
General Maximal Lifetime Sensor-Target
Surveillance Problem and Its Solution

Hai Liu, Member, IEEE, Xiaowen Chu, Member, IEEE, Yiu-Wing Leung, Senior Member, IEEE,

Xiaohua Jia, Senior Member, IEEE, and Peng-Jun Wan, Member, IEEE

Abstract—We address a new and general maximal lifetime problem in sensor-target surveillance. We assume that each sensor can

watch at most k targets (k � 1) and each target should be watched by h sensors (h � 1) at any time. The problem is to schedule

sensors to watch targets and forward the sensed data to a base station such that the lifetime of the surveillance network is

maximized. This general problem includes the existing ones as its special cases (k ¼ 1 and h ¼ 1 in [12] and k ¼ 1 and h � 2 in

[13]). It is also important in practice because some sensors can monitor multiple or all targets within their surveillance ranges and

multisensor fusion (i.e., watching a target by multiple sensors) gives better surveillance results. The problem involves several

subproblems and one of them is a new matching problem called ðk; hÞ-matching. The ðk; hÞ-matching problem is a generalized

version of the classic bipartite matching problem (when k ¼ h ¼ 1, ðk; hÞ-matching becomes bipartite matching). We design an

efficient (k, h)-matching algorithm to solve the ðk; hÞ-matching problem and then solve the general maximal lifetime problem. As a

byproduct of this study, the ðk; hÞ-matching problem and the proposed ðk; hÞ-matching algorithm can potentially be applied to other

problems in computer science and operations research.

Index Terms—Wireless sensor networks, maximal lifetime, scheduling, matching, routing.

Ç

1 INTRODUCTION

SENSOR-TARGET surveillance is one of the promising
applications of wireless sensor networks. Typically a

sensor-target surveillance network consists of sensor nodes
(sensors for short), targets, and a base station in a
surveillance region. Sensors are used to monitor the targets
and collect and transmit the sensed data to the base station.
In many applications, sensors are used to monitor some
given targets located at fixed positions (e.g., monitor the
temperature of some machines in a factory, monitor the
chemical composition around some cargo containers which
carry dangerous chemicals in long journey of shipment, etc.).

Sensors are usually powered by batteries with limited
energy reserve. Therefore, it is desirable to prolong or
maximize the lifetime of the sensor-target surveillance
network, where the lifetime is the duration that the
surveillance network can be properly operated (i.e., all
targets can be watched and all data can be transmitted).
Once the lifetime expires, certain sensors are depleted of
energy and consequently certain target(s) cannot be watched
or some data cannot be forwarded to the base station.

To maximize the lifetime of the sensor networks, there are
three solution approaches: 1) energy efficient routing [1], [6],
[8], [9], [10] by which data are efficiently gathered and routed

to the base station, 2) on/off scheduling [3], [4], [19] by which
the sensors are scheduled to take on or off modes in order to
reduce energy consumption while keeping the surveillance
network functioning, and 3) integrated routing and on/off
scheduling [12], [13] which combines the first two ap-
proaches. Among the above three approaches, the integrated
routing and on/off scheduling approach is promising
because it takes two inter-dependent issues (i.e., routing
and on/off scheduling) into account. Two recent studies [12],
[13] adopted this approach and solved the resulting maximal
lifetime problems for two respective models: 1) a sensor can
watch one target at a time and a target should be watched by
one sensor at any time [12], and 2) a sensor can watch one
target at a time and a target should be watched by h sensors
(h � 2) at any time [13].

In this paper, we study a general maximal lifetime sensor-
target surveillance (MLSTS) problem. In this problem, each
sensor can watch at most k targets (k � 1) and each target
should be watched by h sensors at any time (h � 1). This
general problem is practically important for two reasons.
First, some sensors can watch multiple or all targets within
their surveillance ranges. The following are two examples:

Example 1. In industry, a sensor equipped with k pairs of
infrared light emitting diodes (IR-LEDs) can be used to
monitor the speed of k rotating machines [7]. In this
example, each sensor can watch multiple targets (rotat-
ing machines) within its surveillance range.

Example 2. Suppose some cargo containers carry dangerous
chemicals and they are being shipped in a long journey
or are temporarily placed at a port. To detect the possible
leakage, sensors can be used to sample the air and detect
these chemicals. In this example, each sensor can watch
all targets (containers) within its surveillance range.

Second, it is desirable to watch a target by multiple
sensors because this can give better information accuracy,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011 1757

. H. Liu, X. Chu, and Y.-W. Leung are with the Department of Computer
Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR.
E-mail: {hliu, chxw, ywleung}@comp.hkbu.edu.hk.

. X. Jia is with the Department of Computer Science, City University of
Hong Kong, Kowloon Tong, Hong Kong SAR. E-mail: jia@cs.cityu.edu.hk.

. P.-J. Wan is with the Department of Computer Science, Illinois Institute of
Technology, 10 W. 31st Street, Chicago, IL 60616. E-mail: wan@cs.iit.edu.

Manuscript received 5 May 2010; revised 6 Nov. 2010; accepted 18 Nov.
2010; published online 19 Jan. 2011.
Recommended for acceptance by A. Nayak.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-05-0269.
Digital Object Identifier no. 10.1109/TPDS.2011.42.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

better noise suppression, and better robustness to sensor
failure. In fact, this is a well-established field in signal
processing called multisensor fusion [14]. The general
problem can take the above practical factors into account.
On the other hand, the general problem includes the
existing problems as its special cases (i.e., k ¼ 1 and h ¼ 1
in [12], and k ¼ 1 and h � 2 in [13]).

Our contributions include the following:

. General MLSTS problem: We address a new and
general MLSTS problem which is practically im-
portant (see the above discussion) and novel in its
generality (it includes the existing problems [12],
[13] as its special cases).

