

Minimum-Energy Broadcasting in Static Ad Hoc Wireless Networks

P.-J. WAN, G. CĂLINESCU, X.-Y. LI* and O. FRIEDER

Department of Computer Science, Illinois Institute of Technology, 10, W 31st Street, Chicago, IL 60616, USA

Abstract. Energy conservation is a critical issue in ad hoc wireless networks for node and network life, as the nodes are powered by batteries only. One major approach for energy conservation is to route a communication session along the route which requires the lowest total energy consumption. This optimization problem is referred to as Minimum-Energy Routing. While the minimum-energy unicast routing problem can be solved in polynomial time by shortest-path algorithms, it remains open whether the minimum-energy broadcast routing problem can be solved in polynomial time, despite the NP-hardness of its general graph version. Recently three greedy heuristics were proposed in [11]: MST (minimum spanning tree), SPT (shortest-path tree), and BIP (broadcasting incremental power). They have been evaluated through simulations in [11], but little is known about their analytical performances. The main contribution of this paper is a *quantitative* characterization of their performances in terms of approximation ratios. By exploring geometric structures of Euclidean MSTs, we have been able to prove that the approximation ratio of MST is between 6 and 12, and the approximation ratio of BIP is between 13/3 and 12. On the other hand, we show that the approximation ratio of SPT is at least n/2, where n is the number of receiving nodes. To the best of our knowledge, these are the first analytical results for the minimum-energy broadcasting problem.

Keywords: ad hoc wireless networks, energy conservation

1. Introduction

Ad hoc wireless networks have received significant attention in recent years due to their potential applications in battlefield, emergency disaster relief and other applications [10,11]. Unlike wired networks or cellular networks, no wired backbone infrastructure is installed in ad hoc wireless networks. A communication session is achieved either through a single-hop transmission if the communication parties are close enough, or through relaying by intermediate nodes otherwise. Omnidirectional antennas are used by all nodes to transmit and receive signals. They are attractive in their broadcast nature. A single transmission by a node can be received by many nodes within its vicinity. This feature is extremely useful for multicasting/broadcasting communications. For the purpose of energy conservation, each node can dynamically adjust its transmitting power based on the distance to the receiving node and the background noise. In the most common power-attenuation model [9], the signal power falls as $1/r^{\kappa}$, where r is the distance from the transmitter antenna and κ is a real constant between 2 and 4 dependent on the wireless environment. Assume that all receivers have the same power threshold for signal detection, which is typically normalized to one. With these assumptions, the power required to support a link between two nodes separated by a distance r is r^{κ} . A key observation here is that relaying a signal between two nodes may result in lower total transmission power than communicating over a large distance due to the nonlinear power attenuation. As a simple illustration, consider three nodes $\mathbf{p}_1, \mathbf{p}_2$ and \mathbf{p}_3 with $\|\mathbf{p}_1\mathbf{p}_2\| > \|\mathbf{p}_1\mathbf{p}_3\|$ and assume $\kappa = 2$ (see figure 1). Node \mathbf{p}_1 wants to send a message to node \mathbf{p}_2 .

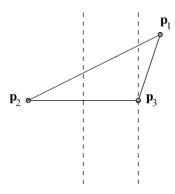


Figure 1. Reduce energy consumption through relaying.

It has two options. It can transmit the signal directly to node \mathbf{p}_2 , with a energy consumption of $\|\mathbf{p}_1\mathbf{p}_2\|^2$. Alternatively, it can send the message to node \mathbf{p}_3 and let it retransmit to node \mathbf{p}_2 , with a total energy consumption of $\|\mathbf{p}_1\mathbf{p}_3\|^2 + \|\mathbf{p}_3\mathbf{p}_2\|^2$. Therefore, if the angle $\angle \mathbf{p}_1\mathbf{p}_3\mathbf{p}_2$ is obtuse, the second option consumes less total energy. A crucial issue is then how to find a route with the minimum total energy consumption for a given communication session. This problem is referred to as *Minimum-Energy Routing* [7,10,11].

Minimum-energy broadcast/multicast routing in a simple ad hoc networking environment has been addressed by the pioneering work in [2,3,7,11]. To assess the complexities *one at a time*, the nodes in the network are assumed to be randomly distributed in a two-dimensional plane and there is no mobility. Nevertheless, as argued in [11], the impact of mobility can be incorporated into this static model because the transmitting power can be adjusted to accommodate the new locations of the nodes as necessary. In other words, the catransceiver resources. Under these assumptions, centralized (as opposed to distributed) algorithms were presented by [11] for minimum-energy broadcast/multicast routing. These centralized algorithms, in this simple networking environment, are expected to serve as the basis for further studies on distributed algorithms in a more practical network environment, with limited bandwidth and transceiver resources, as well as the node mobility.

