
simulate the energy consumed on different tasks, we set eT …
0:12 and eR … 0:1. These values are in proportional to the
actual power consumption for transmitting and receiving
data as pointed out in [22]. The energy consumption ratio for
sensing data eS is set to the same as eR , i.e., eS … 0:1,
because sensing data usually cost similar amount of energy as
receiving data [22]. The sensing data rate R … 1 and the signal
decline factor � … 2.

We follow the three steps in our method to find sensor
surveillance trees.

First, we use the linear programming, described in
Section 4.1, to compute the maximal lifetime L, workload
matrix X6�3 and data flows (see Table 2) that achieve L:

L … 28:6972;

X6�3 …

0 0 0
17:2300 0 0

0 0 0
0 13:0999 0
0 0 28:6972

11:4672 15:5973 0

2

666666664

3

777777775

:

In the workload matrix, we can see target 1 is watched by
sensors 2 and 6 for 17.2300 and 11.4672, respectively. The
total time for target 1 to be watched is 28.6972, which is the
lifetime of the surveillance system.

Second, we run the FillMatrix algorithm to append a
dummy matrix to the workload matrix to make it a square
matrix W6�6, where the sum of each column and the sum of
each row are all equal to L:
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The Initial Energy Reserves of Six Sensors
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W6�6 …
0 0 0 28:6972 0 0

17:2300 0 0 0 11:4672 0
0 0 0 0 17:2300 11:4672
0 13:0999 0 0 0 15:5973
0 0 28:6972 0 0 0

11:4672 15:5973 0 0 0 1:6327

2

666666664

3

777777775

:

Then, we run the DecomposeMatrix algorithm to decom-
pose W6�6 into three schedule matrices P1, P2, and P3 (i.e.,
the decomposition terminates at round 3), such that

W6�6 … P1 þ P2 þ P3:

By removing the dummy columns of the schedule
matrices, we have:

X6�3 …
0 0 0

1:6327 0 0
0 0 0
0 1:6327 0
0 0 1:6327
0 0 0

2

666666664

3

777777775

þ

0 0 0
15:5973 0 0

0 0 0
0 0 0
0 0 15:5973
0 15:5973 0

2

666666664

3

777777775

þ

0 0 0
0 0 0
0 0 0
0 11:4672 0
0 0 11:4672

11:4672 0 0

2

666666664

3

777777775

:

Finally, the surveillance trees based on the above
schedule matrices and data flows are determined. The
surveillance trees for three sessions are shown as Fig. 5a,
Fig. 5b, and Fig. 5c, respectively.

It is easy to see that the surveillance trees in Fig. 5 satisfy
both the surveillance requirement and data flow con-
straints. Thus, the maximal lifetime L is actually achieved.

5.2 Simulations
The simulations are conducted in a 100� 100 two-
dimensional free-space region. BS, sensors, and targets
are randomly distributed inside the region. Again, the

surveillance range and the maximal transmission range of
all sensors are set to 0:4� 100 and 0:8� 100, respectively
(except the simulations for Fig. 6a and Fig. 6b). We
assume that each target should be watched by three
sensors at any time, i.e., k … 3 (except the simulations for
Fig. 6d). The signal decline factor � … 2 and the initial
energy reserves of sensors are the random numbers in the
range of [0, 100], with the mean value of 50. We study
the performance against four parameters: surveillance
range, maximal transmission range, number of sensors in
the network, and number of sensor required by each
target during the surveillance. The results presented in
the figures are the means of 100 separate runs.

A greedy algorithm is proposed to compare the perfor-
mance with our optimal solution. The basic idea of the greedy
method is as follows: Each time, we find a k-matching in the
network graph as a schedule for alive sensors (sensors with
nonzero energy reserve) to watch targets. Then, for each
sensor scheduled to work in the session, we find the minimal
energy cost path from it to the BS. When any node either in
watching a target or in the path runs out of energy, it is
removed from the network and another k-matching or path is
computed. This operation is repeated until the k-matching
cannot cover all targets or the path to BS cannot be found. The
system lifetime of the greedy method is the minimal
surveillance time that each target is watched.