. New matching problem and algorithm: The general
MLSTS problem can be decomposed into several
sub-problems and one of them is a new matching
problem called ðk; hÞ-matching. The ðk; hÞ-matching
problem is a generalized version of the classic
bipartite matching problem [5] (when k ¼ h ¼ 1,
ðk; hÞ-matching becomes bipartite matching). Given
a bipartite graph in which the vertices are parti-
tioned into two disjoint sets (e.g., these sets contain
the sensors and the targets, respectively), the ðk; hÞ-
matching problem is to match the vertices in one set
to the vertices in another set such that: 1) each vertex
in the first set is matched to k vertices in the second
set, and 2) each vertex in the second set is matched
to h vertices in the first set. We design an efficient
ðk; hÞ-matching algorithm for this matching pro-
blem. As a byproduct of this study, the ðk; hÞ-
matching problem and algorithm can potentially be
applied to other problems in computer science and
operations research.

. Solution to general MLSTS problem: We solve the
general MLSTS problem and apply the proposed
ðk; hÞ-matching algorithm in a key step. Our solution
involves a conjecture, and we theoretically prove its
special case and empirically verify its general case
through over 6,000,000 randomly generated problem
instances.

The rest of the paper is organized as follows: in Section 2, we
survey the relevant existing results. In Section 3, we formulate
the general MLSTS problem. In Section 4, we define the ðk; hÞ-
matching problem which is one of the subproblems of the
general MLSTS problem. We design an efficient algorithm to
solve this matching problem. In Section 5, we solve the
MLSTS problem. In Section 6, we present a numeric example
for illustration and simulation results for performance
evaluation. We conclude our work in Section 7.

2 RELATED WORK

In the literature, three major approaches have been
proposed for maximizing the lifetime of wireless sensor
networks: 1) energy efficient routing [1], [6], [8], [9], [10],
2) on/off scheduling [3], [4], [19], and 3) integrated routing
and on/off scheduling [12] [13]. We survey these existing
approaches in Section 1 in the supplemental material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.42.

3 FORMULATION OF THE MLSTS PROBLEM

In this section, we formulate the general MLSTS problem.
We define the notations in Table 1. Sensors, targets, and the
base station can be placed anywhere in the surveillance
area and their positions are fixed after placement. Their
location information can be obtained via the improved
centroid localization algorithm [2]. Sensors are time
synchronized where synchronization can be achieved by
using a time synchronization scheme, e.g., [17], during
system initialization. Each sensor can watch at most kðk �
1Þ targets within its surveillance range. For the special case
that a sensor can watch all targets within its surveillance
range, we set k ¼ maxfk1; k2; . . . ; kng where ki targets are
within the surveillance range of sensor si (an alternative is
to set k ¼ m but this involves larger computation complex-
ity as m � maxfk1; k2; . . . ; kngÞ. Each target must be
watched by hðh � 1Þ sensors at any time. Each sensor has
an initial energy reserve, a fixed surveillance range, and a
transmission range which could be fixed or adjustable. If
the transmission range is fixed, ’ij can be represented as
’ij ¼ �eT , where � is a constant. If the transmission range is
adjustable, the largest possible transmission range depends
on the physical features of the sensors (e.g., battery power
and antenna type). The source sensor adjusts its transmis-
sion range to exactly reach the destination sensor in order
to save energy. The energy for transmitting one data unit
from sensor si to sj is equal to ’ij ¼ eT ðdijÞa, where dij is the
euclidean distance between sensors si and sj and � is the
signal decline factor.

The general MLSTS problem is to schedule the sensors to
watch the targets and route the sensed data to the base
station, such that the lifetime of the surveillance network is
maximized. The lifetime is the duration that the surveil-
lance network can be operated until at least one of the
following events occurs: 1) there exists at least one target,
say tj, such that the number of sensors watching this target
is less than h because some sensors are depleted of energy,
and 2) the sensed data cannot be forwarded to the base
station because the network becomes disconnected due to
depletion of energy.

1758 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

TABLE 1
Notations

Each sensor is either in the active mode (in which it
senses and/or forwards data) or in the sleep mode (in which
it neither senses nor forwards data). The operation time of
the surveillance network is divided into a sequence of
sessions. In each session, some sensors are in the active
mode to watch the targets and forward the sensed data to
the base station while other sensors are in the sleep mode.
Each sensor remains in the same mode within a session. In a
session, a sensor-target surveillance schedule specifies the
sensors that should be active and the target(s) that each of
these sensors should watch in this session, and a sensor-
target surveillance tree specifies how the sensed data are
routed to the base station in this session. The MLSTS
problem is to determine the sensor-target surveillance
schedules and trees for all the necessary sessions in order
to maximize the lifetime. Once the surveillance schedules
are determined, the number of sessions is fixed throughout
the surveillance lifetime.

At the system initialization stage, the base station gathers
location information of all sensors by using a data gathering
algorithm, e.g. [10]. The base station determines the
surveillance schedules and trees using the method described
in Section 5, and then disseminates them to all sensors by
using a broadcasting algorithm, e.g., [11]. When the system
starts operation, all sensors follow the surveillance schedules
to watch targets and send/receive data by using a collision-
free medium access control protocol, e.g., [15].

4 ðk; hÞ-MATCHING PROBLEM AND ALGORITHM

In this section, we formulate and solve a new matching
problem called ðk; hÞ-matching. It is a generalized version of
the classic bipartite matching problem [5] (when k ¼ h ¼ 1,
ðk; hÞ-matching becomes bipartite matching). The ðk; hÞ-
matching problem arises as a subproblem of the general
MLSTS problem (the details will be given in Section 5). It
can potentially be applied to other problems in computer
science and operations research.

4.1 ðk; hÞ-Matching Problem

In the following, we define the ðk; hÞ-matching problem.