Three greedy heuristics were proposed in [11] for the minimum-energy broadcast routing problem: MST (minimum spanning tree), SPT (shortest-path tree), and BIP (broadcasting incremental power). They have been evaluated through simulations in [11], but little is known about their analytical performances in terms of the approximation ratio. Here, the approximation ratio of a heuristic is the maximum ratio of the energy needed to broadcast a message based on the arborescence generated by this heuristic to the least necessary energy by any arborescence for any set of points. We believe that the analytical performance is very essential and more convincing in evaluating these heuristics. For the minimum-energy broadcast routing problem, one may come up with several seemingly reasonable greedy heuristics. But it is hard to tell from simulation outputs which one is better or worse. For a pure illustration purpose, another slight variation of BIP, which is referred to as Broadcast Average Incremental Power (BAIP), will be introduced in section 3. Indeed, all the three heuristics proposed in [11] only have subtle differences. These subtle differences, however, can have a great impact on the heuristics' analytical performances. In fact, we will show that the approximation ratios of MST and BIP are between 6 and 12 and between 13/3 and 12, respectively; on the other hand, the approximation ratios of SPT and BAIP are at least n/2 and $4n/\ln n - o(1)$, respectively, where *n* is the number of nodes. To the best of our knowledge, these are the first quantitative characterizations of heuristics for the minimum-energy broadcast routing problem.

The remaining of this paper is organized as follows. In section 2, we analyze the challenges for minimum-energy broadcast routing and briefly overview the three greedy heuristics developed in [11]. In section 3, we construct some difficult instances to illustrate the poor performances of SPT and BAIP. These instances lead to the lower bounds on the approximation ratios of SPT and BAIP. In section 4, we obtain lower bounds on the approximation ratios of MST and BIP by constructing some instances. In section 5, we derive upper bounds on the approximation ratios of MST and BIP. A cornerstone to the analysis of the upper bounds is an elegant structure property of Euclidean MST, which is explored in section 6. Finally, in section 7, we summarize our results and point out several future research directions.

2. Preliminaries

In this paper, we assume the network nodes are given as a finite point¹ set *P* in a two-dimensional plane. For any real number κ , we use $G^{(\kappa)}$ to denote the weighted complete graph over *P* in which the weight of an edge *e* is $||\mathbf{e}||^{\kappa}$.

The minimum-energy unicast routing is essentially a shortest-path problem in $G^{(\kappa)}$. Consider any unicast path from a node $\mathbf{p} \in P$ to another node $\mathbf{q} \in P$:

$$\mathbf{p}=\mathbf{p}_0\mathbf{p}_1\cdots\mathbf{p}_{m-1}\mathbf{p}_m=\mathbf{q}.$$

In this path, the transmission power of each node \mathbf{p}_i , $0 \le i \le m-1$, is $\|\mathbf{p}_i\mathbf{p}_{i+1}\|^{\kappa}$ and the transmission power of \mathbf{p}_m is zero. Thus the total transmission energy required by this path is

$$\sum_{i=0}^{n-1} \|\mathbf{p}_i \mathbf{p}_{i+1}\|^{\kappa}$$

which is the total weight of this path in G^{κ} . So by applying any shortest-path algorithm such as the Dijkstra's algorithm [4], one can solve the minimum-energy unicast routing problem.

However, for broadcast applications (in general multicast applications), Minimum-Energy Routing is far more challenging. Any broadcast routing is viewed as an arborescence (a directed tree) T, rooted at the source node of the broadcasting, that spans all nodes. We use $f_T(\mathbf{p})$ to denote the transmission power of the node \mathbf{p} required by T. For any leaf node \mathbf{p} of T, $f_T(\mathbf{p}) = 0$. For any internal node \mathbf{p} of T,

$$f_T(\mathbf{p}) = \max_{\mathbf{pq}\in T} \|\mathbf{pq}\|^{\kappa},$$

in other words, the κ th power of the longest distance between \mathbf{p} and its children in T. The total energy required by T is $\sum_{\mathbf{p}\in P} f_T(\mathbf{p})$. Thus, the minimum-energy broadcast routing problem is different from the conventional linkbased minimum spanning tree (MST) problem. Indeed, while the MST can be solved in polynomial time by algorithms such as Prim's algorithm and Kruskal's algorithm [4], it is still unknown whether the minimum-energy broadcast routing problem can be solved in polynomial time. In its general graph version, the minimum-energy broadcast routing can be shown to be NP-hard [5], and even worse, it cannot be approximated within a factor of $(1 - \varepsilon) \log \Delta$, unless NP \subseteq DTIME[$n^{O(\log \log n)}$], by an approximation-preserving reduction from the Connected Dominating Set problem [6], where Δ is the maximal degree and ε is any arbitrary small positive constant. However, this intractability of its general graph version does not necessarily imply the same hardness of its geometric version. In fact, as shown later in the paper, its geometric version can be approximated within a constant factor. Nevertheless, this suggests that the minimumenergy broadcast routing problem is considerably harder than the MST problem. Recently, Clementi et al. [2] proved that

¹ The terms node, point and vertex are interchangeable in this paper: node is a network term, point is a geometric term, and vertex is a graph term.

the minimum-energy broadcast routing problem is a NP-hard problem and obtained a parallel but weaker result to ours.

Three greedy heuristics have been proposed for the minimum-energy broadcast routing problem by [11]. The MST heuristic first applies the Prim's algorithm to obtain a MST, and then orient it as an arborescence rooted at the source node. The SPT heuristic applies the Dijkstra's algorithm to obtain a SPT rooted at the source node. The BIP heuristic is the node version of Dijkstra's algorithm for SPT. It maintains, throughout its execution, a single arborescence rooted at the source node. The arborescence starts from the source node, and new nodes are added to the arborescence one at a time on the minimum incremental cost basis until all nodes are included in the arborescence. The incremental cost of adding a new node to the arborescence is the minimum additional power increased by some node in the current arborescence to reach this new node. The implementation of BIP is based on the standard Dijkstra's algorithm, with one fundamental difference on the operation whenever a new node q is added. Whereas the Dijkstra's algorithm updates the node weights (representing the current knowing distances to the source node), BIP updates the cost of each link (representing the incremental power to reach the head node of the directed link). This update is performed by subtracting the cost of the added link pq from the cost of every link qr that starts from q to a node r not in the new arborescence.