Fig. 6a and Fig. 6b show the lifetime versus the change of
surveillance range and the maximal transmission range of
sensors, respectively. We set n … 100, m … 10, and k … 3.
From the figures, we can see that when the surveillance
range (the maximal transmission range) increases, the
performance gap between two methods becomes more
significant. This is because, with a small surveillance range
(maximal transmission range), sensors usually have got a
few targets (sensors) within its surveillance range (maximal
transmission range). There is hardly any room that our
optimization method can take advantages. As the surveil-
lance range (the maximal transmission range) becomes
larger, more sensors are able to cover multiple targets
(sensors), which gives our method more room to schedule
the sensors properly to achieve the maximal lifetime. That is
why the performance gap between the two methods
becomes more significant as the increase of the surveillance
range (the maximal transmission range). Furthermore, we
can see that the increase of surveillance range is more
effective to extending the system lifetime than the increase
of the maximal transmission range. This is because the
surveillance range is usually much smaller than the
communication range of sensors. It is always the bottleneck
of the maximization of system lifetime, and some targets
could not be watched by enough sensors often results in
quick die of surveillance systems.

Fig. 6c shows how the lifetime is affected by the number
of sensors placed in the region (density of sensors). Curves
in Fig. 6c exhibit the similar trend as those in Fig. 6a and
Fig. 6b. As more sensors deployed in the same region, the
density becomes higher. A target can be watched by more
sensors and there is a higher chance for a target to be in the
surveillance range of multiple sensors. At the same time, a
sensor can reach more neighbors and can choose more
energy-efficient routes to forward data. Thus, our optimal
algorithm takes more advantages by optimizing the
schedule and the performance becomes more significant
than the greedy method when the density of sensors
becomes higher.
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Fig. 6d shows how the lifetime is affected by the number
of sensors required by each target during the surveillance.
We set n … 100, m … 10, and vary k from 1 to 6. Once again,
the performance of our optimal algorithm is much better
than that of greedy algorithm. In Fig. 6d, although the
performance gap between two algorithms becomes smaller
when k increases, the ratio of the lifetime achieved by our
algorithm over that of greedy algorithm is about 5 when
k … 1, while this ratio reaches almost 10 when k … 6. It
means that our optimal algorithm takes more advantages
when k becomes larger. The reason is similar to the analysis
we discussed before.

From Figs. 5a, 5b, 5c, 6a, 6b, 6c, and 6d, we have the
following conclusions:

1. Our optimal algorithm has significantly better perfor-
mance in the situation where sensors have larger
surveillance and communication range, or when
sensors are densely deployed and k becomes larger.

2. The increase of surveillance range is more effective
to extending the system lifetime than the increase of
the maximal transmission range of sensors.

6 CONCLUSIONS

This paper addressed the maximal lifetime scheduling for
sensor surveillance systems with K sensors to 1 target. This
is the first time in the literature that this scheduling problem
of sensor surveillance systems was formulated and the
optimal solution was presented.

Our solution consists of three steps: 1) compute the
maximum lifetime of the system, and find the workload
matrix and data flows to BS by using linear programming
method, 2) decompose the workload matrix into a sequence
of schedule matrices by using perfect matching method.
This decomposition can preserve the maximum lifetime.
3) construct a surveillance tree for each session of schedule
matrix. These surveillance trees specify how the active
sensors forward data flows to BS. It is not difficult to see
that our solution is the optimum in the sense that it can find
the schedules for sensors watching targets that achieve the
maximum lifetime. We illustrated our optimal method by
an example in the end. Simulations were further conducted
to show that our algorithm has significantly better
performance in the situation where sensors have larger
surveillance and communication range, or when sensors are
densely deployed and k becomes larger.
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Fig. 6. (a) L versus surveillance range. (b) L versus the maximal
transmission range. (c) L versus n when m … 10. (d) L versus k.

Fig. 5. The surveillance trees for three sessions. (a) Session 1, (b) session 2, and (c) session 3.
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