Definition 1 (Loose (k, h)-matching). Let GðS [T;EÞ be a
bipartite graph where E is the set of edges of this graph and S
and T are two disjoint sets of the vertices, jSj � h; jT j � k,
and kjSj � hjT j. A loose (k, h)-matching is defined to be a set
of edges ð � EÞ such that

1. Each vertex in S is an endpoint of at most k edges in .
2. Each vertex in T is an endpoint of at most h edges in .

The loose ðk; hÞ-matching means that each vertex in S is
matched to at most k vertices in T and each vertex in T is
matched to at most h vertices in S. We further define ðk; hÞ-
matching as follows:

Definition 2 ((k, h)-matching). A loose (k, h)-matching is said
to be a (k, h)-matching if it contains kjSj edges and
kjSj ¼ hjT j.

The ðk; hÞ-matching means that each vertex in S is
matched to exactly k vertices in T and each vertex in T is
matched to exactly h vertices in S. The ðk; hÞ-matching
problem is defined as follows:

Definition 3 ((k, h)-matching problem). Given a bipartite
graph GðS [T;EÞ, the (k, h)-matching problem is to
determine a (k, h)-matching if it exists.

4.2 ðk; hÞ-Matching Algorithm

To the best of our knowledge, the ðk; hÞ-matching problem
has not been studied in the literature. For the special case in
which k ¼ h ¼ 1, the problem reduces to the classic bipartite
matching problem [5]. For the general case in which k and h
are any positive integers, the ðk; hÞ-matching problem is
more challenging because there are much more choices in
the matching process and it is challenging to efficiently
select a choice that can fulfill the matching criteria. For
example, when n ¼ m ¼ 20, bipartite matching is to match
every vertex to 1 of the 20 vertices and this involves 20
possible choices, but (10, 10)-matching is to match every
vertex to 10 of the 20 vertices and this involves 184,756
possible choices.

In this section, we propose a novel ðk; hÞ-matching
algorithm which determines a ðk; hÞ-matching in a given
bipartite graph as long as this matching exists. Before
describing the details of this algorithm, we need the
following definitions.

Definition 4 (k-unsaturated). A vertex in any vertex set is said
to be k-unsaturated if the number of edges associated with the
vertex in the loose (k, h)-matching is less than k.

Definition 5 (k-saturated). A vertex in any vertex set is said to
be k-saturated if the number of edges associated with the vertex
in the loose (k, h)-matching is exactly k.

Definition 6 (Augment path). with respect to a loose (k, h)-
matching. An augment path in the bipartite graph is a path
having the following properties: 1) it starts with a k-
unsaturated vertex in S and ends with an h-unsaturated
vertex in T ; 2) if an edge does not belong to the loose (k, h)-
matching, the adjacent edges in this path belong to the loose (k,
h)-matching; and 3) if an edge belongs to the loose (k, h)-
matching, the adjacent edges in this path do not belong to the
loose ðk; hÞ-matching.

Take the example in Fig. 1, 1a is a given bipartite graph
GðS [T;EÞ, where S ¼ fs1; s2; s3g and T ¼ ft1; t2; t3; t4;
t5; t6g. Bold edges in Fig. 1b form a loose (4, 2)-matching in
which each vertex in S matches at most four vertices in T and

LIU ET AL.: GENERAL MAXIMAL LIFETIME SENSOR-TARGET SURVEILLANCE PROBLEM AND ITS SOLUTION 1759

Fig. 1. Compute a ðk; hÞ-matching. (a) A bipartite graph. (b) A loose
(4, 2)-matching. (c) A (4, 2)-matching. (d) An augment path.

each vertex in T matches at most two vertices in S. s1 and s2

are 4-saturated and t1; t2; t3; t4, and t5 are 2-saturated. Gray
node s3 is 4-unsaturated and gray node t6 is 2-unsaturated.
Bold edges in Fig. 1c form a (4, 2)-matching in which all
vertices in S are 4-saturated and all vertices in T are 2-
saturated. With respect to the loose (4, 2)-matching in Fig. 1b,
1d shows an augment path s3 ! t4 ! s1 ! t6 which starts
with 4-unsaturated s3 and ends with 2-unsaturated t6. Edges
(s3; t4) and (s1; t6) do not belong to the loose (4, 2)-matching
while edge (t4; s1) belongs to the loose (4, 2)-matching.

In the following, we propose a novel ðk; hÞ-matching
algorithm to compute a ðk; hÞ-matching in bipartite graphs.
Our ðk; hÞ-matching algorithm is inspired by the augment
path technique for perfect matching. Let denote a loose
ðk; hÞ-matching, (si, tj) denote an edge from S to T , and (tj,
si) denote an edge from T to S. Although these edges have
no direction in the graph, this notation helps describe our
algorithm. The algorithm starts with any loose ðk; hÞ-
matching in the bipartite graph. Each time, it arbitrarily
selects a k-unsaturated vertex of S and tries to find an
augment path starting from the vertex. With respect to a
loose ðk; hÞ-matching, if an edge is in the matching, this edge
is called matching edge; otherwise, it is called nonmatching
edge. According to Definition 6, an augment path always has
one more nonmatching edge than matching edges. We
change the original matching edges to nonmatching edges
and change the original nonmatching edges to matching
edges. As a result, the number of matching edges increases
by one. We keep on finding augment paths for any k-
unsaturated vertex of S and increasing the size of . The
process is repeated until becomes a ðk; hÞ-matching. The
ðk; hÞ-matching algorithm is presented as follows:

In the algorithm, SðtjÞ denotes the set of vertices in S
which are connected to tj and T ðsiÞ denotes the set of
vertices in T which are connected to si. We present an
example in Section 2 in the supplemental material, which

can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.42,
to illustrate the ðk; hÞ-matching algorithm. The following
theorem states the correctness of the algorithm.

Theorem 1. The (k, h)-Matching algorithm can find a (k, h)-
matching if this (k, h)-matching exists in the bipartite graph.

Theorem 2. The (k, h)-Matching algorithm has a time complex-
ity of OðkjSjðjSj þ jT jÞÞ.