The performance of these three greedy heuristics have been evaluated in [11] by simulation studies. However, their analytic performances in terms of the approximation ratio remain open. The subsequent sections of this paper will derive the bounds on their approximation ratios.

3. Greedy is not always good

Greedy approaches are the most natural and widely used techniques in designing practical heuristics for optimization problems. For the minimum-energy broadcast routing problem, one may think of many greedy heuristics, in addition to the three greedy heuristics proposed in [11]. The real challenge, however, is how to come up with a provably good one. Two greedy heuristics may only have a slight difference, but the small variation could have a great impact on the heuristics' analytic performances. In addition, some heuristics may perform quite well or even optimally in some situations, but may perform very poorly in some other situations. For the purpose of an illustration, in this section, we compare two example heuristics: one is SPT and the other is a new one. The "hard" instance constructed in this section cannot only lead to lower bounds on the approximation ratios of these two heuristics, but also help to design an overall good greedy heuristic. For the simplicity, we only consider $\kappa = 2$ in this section.

We begin with the SPT algorithm. Let ε be a sufficiently small positive number. Consider *m* nodes $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_m$ evenly distributed on a cycle of radius 1 centered at a node **o** (see figure 2). For $1 \le i \le m$, let \mathbf{q}_i be the point in the line

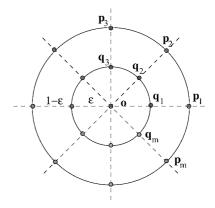


Figure 2. A bad instance for SPT.

segment \mathbf{op}_i with $\|\mathbf{oq}_i\| = \varepsilon$. We consider a broadcasting from the node **o** to these n = 2m nodes

$$\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_m, \mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_m$$

The SPT is the superposition of paths $\mathbf{oq}_i \mathbf{p}_i$, $1 \leq i \leq m$. Its total energy consumption is

$$\varepsilon^2 + m(1-\varepsilon)^2$$

On the other hand, if the transmission power of node **o** is set to 1, then the signal can reach all other points. Thus, the minimum energy consumed by all broadcasting methods is at most 1. So the approximation ratio of SPT is at least $\varepsilon^2 + m(1 - \varepsilon)^2$. As $\varepsilon \to 0$, this ratio converges to n/2 = m.

The second greedy heuristic is similar to the Chvatal's algorithm [1] for the Set Cover Problem and is a variation of BIP. Like BIP, an arborescence, which starts with the source node, is maintained throughout the execution of the algorithm. However, unlike BIP, many new nodes can be added one at a time. Similar to the Chvatal's algorithm [1], the new nodes added are chosen to have the minimal average incremental cost, which is defined as the ratio of the minimum additional power increased by some node in the current arborescence to reach these new nodes to the number of these new nodes. We refer to this heuristic as the Broadcast Average Incremental Power, abbreviated by BAIP. In contrast to the $1 + \log m$ approximation ratio of the Chvatal's algorithm [1], where *m* is the largest set size in the Set Cover Problem, we show that the approximation ratio of BAIP is at least $4n/\ln n - o(1)$, where n is the number of receiving nodes.

Consider the following instance of minimum-energy broadcasting. All nodes lie on the *x*-axis with the source at the origin, the *i*th receiving node at the position \sqrt{i} for $1 \le i \le n-1$, and the *n*th receiving node at the position $\sqrt{n-\varepsilon}$ for some sufficiently small real number $\varepsilon > 0$. For any $1 \le k \le n-1$, the minimal transmission power of the source to reach *k* receiving nodes is $(\sqrt{k})^2 = k$, and thus, the average incremental power cost at the origin to reach these *k* nodes is k/k = 1. On the other hand, the minimal transmission power of the source to reach all *n* receiving nodes is $(\sqrt{n-\varepsilon})^2 = n-\varepsilon$, and thus, the average power efficiency is $(n - \varepsilon)/n = 1 - \varepsilon/n$. So, BAIP will let the source to transmit at power $n - \varepsilon$ to reach all nodes. However, the optimal routing is a directed path consisting of all nodes from left to right. So, the minimum power consumption is

$$\sum_{i=1}^{n-1} \left(\sqrt{i} - \sqrt{i-1}\right)^2 + \left(\sqrt{n-\varepsilon} - \sqrt{n-1}\right)^2$$

$$< \sum_{i=1}^n \left(\sqrt{i} - \sqrt{i-1}\right)^2$$

$$= 1 + \sum_{i=1}^{n-1} \frac{1}{(\sqrt{i+1} + \sqrt{i})^2}$$

$$\leqslant 1 + \sum_{i=1}^{n-1} \frac{1}{4i}$$

$$\leqslant 1 + \frac{\ln(n-1) + 1}{4}$$

$$= \frac{\ln(n-1) + 5}{4}.$$

Thus, the approximation ratio of BAIP is at least

$$\frac{n-\varepsilon}{\sum_{i=1}^{n-1}(\sqrt{i}-\sqrt{i-1})^2+(\sqrt{n-\varepsilon}-\sqrt{n-1})^2}$$