Proofs of Theorem 1 and Theorem 2 can be found in
Section 3 in the supplemental material, which can be
found on the Computer Society Digital Library.

In this section, we propose a ðk; hÞ-matching algorithm to
solve the ðk; hÞ-matching problem. The ðk; hÞ-matching
problem and its solution will be used in next section in
determining the sensor-target surveillance schedule.

5 SOLUTION TO THE MLSTS PROBLEM

The framework for solving the general MLSTS problem is as
follows: 1) determine the maximal lifetime, 2) determine a
sensor-target surveillance schedule for each session, and
3) determine a sensor-target surveillance tree for each session.
Although this framework is similar to the one studied in [12]
and [13], the new and major challenge is the surveillance
scheduling problem in step 2 and the main contribution of our
solution is to solve this scheduling problem.

5.1 Maximizing Lifetime

Let L be the lifetime of the surveillance network, xij be the
total time that sensor si watches target tj, and fij be the
amount of data transmitted from si to sj. The problem of
maximizing the lifetime can be formulated as the following:

Maximize L

Subject toX
tj2T ðiÞ

xij � kL 8si 2 S;
ð1Þ

X
si2SðjÞ

xij ¼ hL 8tj 2 T ; ð2Þ

eSR
X
tj2T ðiÞ

xij þ
X

sj2NðiÞ[fs0g
’ijfij þ eR

X
sj2NðiÞ

fji � Ei 8si 2 S;

ð3Þ

R
X
tj2T ðiÞ

xij þ
X

sj2NðiÞ
fji ¼

X
sj2NðiÞ[fs0g

fij 8si 2 S; ð4Þ

0 � xij � L 8si 2 S; tj 2 T ; ð5Þ

fij � 0 8si 2 S; sj 2 S [fs0g: ð6Þ

The objective function is the lifetime of the surveillance
network. Constraint (1) specifies that the total time that
sensor si can watch targets should not exceed k times the
network lifetime because each sensor can watch at most k
targets at a time. Constraint (2) specifies that the total time
that target tj is under surveillance is equal to h times the

1760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

network lifetime because each target should be watched by
h sensors throughout the lifetime. At this stage, constraint
(2) need not ensure that each target is watched by h sensors
at any time (this requirement will be met in Section 5.2 in
which the surveillance schedules are determined). Con-
straint (3) specifies that the total energy consumed by each
sensor should not exceed its initial energy reserve, where
the total energy consumption of each sensor consists of
three components: 1) the energy for watching targets, 2) the
energy for transmitting data where ’ij is equal to �eT based
on the fixed transmission range model or eT ðdijÞ� based on
the adjustable transmission range model, and 3) the energy
for receiving data. Since the energy consumption in the
sleep mode is several orders of magnitude smaller than that
in the active mode [16], our model only considers the
energy consumption in the active mode (i.e., sensing,
sending, and receiving data). The fourth constraint ensures
flow conservation (i.e., for each sensor, the total amount of
data sensed and received should be equal to the amount of
data transmitted). All data flows will eventually be
absorbed by the base station.

The above linear programming formulation is still
applicable if sensors have irregular surveillance ranges,
different surveillance ranges, and transmission ranges.
Specifically, given the shape of the surveillance area, the
surveillance range, and the transmission range of each
sensor, we can determine T (i), S(j), and N(i) for the sensor
and apply the linear programming formulation.

The above linear programming problem involves the
variables xij (1 � i � n and 1 � i � m) and fij (1 � i � n
and 0 � j � n). It can be solved in polynomial time by any
existing linear programming methods to yield the optimal
xijand fij and L. The optimal xij specifies the total time that
sensor si should watch target tj while the optimal fij
specifies the total amount of data transmitted from sensor si
to sensor sj or the base station. To realize these optimal xij
and fij in order to achieve the maximal lifetime, it is
necessary to determine a sensor-target surveillance schedule

(specifying the sensors that should be active and the targets
that these sensors should watch) and a sensor-target

surveillance tree (specifying how the sensed data are routed
to the base station) for each session. We will determine the
schedules in Section 5.2 and the trees in Section 5.3.

5.2 Determining Sensor-Target Surveillance
Schedules

In this section, we determine the sensor-target surveillance
schedules to realize the optimal xij determined in Section 5.1
to achieve the maximal lifetime. The number of sessions,
which is equal to the number of surveillance schedules, is
also determined. We will prove in Theorem 4 that the
number of sessions is upper bounded by n2mk.

We let Xn�m ¼ ðxijÞn�m be a workload matrix, where xij
is found by solving the linear programming problem in
Section 5.1. The workload matrix specifies the total length of
time that a sensor should watch a target. We let PsðcsÞ be a
schedule matrix of the sth session, where cs is the time
period of this session. PsðcsÞ represents the schedule of the
sth session and it has the following properties:

1. PsðcsÞ is a matrix with n rows and m columns where
the element in the ith row and the jth column gives
the duration that sensor i is scheduled to watch
target j in this session.

2. There are at most k nonzero elements in each row
because each sensor can watch at most k targets at a
time.

3. There are exactly h nonzero elements in each column
because each target should be watched by h sensors.

4. All nonzero elements have the same value ci (i.e., the
duration of the ith session).

To determine the sensor-target surveillance schedules for
all sessions, we decompose the workload matrix into a
sequence of schedule matrices such thatXn�m ¼

Pg
i¼1 PiðciÞ,

where g is the total number of sessions. We remind that there
are n sensors and each sensor can watch at most k targets
while there are m targets and each target should be watched
by h sensors at any time. Therefore, we have kn � hm
(otherwise, there is no feasible solution). In the following
sections, we first consider the case of kn ¼ hm (i.e., all
sensors must be active until the end of the surveillance
operation) and then extend the results to the case of kn > hm.

5.2.1 The Case of kn ¼ hm
To decompose the workload matrix into a sequence of
schedule matrices, we transform this problem into the
ðk; hÞ-matching problem which has been defined and solved
in Section 4. Specifically, we represent the workload matrix
Xn�m as a bipartite graph GðS [T;EÞ, where one set
includes the sensors S ¼ fs1; s2; . . . ; sng and the other set
includes the targets T ¼ ft1; t2; . . . ; tmg. For each nonzero
element xij in Xn�m, there is an edge from si to tj and the
weight of this edge is xij. For the schedule matrix of session
i, each row has exactly k nonzero elements (i.e., each sensor
should watch k targets in this session) and each column has
exactly h nonzero elements (i.e., each target should be
watched by h sensors in this session). In other words, one
sensor matches k distinct targets and one target matches h
distinct sensors in the bipartite graph. Thus, the problem of
finding a schedule matrix is equivalent to finding the ðk; hÞ-
matching in the bipartite graph.

We use the ðk; hÞ-Matching algorithm, presented in
Section 4, to determine a ðk; hÞ-matching in the bipartite
graph. Once a ðk; hÞ-matching is computed in G, the next
step is to determine the corresponding schedule matrix and
its surveillance duration. Before proceeding, we need
certain features of the workload matrix. Let Ri and Cj be
the sum of elements in row i and column j of the workload
matrix Xn�m, respectively. According to (1) and (2) of the
linear programming problem, we have:

Cj ¼ hL; j ¼ 1; 2; . . . ;m; ð7Þ

Ri ¼ kL; i ¼ 1; 2; . . . ; n: ð8Þ

In addition, the sum of all rows is equal to the sum of all
columns (i.e.,

Pn
i¼1 Ri ¼

Pm
j¼1 Cj ¼ mhL). Since kn ¼ hm

(i.e., the case considered in this section), we have:

Xn
i¼1

Ri ¼ nkL: ð9Þ

LIU ET AL.: GENERAL MAXIMAL LIFETIME SENSOR-TARGET SURVEILLANCE PROBLEM AND ITS SOLUTION 1761

Combining (8) and (9), we have:

Ri ¼ kL; i ¼ 1; 2; . . . ; n: ð10Þ

From (5), (7), and (10), we observe the following three
important features:

. Feature 1. Every element is not greater than L.

. Feature 2. The sum of elements in each column is
equal to hL.

. Feature 3. The sum of elements in each row is equal
to kL.

As discussed at the beginning of Section 5.2, all elements
in a schedule matrix are either zero or ci (i.e., the time
duration of session i). Clearly, for any edge (si, tj) in the ðk; hÞ-
matching, the corresponding element in row i and column j
of the schedule matrix should be nonzero. Elements in
remaining positions are zero. ci should be carefully deter-
mined such that the above three features of the workload
matrix still hold after deducting the schedule matrix, which
guarantees the successful decomposition of the workload
matrix. In particular, ci is as large as possible (for reducing
the number of on/off operations) while the resulting
schedule and sensor-to-target match are valid. After deduct-
ing the schedule matrix from the workload matrix, the sum of
elements in each row is updated to kðL� ciÞwhile the sum of
elements in each column is updated to hðL� ciÞ. So, Features
2 and 3 still hold. To ensure that Feature 1 holds, any element
in the resulting workload matrix should not be greater than
L� ci. Let ai denote the smallest weight of edges in the ðk; hÞ-
matching found in session i, and bi denote the largest value of
the remaining elements in the workload matrix (these
elements are not in the positions which correspond to the
matching). We set ci tominðai; L� biÞwhich ensures that any
element in the resulting workload matrix is not greater than
L� ci and thus Feature 1 holds. The algorithm for determin-
ing the schedule matrix is given below.

Following the example in Fig. 1 where n ¼ 3, m ¼ 6,
k ¼ 4, and h ¼ 2, after solving the linear programming
problem, we get the following workload matrix (L ¼ 1):

1 0:5 1 0:5 0 1
0 1 0:5 1 1 0:5
1 0 0 0:5 1 0:5

2
4

3
5:

The above workload matrix, which has 14 nonzero entries,
is represented as a bipartite graphGðS [T;EÞwith 14 edges
as follows: S is a set of sensors fs1; s2; s3g, T is a set of targets
ft1; t2; t3; t4; t5; t6g, and there is an edge from sensor si to target
tj for each nonzero element xij in the workload matrix and
hence E contains 14 edges (see Fig. 1a). The ðk; hÞ-Matching
Algorithm is executed to compute a (4, 2)-matching which has
12 edges (these 12 edges are shown in bold in Fig. 1c). We can
see that the smallest weight of edges in the matching is 0.5 and
the largest weight of edges not in the matching is 0 (i.e., ai ¼
0:5 and bi ¼ 0). Since L� bi ¼ 1, we set ci ¼ ai ¼ 0:5. The
computed ðk; hÞ-matching defines the following schedule
matrix with 12 nonzero entries for this session:

0:5 0:5 0:5 0 0 0:5
0 0:5 0:5 0:5 0:5 0

0:5 0 0 0:5 0:5 0:5

2
4

3
5:

The workload matrix can be decomposed as follows: we
first transform the workload matrix into a bipartite graph.
We use the ðk; hÞ-Matching Algorithm to compute a ðk; hÞ-
matching in the bipartite graph. We use the Schedule-Matrix
Algorithm to determine its corresponding schedule matrix in
this session. Duration of the session is deducted from the
weight of the kn edges of the ðk; hÞ-matching. For the edges
whose weights become zero, they are removed from the
bipartite graph. We continue to compute a ðk; hÞ-matching in
the updated bipartite graph. This operation is repeated until
there is no ðk; hÞ-matching in the bipartite graph.

The following theorem states that there exists a ðk; hÞ-
matching in every round of decomposition if the three
features of the workload matrix hold for h ¼ 1. In the last
round of decomposition, all remaining edges form exactly a
ðk; hÞ-matching and are completely removed from the
bipartite graph.