As $\varepsilon \to 0$, this ratio converges to

$$\frac{n}{\sum_{i=1}^{n} (\sqrt{i} - \sqrt{i-1})^2} = \frac{n}{1 + \sum_{i=1}^{n-1} 1/(\sqrt{i+1} + \sqrt{i})^2} \\
\geqslant \frac{n}{1 + \sum_{i=1}^{n-1} 1/(4i)} \\
\geqslant \frac{n}{1 + (\ln(n-1) + 1)/4} \\
= \frac{4n}{\ln(n-1) + 5} \\
= \frac{4n}{\ln n} - o(1).$$

Interestingly, SPT generates the optimal solution in the second instance, while BAIP can provide near-optimal or optimal solution for the first instance. On the other hand, MST and BIP have a lot similarities to SPT and BAIP, but have constant approximation ratios as proved later. Thus, one should carefully design and select greedy heuristics.

4. Lower bounds on approximation ratios

In this section, we will derive lower bounds on approximation ratios of MST and BIP. We begin with MST.

Theorem 1. The approximation ratio of MST is at least 6 for any $\kappa \ge 2$.

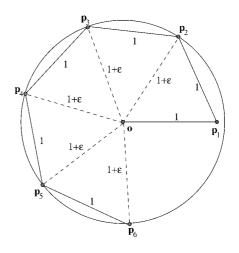


Figure 3. A bad instance for MST.

Proof. Let ε be a sufficiently small positive real number. Consider seven nodes **o**, **p**₁, ..., **p**₆ (see figure 3), which satisfy that

$$\|\mathbf{op}_1\| = 1,$$

$$\|\mathbf{op}_i\| = 1 + \varepsilon, \quad 2 \le i \le 6,$$

$$\|\mathbf{p}_i \mathbf{p}_{i+1}\| = 1, \qquad 1 \le i \le 5.$$

Then for any $1 \leq i \leq 5$,

$$\angle \mathbf{p}_i \mathbf{o} \mathbf{p}_{i+1} < \frac{\pi}{3}$$

$$\angle \mathbf{p}_6 \mathbf{op}_1 > \frac{\pi}{3}.$$

Consider the two triangles op_1p_2 and op_1p_6 . Since

$$\|\mathbf{op}_2\| = \|\mathbf{op}_6\|$$

and

and

$$\angle \mathbf{p}_6 \mathbf{o} \mathbf{p}_1 > \angle \mathbf{p}_1 \mathbf{o} \mathbf{p}_2,$$

by Law of Cosine, we have

$$\|\mathbf{p}_1\mathbf{p}_6\| > \|\mathbf{p}_1\mathbf{p}_2\| = 1.$$

We consider the broadcasting from the node **o** to nodes $\mathbf{p}_1, \ldots, \mathbf{p}_6$. Then the path $\mathbf{op}_1 \cdots \mathbf{p}_5 \mathbf{p}_6$ is the unique MST. Its total energy consumption is 6. On the other hand, it is easy to show that the optimal routing is the star centered at node **o**, whose total energy consumption is $(1 + \varepsilon)^{\kappa}$. Thus, the approximation ratio of MST is at least $6/(1 + \varepsilon)^{\kappa}$, which converges to 6 as $\varepsilon \to 0$.

Now we develop a lower bound on the approximation ratio of BIP.

Theorem 2. The approximation ratio of BIP is at least 13/3 for any $\kappa = 2$.

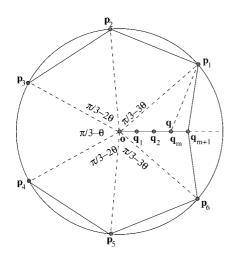


Figure 4. An instance for BIP.

Proof. Let θ be a sufficiently small positive real number. Consider six points $\mathbf{p}_1, \ldots, \mathbf{p}_6$ on a cycle of radius 1 centered at node **o** (see figure 4), with

$$\angle \mathbf{p}_1 \mathbf{o} \mathbf{p}_2 = \angle \mathbf{p}_5 \mathbf{o} \mathbf{p}_6 = \frac{\pi}{3} - 3\theta,$$
$$\angle \mathbf{p}_2 \mathbf{o} \mathbf{p}_3 = \angle \mathbf{p}_4 \mathbf{o} \mathbf{p}_5 = \frac{\pi}{3} - 2\theta,$$
$$\angle \mathbf{p}_3 \mathbf{o} \mathbf{p}_4 = \frac{\pi}{3} - \theta,$$
$$\angle \mathbf{p}_6 \mathbf{o} \mathbf{p}_1 = \frac{\pi}{3} + 11\theta.$$

Then

$$\begin{aligned} \|\mathbf{p}_1\mathbf{p}_2\| &= \|\mathbf{p}_5\mathbf{p}_6\| \\ &< \|\mathbf{p}_2\mathbf{p}_3\| = \|\mathbf{p}_4\mathbf{p}_5\| \\ &< \|\mathbf{p}_3\mathbf{p}_4\| < 1 < \|\mathbf{p}_6\mathbf{p}_1\|. \end{aligned}$$

Let **q** be the point in the perpendicular bisector of $\mathbf{p}_1\mathbf{p}_6$ such that $\mathbf{p}_1\mathbf{q}$ is perpendicular to $\mathbf{p}_1\mathbf{p}_2$. Choose a sufficiently large integer *m* such that

$$1-\left(\frac{\|\mathbf{oq}\|}{m}\right)^2 > \|\mathbf{p}_3\mathbf{p}_4\|^2.$$

Let $\mathbf{q}_1, \ldots, \mathbf{q}_{m+1}$ be the m + 1 points on the ray **oq** with

$$\|\mathbf{o}\mathbf{q}_i\| = \frac{i}{m}\|\mathbf{o}\mathbf{q}\|$$

for $1 \leq i \leq m + 1$. Then $\mathbf{q}_m = \mathbf{q}$.

We consider a broadcasting from point **o** to points $\mathbf{q}_1, \ldots, \mathbf{q}_{m+1}, \mathbf{p}_1, \ldots, \mathbf{p}_6$. The optimal solution is that the node **o** transmits at power 1 to reach all nodes. Now let us examine the output of the BIP algorithm. As *m* is sufficiently large, in the first m + 1 steps, the points $\mathbf{q}_1, \ldots, \mathbf{q}_{m+1}$ are sequentially added, and the transmission power of the nodes **o**, $\mathbf{q}_1, \ldots, \mathbf{q}_m$ all has the transmission power ($\|\mathbf{oq}\|/m$)². Since the angles

$$\angle \mathbf{p}_1 \mathbf{q}_{m+1} \mathbf{q}_m = \angle \mathbf{p}_6 \mathbf{q}_{m+1} \mathbf{q}_m > \frac{\pi}{2}$$

in the next two steps, the points \mathbf{p}_1 and \mathbf{p}_6 are added, and the transmission power of point \mathbf{q}_{m+1} is $\|\mathbf{p}_1\mathbf{q}_{m+1}\|^2$. At this

moment, the incremental power of all points **o**, $\mathbf{q}_1, \ldots, \mathbf{q}_m$ to reach any node \mathbf{p}_i for $2 \leq i \leq 5$ is at least

$$1 - \left(\frac{\|\mathbf{oq}\|}{m}\right)^2 > \|\mathbf{p}_3\mathbf{p}_4\|^2 > \|\mathbf{p}_1\mathbf{p}_2\|^2 = \|\mathbf{p}_5\mathbf{p}_6\|^2,$$

and the incremental power of point \mathbf{q}_{m+1} to reach any node \mathbf{p}_i for $2 \leq i \leq 5$ is also greater than $\|\mathbf{p}_1\mathbf{p}_2\|^2 = \|\mathbf{p}_5\mathbf{p}_6\|^2$ as

$$\angle \mathbf{p}_2 \mathbf{p}_1 \mathbf{q}_{m+1} = \angle \mathbf{p}_5 \mathbf{p}_6 \mathbf{q}_{m+1} > \angle \mathbf{p}_2 \mathbf{p}_1 \mathbf{q}_m = \frac{\pi}{2}$$

Thus, in the subsequent two steps, the points \mathbf{p}_2 and \mathbf{p}_5 are added, and the transmission power of points \mathbf{p}_1 and \mathbf{p}_6 is $\|\mathbf{p}_1\mathbf{p}_2\|^2 = \|\mathbf{p}_5\mathbf{p}_6\|^2$. Similarly, in the last two steps, the points \mathbf{p}_3 and \mathbf{p}_4 are added, and the transmission power of points \mathbf{p}_2 and \mathbf{p}_5 is $\|\mathbf{p}_2\mathbf{p}_3\|^2 = \|\mathbf{p}_4\mathbf{p}_5\|^2$. The total power is

$$(m+1)\left(\frac{\|\mathbf{oq}\|}{m}\right)^{2} + \|\mathbf{p}_{1}\mathbf{q}_{m+1}\|^{2} + 2\|\mathbf{p}_{1}\mathbf{p}_{2}\|^{2} + 2\|\mathbf{p}_{2}\mathbf{p}_{3}\|^{2}$$
$$= \frac{m+1}{m^{2}}\|\mathbf{oq}\|^{2} + \|\mathbf{p}_{1}\mathbf{q}_{m+1}\|^{2} + 2\|\mathbf{p}_{1}\mathbf{p}_{2}\|^{2} + 2\|\mathbf{p}_{2}\mathbf{p}_{3}\|^{2}.$$

As $\theta \to 0$ and $m \to \infty$, the polygon $\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \mathbf{p}_5 \mathbf{p}_6$ converges to a regular hexagon, and the nodes \mathbf{q} and \mathbf{q}_{m+1} converge to the center of the triangle $\mathbf{op}_1 \mathbf{p}_6$. Thus, the total power consumption converges to 1/3+4=13/3. Consequently, the approximation ratio of BIP is at least $13/3 \approx 4.33$.