Theorem 3. If the three features of a workload matrix hold and
h ¼ 1, the workload matrix can be expressed as P1ðc1Þ þ
P2ðc2Þ þ � � � þ PgðcgÞ, where each schedule matrix PiðciÞði ¼
1; 2; . . . ; gÞ corresponds to a (k, 1)-matching.

The Proof of Theorem 3 can be found in Section 3 in the
supplemental material, which can be found on the Computer
Society Digital Library.

Since k and h are symmetric, Theorem 3 also holds for
k ¼ 1 and h � 1. We extend Theorem 3 to the general case of
k, h � 1 and propose the following conjecture.

Conjecture. If the three features of a workload matrix
hold, the workload matrix can be expressed as P1ðc1Þ þ
P2ðc2Þ þ � � � þ PgðcgÞ, where every schedule matrix PiðciÞði ¼
1; 2; . . . ; gÞ corresponds to a ðk; hÞ-matching.

Verification. We have proved a special case (k ¼ h ¼ 1)
of the conjecture in Theorem 3. We have also verified the
general case of the conjecture through over 6,000,000
randomly generated problem instances. Details of the
verification can be found in Section 4 in the supplemental
material, which can be found on the Computer Society
Digital Library. Readers can download our simulation
program from [18] to repeat our experiments or conduct
further experiments for verification.

Theorem 4. The total number of sessions g is upper bounded by
n2mk. If h ¼ 1, g is upper bounded by nm.

The Proof of Theorem 4 can be found in Section 3 in the
supplemental material, which can be found on the Computer
Society Digital Library.

1762 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

Similarly, g is also upper bounded by nm for k ¼ 1 and
h � 1 due to symmetry of k and h.

5.2.2 The Case of kn > hm

In this section, we determine the schedule matrices for the
case of kn > hm. Our main ideas are as follows:

. We first transform the case of kn > hm to the case of
kn ¼ hm by adding some dummy sensors and
dummy targets into the network. The effect is to
add some dummy rows and columns to the work-
load matrix Xn�m, such that the sum of elements in
each column is equal to hL and the sum of elements
in each row is equal to kL. Note that the dummy
sensors and dummy targets are added only for the
purpose of computing. Sensors would not consume
any energy for watching dummy targets, and
dummy sensors would only watch dummy targets.
Therefore, after adding dummy sensors and dummy
targets, both the maximal lifetime and the sensor-
target surveillance schedules remain unchanged.

. We apply the algorithm in Section 5.2.1 to determine
the sensor-target surveillance schedules for the above
network with dummy sensors and dummy targets.

. We remove the dummy items from the above
schedules, so that we get the schedules for the network
with only real sensors and real targets. In other words,
we get the schedules for the case of kn > hm.

Let Wp�q (where kp ¼ hq) denote the resulting workload
matrix after adding dummy sensors and dummy targets,
and Zp�ðq�mÞ denote the dummy matrix which is appended
to the right hand side of Xn�m. Wp�q has the following form:

Wp�q ¼

x11x12 . . .x1m . . . z11z12 . . . z1ðq�mÞ
x21x22 . . .x2m z21z22 . . . z2ðq�mÞ
.
xn1xn2 . . .xnm zn1zn2:::znðq�mÞ
00 . . . 0
.
00 . . . 0 zp1zp2 . . . zpðq�mÞ

2
666666664

3
777777775
p�q

: ð11Þ

In the bottom-left part of Wp�q, elements are equal to 0
because dummy sensors only watch dummy targets. Note
that each sensor should watch exactly k targets because
kp ¼ hq. The number of columns in the dummy matrix
should not be less than k, i.e., q �m � k (otherwise, no
feasible schedule can be found). Thus, p is the smallest
positive integer which satisfies p ¼ minfp 2 Iþjp � n;
ðkpÞ mod h ¼ 0; ðkpÞ=h�m � 0g and q ¼ ðkpÞ=h.

To ensure that the workload matrix Wp�q satisfies the
three features (i.e., the sum of elements in each column is
equal to hL, the sum of elements in each row is equal to kL,
and each element is not greater than L), the dummy matrix
Zp�ðq�mÞshould satisfy the following conditions:

Xq�m

j¼1

zij ¼ kL�Ri for all i¼ 1; 2; . . . ; p; ð12Þ

Xn
i¼1

zij ¼ hL for all j ¼ 1; 2; . . . ; q �m; ð13Þ

zij � Lfor all i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . ; q �m: ð14Þ

In (12), Ri is equal to 0 for i ¼ nþ 1; . . . ; p. Let R�i record
the sum of the remaining undetermined elements in row i of
Zp�ðq�mÞ. Initially, we haveR�i ¼kL�Ri. We propose a simple
algorithm to compute the dummy matrix which satisfies the
above conditions. This algorithm assigns values to elements
of Zp�ðq�mÞin bottom-up order, and uniformly assigns values
to elements in each row without violating (12), (13), and (14).
Specifically, it starts with the last row and assigns the same
value R�p =ðq�mÞ to all elements in this row. Once it has
processed row p, it processes row p� 1 and assigns values to
the elements in this row in a similar way. It repeats this step
until it has assigned values to all elements. The algorithm for
computing the dummy matrix is given below.

Lemma 1. p and q are upper bounded by ðnþ n=hþ 2Þh and
ðnþ n=hþ 2Þk, respectively.

Theorem 5. For any given workload matrix Xn�m, the Fill-
Matrix Algorithm can compute the dummy matrix such that
the three features hold in the resulting matrix Wp�q. The time
complexity of the Fill-Matrix Algorithm is Oðn2hkÞ.

Proofs of Lemma 1 and Theorem 5 can be found in
Section 3 of Supplmental Material, which can be found on
the Computer Society Digital Library.

The algorithm for decomposing the workload matrix is
given below.

Theorem 6. The time complexity of the Decompose-Matrix
Algorithm is Oðn5h3k3ðhþ kÞÞ.

The Proof of Theorem 6 can be found in Section 3 of
Supplmental Material, which can be found on the Computer
Society Digital Library.

In the above time complexity analysis, m has been
implicitly considered because m is bounded by nk/h.

Using the proposed algorithms, we can fill any given
workload matrix Xn�m to form Wp�q and decompose Wp�q
into a sequence of schedule matrices such that:

Wp�q ¼ P1ðc1Þ þ P2ðc2Þ þ � � � þ PgðcgÞ: ð15Þ

Let P 0i ðciÞ denote the matrix containing the first n rows
and the first m columns of PiðciÞ (i.e., it does not contain the
dummy rows and columns). We remove all the dummy rows
and dummy columns from all the matrices in (15) and get:

Xn�m ¼ P 01ðc1Þ þ P 02ðc2Þ þ � � � þ P 0gðcgÞ: ð16Þ

In the above manner, a workload matrix can be
decomposed into a sequence of schedule matrices such
that we can realize the optimal xijð1 � i � n; 1 � j � mÞ
determined in Section 5.1.

LIU ET AL.: GENERAL MAXIMAL LIFETIME SENSOR-TARGET SURVEILLANCE PROBLEM AND ITS SOLUTION 1763

5.3 Determining Sensor-Target Surveillance Trees

In this section, we determine a sensor-target surveillance
tree for each session to achieve the maximal lifetime. These
surveillance trees are determined based on the optimal data
flows determined in Section 5.1 and the surveillance
schedules determined in Section 5.2. Each surveillance tree
has the following properties: 1) its root is the base station,
2) its leaf nodes are the active sensors of this session, and 3)
its intermediary nodes are the sensors which forward data
for others (hence, the intermediary nodes are active nodes).
Sensor si (1 � i � n) follows the optimal data flow fij
(determined in Section 5.1) in order to achieve the maximal
lifetime L. Suppose sensor si has l downstream nodes,
denoted by sd1

; sd2
; . . . ; sdl (i.e., fid1

,fid2
; . . . ; fidl are nonzero).

Since there is no ordering of data flows fid1
,fid2

; . . . ; fidl , we
let sensor si pass its outgoing data to sd1

until reaching the
flow value fid1

, then to sd2
until reaching the flow value

fid2
; . . . , and finally to sdl until reaching the flow value fidl .

The outgoing data from sensor si include its own sensed
data as well as the data of other sensors that it forwards to
the base station (see the left hand side of (3)). In this
manner, the optimal surveillance trees that realize the
maximal lifetime L can be determined.

5.4 Overall Solution

The overall solution is shown as a flowchart in Fig. 2.

Theorem 7. The proposed solution to the MLSTS problem has a
time complexity of OðmaxfðnmÞ3:5, n5h3k3ðhþ kÞgÞ.

Theorem 8. The proposed solution to the MLSTS problem has a
space complexity of Oðn5h3k3Þ.

Proofs of Theorem 7 and 8 can be found in Section 3 of
Supplmental Material, which can be found on the Computer
Society Digital Library.

6 EXAMPLE AND SIMULATIONS

We present a numerical example in Section 5 of the
supplmental material, which can be found on the Computer
Society Digital Library to illustrate all the steps involved
and conduct extensive simulations in Section 6 of the
supplemental material, which can be found on the
Computer Society Digital Library to evaluate our solution.

Simulation results show that the proposed algorithm can
achieve significantly longer lifetime than a greedy algo-
rithm and thus it is worthy to design and implement the
sophisticated algorithm for maximizing the lifetime.

7 CONCLUSIONS AND FUTURE WORK

We formulated a general maximal lifetime sensor-target
surveillance problem, in which each sensor can watch at
most k targets (k � 1) and each target should be watched by h
sensors (h � 1) at any time. We proposed a new solution to
solve MLSTS. In particular, we transformed the scheduling
problem involved in MLSTS into a new and general ðk; hÞ-
matching Problem. We designed an efficient ðk; hÞ-matching
algorithm for this matching problem. As a byproduct of this
study, the ðk; hÞ-matching problem and the proposed match-
ing algorithm can potentially be applied to other problems in
computer science and operations research.

The present work has two possible extensions. First, the
sensors in some applications may have directional sensing
ranges (e.g., ultrasonic sensors) and this characteristic gives
rise to a new maximal lifetime surveillance problem.
Second, the proposed conjecture is an open problem which
has mathematical significance in matrix computation and
decomposition.

ACKNOWLEDGMENTS

This work is supported in part by grant from Research Grants
of Hong Kong [Project No. HKBU211009], and NSF China
Grants No. 60633020 and No. 60970117. Peng-Jun Wan is
supported in part by the US National Science Foundation
(NSF) under grants CNS-0831831 and CNS-0916666.

REFERENCES

[1] A.E. Abdallah, T. Fevens, J. Opatrny, and I. Stojmenovic, “Power-
Aware Semi-Beaconless 3D Georouting Algorithm Using Adjus-
table Transmission Ranges for Wireless Ad Hoc and Sensor
Networks,” Ad Hoc Networks, vol. 8, no. 1, pp. 15-29, 2010.

[2] J. Blumenthal, F. Reichenbach, and D. Timmermann, “Decreasing
the Localization Error in Border Areas of Sensor Networks,” Proc.
Int’l Conf. Distributed Computing in Sensor Systems (DCOSS ’08),
pp. 47-48, 2008.

1764 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

Fig. 2. Steps of the proposed solution to the general MLSTS problem.

[3] M. Cardei and D.-Z. Du, “Improving Wireless Sensor Network
Lifetime through Power Aware Organization,” J. Wireless Net-
works, vol. 11, pp. 333-340, 2005.

[4] M. Cardei, M. Thai, Y. Li, and W. Wu, “Energy-Efficient Target
Coverage in Wireless Sensor Networks,” Proc. IEEE INFOCOM,
2005.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, third ed. MIT Press, 2009.