5. Upper bounds on approximation ratios

We have given some lower bounds on the approximation ratios of MST and BIP by studying some special instances. However, upper bounds on the approximation ratios of these heuristics need to be analyzed for all possible instances. Our deriving of the upper bounds relies extensively on the geometric structures of Euclidean MSTs. We first observe that as long as the cost of a link is an increasing function of the Euclidean length of the link, the set of MSTs of any point set *coincides* with the set of Euclidean MSTs of the same point set. In fact, this can be followed from the Prim's algorithm. In particular, for any spanning tree T of a finite point set P, parameter $\sum_{e \in T} ||e||^2$ achieves its minimum if and only if T is a Euclidean MST of P. For any finite point set P, we use mst(P) to denote an arbitrary Euclidean MST of P. The *radius* of a point set P is defined as

$$\inf_{\mathbf{p}\in P}\sup_{\mathbf{q}\in P}\|\mathbf{pq}\|.$$

Thus, a point set of radius one can be covered by a disk of radius one. A key result in this section is an upper bound on the parameter $\sum_{e \in mst(P)} ||e||^2$ for any finite point set *P* of radius one. Note that the supreme of the total edge lengths of mst(P), $\sum_{e \in mst(P)} ||e||$, over all point sets *P* of radius one is infinity. Amazingly, however, the parameter $\sum_{e \in mst(P)} ||e||^2$ is bounded from above by a constant for any point set *P* of radius one, as shown later. We use *c* to denote the supreme of $\sum_{e \in mst(P)} ||e||^2$ over all point sets *P* of radius one. The next key theorem states that *c* is at most 12.

Theorem 3. $6 \leq c \leq 12$.

The proof of this theorem involves complicated geometric arguments, and therefore we postpone it in section 6. Note that for any point set *P* of radius one, the length of each edge in mst(P) is at most one. Therefore, theorem 3 implies that for any point set *P* of radius one and any real number $\kappa \ge 2$,

$$\sum_{e \in \operatorname{mst}(P)} \|e\|^{\kappa} \leqslant \sum_{e \in \operatorname{mst}(P)} \|e\|^2 \leqslant c \leqslant 12.$$

In the next, we explore a relation between the minimum energy required by a broadcasting and the energy required by the Euclidean MST of the corresponding point set.

Lemma 4. For any point set *P* in the plane, the total anergy required by any broadcasting among *P* is at least $(1/c) \sum_{e \in mst(P)} ||e||^{\kappa}$.

Proof. Let *T* be an arborescence for a broadcasting among *P* with the minimum energy consumption. For any none-leaf node **p** in *T*, let $T_{\mathbf{p}}$ be a Euclidean MST of the point set consisting **p** and all children of **p** in *T*. Suppose that the longest Euclidean distance between **p** and its children is *r*. Then the transmission power of node **p** is r^{κ} , and all children of **p** lie in the disk centered at **p** with radius *r*. From the definition of *c*, we have

$$\sum_{e \in T_{\mathbf{p}}} \left(\frac{\|e\|}{r}\right)^{\kappa} \leq c,$$

which implies that

$$r^{\kappa} \ge \frac{1}{c} \sum_{e \in T_{\mathbf{p}}} \|e\|^{\kappa}.$$

Let T^* denote the spanning tree obtained by superposing of all $T_{\mathbf{p}}$'s for non-leaf nodes of T. Then the total energy required by T is at least $(1/c) \sum_{e \in T^*} ||e||^{\kappa}$, which is further no less than $(1/c) \sum_{e \in \text{mst}(P)} ||e||^{\kappa}$. This completes the proof. \Box

Consider any point set *P* in a two-dimensional plane. Let *T* be an arborescence oriented from some mst(P). Then the total energy required by *T* is at most $\sum_{e \in T_p} ||e||^{\kappa}$. From lemma 4, this total energy is at most *c* times the optimum cost. Thus, the approximation ratio of the link-based MST heuristic is at most *c*. Together with theorem 3, this observation leads to the following theorem.

Theorem 5. The approximation ratio of the link-based MST heuristic is at most c, and therefore, is at most 12.

Finally, we derive an upper bound on the approximation ratio of the BIP heuristic. Once again, the Euclidean MST will play an important role.

Lemma 6. For any broadcasting among a point set P in a two-dimensional plane, the total energy required by the

arborescence generated by the BIP algorithm is at most $\sum_{e \in mst(P)} \|e\|^{\kappa}$.

Proof. Remember that $G^{(\kappa)}$ is the complete graph over the point set P, in which the weight of an edge e is $||e||^{\kappa}$. Let T be the arborescence generated by the algorithm BIP. We construct another weighted graph H over the same point set P according to the execution of BIP for generating T. Suppose that, during the execution of BIP, the nodes are added in the order $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$, where \mathbf{p}_1 is the source node. Let T_i be the arborescence just after the node \mathbf{p}_i is added. In H, the weight of edge $\mathbf{p}_i \mathbf{p}_{i+1}$ is equal to the *incremental* energy of the link from a node in T_i to \mathbf{p}_{i+1} chosen during the execution of SPF; and the weight of any other edge, with at least one node not in T_i , is the same as that in $G^{(\kappa)}$. Note that for each edge $\mathbf{p}_i \mathbf{p}_{i+1}$, its weight in *H* is not more than its weight in $G^{(\kappa)}$. Therefore, for any spanning tree, its weight in H is no more than its weight in $G^{(\kappa)}$. On the other hand, the execution of the Prim's algorithm on H will emulate the algorithm BIP on $G^{(\kappa)}$ in the sense that it will add the required nodes in the same order, and will output the path $\mathbf{p}_1 \mathbf{p}_2 \cdots \mathbf{p}_n$. The weight of this path in H is *exactly* the total energy required by T, but is at most the weight of any MST in $G^{(\kappa)}$. This implies that the total energy required by T is at most $\sum_{e \in \text{mst}(P)} \|e\|^{\kappa}$. This completes the proof.