[6] H. Frey, S. Ruehrup, and I. Stojmenovic, “Routing in Wireless
Sensor Networks,” Guide to Wireless Ad Hoc Networks, S. Misra,
I. Woungag, and S. Misra, eds., ch. 4, pp. 81-111, Springer-Verlag,
2009.

[7] Infra-Red Sensors, http://www.ikalogic.com/ir_prox_sensors.
php, 2011.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. MObiCOM, 2000.

[9] A.M. Kermarrec, G. Tan, “Greedy Geographic Routing in Large-
Scale Sensor Networks: A Minimum Network Decomposition
Approach,” Proc. 11th ACM Int’l Symp. Mobile Ad Hoc Networking
and Computing (MobiHoc ’10), pp. 161-170, 2010.

[10] S. Lindsey, C. Raghavendra, and K.M. Sivalingam, “Data
Gathering Algorithms in Sensor Networks Using Energy Metrics,”
IEEE Trans. Parallel and Distributed Systems, vol. 13, no. 9, pp. 924-
935, Sept. 2002.

[11] H. Liu, X. Jia, P.-J. Wan, X. Liu, and F. Yao, “A Distributed and
Efficient Flooding Scheme Using 1-hop Information in Mobile Ad
Hoc Networks,” IEEE Trans. Parallel and Distributed Systems,
vol. 18, no. 5, pp. 658-671, May 2007.

[12] H. Liu, X. Jia, P.-J. Wan, C.-W. Yi, S. Makki, and N. Pissinou,
“Maximizing Lifetime of Sensor Surveillance Systems,” IEEE/
ACM Trans. Networking, vol. 15, no. 2, pp. 334-345, Apr. 2007.

[13] H. Liu, P.-J. Wan, and X. Jia, “Maximal Lifetime Scheduling for
Sensor Surveillance Systems with K Sensors to 1 Target,” IEEE
Trans. Parallel and Distributed Systems, vol. 17, no. 12, pp. 1526-
1536, Dec. 2006.

[14] H.B. Mitchell, Multi-Sensor Data Fusion: An Introduction. Springer-
Verlag, 2007.

[15] V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves, “Energy-
Efficient, Collision-Free Medium Access Control for Wireless
Sensor Networks,” Proc. First Int’l Conf. Embedded Networked Sensor
Systems (SenSys ’03), pp. 181-192, 2003.

[16] A. Savvides, C.C. Han, and M. Srivastava, “Dynamic Fine-Grained
Localization in Ad-Hoc Networks of Sensors,” Proc. MObiCOM,
pp. 166-179, 2001.

[17] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S.H. Strogatz,
“Distributed Synchronization in Wireless Networks,” IEEE Signal
Processing Magazine, vol. 25, no. 5, pp. 81-97, Sept. 2008.

[18] Simulation Program, http://www.comp.hkbu.edu.hk/~hliu/
code/Sensor-Target-Surveillance/Surveillance.zip, 2011.

[19] T. Yan, T. He, and J.A. Stankovic, “Differentiated Surveillance for
Sensor Networks,” Proc. First Int’l Conf. Embedded Networked Sensor
Systems (SenSys ’03), pp. 51-62, 2003.

Hai Liu received the BSc and MSc degrees in
applied mathematics from South China Univer-
sity of Technology, in 1999 and 2002, respec-
tively. He received the PhD degree in computer
science from City University of Hong Kong in
2006. Currently, he is a research assistant
professor in the Department of Computer
Science, Hong Kong Baptist University. His
research interests include wireless networking,
mobile computing, and algorithm design and

analysis. He is a member of the IEEE.

Xiaowen Chu received the BEng degree in
computer science from Tsinghua University,
P.R. China, in 1999, and the PhD degree in
computer science from the Hong Kong Univer-
sity of Science and Technology in 2003.
Currently, he is an assistant professor in the
Department of Computer Science, Hong Kong
Baptist University. His research interests include
distributed and parallel computing and wireless
networks. He is a member of the IEEE and the

IEEE Computer Society.

Yiu-Wing Leung received the BSc and PhD
degrees from the Chinese University of Hong
Kong, in 1989 and 1992, respectively. His PhD
advisor was Prof. Peter T.S. Yum. Currently, he
is a professor in the Department of Computer
Science of the Hong Kong Baptist University,
Hong Kong. He has been working on two main
research areas: 1) networking and multimedia,
and 2) sybernetics and system engineering. He
has published more than 70 journal papers in

these areas. He is a senior member of the IEEE.

Xiaohua Jia received the BSc degree in 1984
and the MEng degree in 1987 from the
University of Science and Technology of China,
and the DSc degree in information science from
the University of Tokyo in 1991. Currently, he is
a chair professor in the Department of Computer
Science at City University of Hong Kong. His
research interests include distributed systems,
computer networks, wireless sensor networks,
and mobile wireless networks. He is an editor of

IEEE Transaction on Parallel and Distributed Systems (2006-2009),
Wireless Networks, Journal of World Wide Web, Journal of Combina-
torial Optimization, etc. He is the general chair of ACM MobiHoc 2008,
TPC cochair of IEEE MASS 2009, area chair of IEEE INFOCOM 2010,
TPC cochair of IEEE GlobeCom 2010—Ad Hoc and Sensor Networking
Symposium, and panel cochair of IEEE INFOCOM 2011. He is a senior
member of the IEEE.

Peng-Jun Wan received the BS degree from
Tsinghua University, the MS degree from the
Chinese Academy of Science, and the PhD
degree from the University of Minnesota. Cur-
rently, he is a professor of computer science in the
Department of Computer Science, Illinois Insti-
tute of Technology, Chicago. His research inter-
ests include wireless networks, and algorithm
design and analysis. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU ET AL.: GENERAL MAXIMAL LIFETIME SENSOR-TARGET SURVEILLANCE PROBLEM AND ITS SOLUTION 1765