From the above lemma and lemma 4, we have the following result for the BIP algorithm similar to theorem 5.

Theorem 7. The approximation ratio of the BIP heuristic is at most *c*, and therefore, is at most 12.

6. Proof of theorem 3

This section is devoted to the proof of theorem 3. The lower bound is very trivial as it can follow from the following instance consisting of seven points: the center of a regular hexagon and its six vertices. However, the deriving of the upper bound is very challenging. We first introduce some geometric structures and notations to be used in this section. All angles are measured in radians and take values in the range $[0, \pi]$. For any three points $\mathbf{p}_1, \mathbf{p}_2$ and \mathbf{p}_3 , the angle between the two rays $\mathbf{p}_1\mathbf{p}_2$ and $\mathbf{p}_1\mathbf{p}_3$ is denoted by $\angle \mathbf{p}_2\mathbf{p}_1\mathbf{p}_3$ or $\angle \mathbf{p}_3 \mathbf{p}_1 \mathbf{p}_2$. The *closed* infinite area inside the angle $\angle \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_3$, also referred to as a sector, is denoted by $\angle \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_3$. The triangle determined by \mathbf{p}_1 , \mathbf{p}_2 and \mathbf{p}_3 is denoted by $\Delta \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_3$. The open disk centered at **p** with radius r, denoted by $\mathbf{B}(\mathbf{p}, r)$, is the set of points, such that every point has distance less than r from **p**. The *lune* through points \mathbf{p}_1 and \mathbf{p}_2 , denoted by $L(\mathbf{p}_1\mathbf{p}_2)$, is the intersection of the two open disks of radius $\|\mathbf{p}_1\mathbf{p}_2\|$ centered at \mathbf{p}_1 and \mathbf{p}_2 respectively (see figure 5(a)). Thus, it consists of points whose distances from \mathbf{p}_1 and \mathbf{p}_2 are less than $\|\mathbf{p}_1\mathbf{p}_2\|$. The *open* diamond subtended by a line segment $\mathbf{p}_1\mathbf{p}_2$, denoted by $\mathbf{D}(\mathbf{p}_1\mathbf{p}_2)$, is the rhombus with sides each of which has length $(\sqrt{3}/3) \|\mathbf{p}_1 \mathbf{p}_2\|$ (see figure 5(b)). Note that the interior angles at \mathbf{p}_1 and \mathbf{p}_2 within $\mathbf{D}(\mathbf{p}_1\mathbf{p}_2)$ are equal to $\pi/3$.

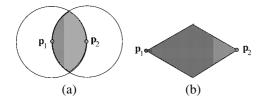


Figure 5. Illustration of (a) lune and (b) diamond.

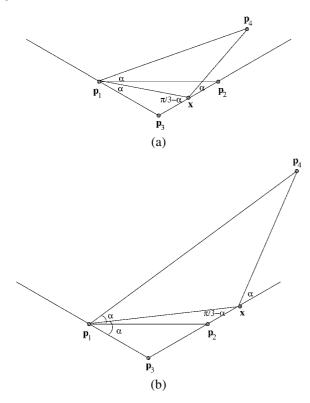


Figure 6. Two extreme cases for $D(p_1p_4) \subseteq \measuredangle p_1p_3p_2$.

The Euclidean MSTs have many nice structure properties [8]. Some basic properties are listed below.

- Any pair of edges do not cross each other.
- The angles between any two edges incident to a common vertex is at least $\pi/3$.
- The length of each edge is at most the radius of the vertex set.
- The lune determined by each edge does not contain any other vertices.
- Let p₁p₂ be any edge. Then the two endpoints of any other edge are either both outside B(p₁, ||p₁p₂||), or both outside B(p₂, ||p₁p₂||).

In this section, we will first prove yet another structure property of the Euclidean MSTs, which is very essential to bound the constant *c*: *The diamonds of any two edges are disjoint*. The proof of this property will make use of the following lemma.

Lemma 8. Let \mathbf{p}_1 , \mathbf{p}_2 and \mathbf{p}_3 be any three points in the plane with $\angle \mathbf{p}_1 \mathbf{p}_3 \mathbf{p}_2 = 2\pi/3$ and $\|\mathbf{p}_1 \mathbf{p}_3\| = \|\mathbf{p}_2 \mathbf{p}_3\|$ (see figure 6). Let \mathbf{p}_4 be any point in $\angle \mathbf{p}_1 \mathbf{p}_3 \mathbf{p}_2$ but outside $\triangle \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3$ with $\angle \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_4 = \alpha$. Then $\mathbf{D}(\mathbf{p}_1 \mathbf{p}_4) \subseteq \angle \mathbf{p}_1 \mathbf{p}_3 \mathbf{p}_2$ if and only if either $\alpha \in [0, \pi/3)$ and $\|\mathbf{p}_1 \mathbf{p}_4\| \leq (\sin \pi/3) \sin(\pi/3 - \alpha) \|\mathbf{p}_1 \mathbf{p}_2\|$ or $\alpha \in [\pi/3, 2\pi/3]$.

Proof. Note that $\mathbf{D}(\mathbf{p}_1\mathbf{p}_4) \subsetneq \measuredangle \mathbf{p}_1\mathbf{p}_3\mathbf{p}_2$ if $\alpha > 2\pi/3$; and $\mathbf{D}(\mathbf{p}_1\mathbf{p}_4) \subseteq \measuredangle \mathbf{p}_1\mathbf{p}_3\mathbf{p}_2$ if $\alpha \in [\pi/3, 2\pi/3]$. So we now assume $\alpha \in [0, \pi/3)$. We fix α and calculate the maximum length of $\mathbf{p}_1\mathbf{p}_4$ such that $\mathbf{D}(\mathbf{p}_1\mathbf{p}_4) \subseteq \measuredangle \mathbf{p}_1\mathbf{p}_3\mathbf{p}_2$. This happens when $\mathbf{D}(\mathbf{p}_1\mathbf{p}_4)$ touches the ray $\mathbf{p}_3\mathbf{p}_2$, say at \mathbf{x} . We consider this extreme scenario. In this case,

$$\angle \mathbf{p}_3 \mathbf{p}_1 \mathbf{x} = \alpha, \quad \angle \mathbf{p}_1 \mathbf{x} \mathbf{p}_3 = \frac{\pi}{3} - \alpha.$$

Applying the Laws of Sine in $\triangle \mathbf{p}_1 \mathbf{p}_3 \mathbf{x}$, we have

$$\frac{\|\mathbf{p}_1\mathbf{x}\|}{\|\mathbf{p}_1\mathbf{p}_3\|} = \frac{\sin\pi/3}{\sin(\pi/3-\alpha)}.$$

On the other hand, as $\triangle \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3$ and $\triangle \mathbf{p}_1 \mathbf{p}_4 \mathbf{x}$ are similar,

$$\frac{\|\mathbf{p}_1\mathbf{p}_4\|}{\|\mathbf{p}_1\mathbf{p}_2\|} = \frac{\|\mathbf{p}_1\mathbf{x}\|}{\|\mathbf{p}_1\mathbf{p}_3\|} = \frac{\sin\pi/3}{\sin(\pi/3-\alpha)}$$

Therefore, $\mathbf{D}(\mathbf{p}_1\mathbf{p}_4) \subseteq \measuredangle \mathbf{p}_1\mathbf{p}_3\mathbf{p}_2$ as long as $\|\mathbf{p}_1\mathbf{p}_4\| \leq (\sin \pi/3)/\sin(\pi/3-\alpha)\|\mathbf{p}_1\mathbf{p}_2\|$.

In the next we apply the above lemma to show that the diamond determined by any edge in a Euclidean MST is contained in some sector defined in the next lemma.

Lemma 9. Let \mathbf{p}_1 , \mathbf{p}_2 and \mathbf{p}_3 be any three points in the plane with \mathbf{p}_3 being outside $L(\mathbf{p}_1\mathbf{p}_2)$. Let \mathbf{p}'_1 (\mathbf{p}'_2 respectively) be the vertex of $\mathbf{D}(\mathbf{p}_1\mathbf{p}_3)$ ($\mathbf{D}(\mathbf{p}_2\mathbf{p}_3)$ respectively) which lies on the opposite side of the line $\mathbf{p}_1\mathbf{p}_3$ ($\mathbf{p}_2\mathbf{p}_3$ respectively) from \mathbf{p}_2 (\mathbf{p}_1 respectively) (see figure 7). Then $\mathbf{D}(\mathbf{p}_1\mathbf{p}_2) \subseteq \measuredangle \mathbf{p}'_1\mathbf{p}_3\mathbf{p}'_2$.

Proof. We assume by symmetry that \mathbf{p}_3 is above the line $\mathbf{p}_1\mathbf{p}_2$ and to the right of the perpendicular bisector of $\mathbf{p}_1\mathbf{p}_2$. Then $\|\mathbf{p}_1\mathbf{p}_3\| \ge \|\mathbf{p}_2\mathbf{p}_3\|$. Since \mathbf{p}_3 is outside $L(\mathbf{p}_1\mathbf{p}_2)$, $\|\mathbf{p}_1\mathbf{p}_3\| \ge \|\mathbf{p}_1\mathbf{p}_2\|$ and $\angle \mathbf{p}_1\mathbf{p}_3\mathbf{p}_2 < \pi/2$. Therefore,

$$\angle \mathbf{p}_{1}' \mathbf{p}_{3} \mathbf{p}_{2}' < \frac{\pi}{2} + \frac{\pi}{6} + \frac{\pi}{6} = \frac{5\pi}{6}$$

$$\angle \mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3} \ge \frac{\pi}{3},$$

$$\angle \mathbf{p}_{2} \mathbf{p}_{1} \mathbf{p}_{3} < \frac{\pi}{2}.$$

Let **x** and **y** be the other two vertices of $D(\mathbf{p}_1\mathbf{p}_2)$ which lie between the up side and the down side respectively of the line $\mathbf{p}_1\mathbf{p}_2$. It is sufficient to show that both **x** and **y** are within $\angle \mathbf{p}'_1\mathbf{p}_3\mathbf{p}'_2$. This is true when $\angle \mathbf{p}_2\mathbf{p}_1\mathbf{p}_3 \ge \pi/6$ (see figure 7(a)). So we assume that $\angle \mathbf{p}_2\mathbf{p}_1\mathbf{p}_3 < \pi/6$. In this case **x** is within $\triangle \mathbf{p}_1\mathbf{p}_3\mathbf{p}'_1$, and thus within $\angle \mathbf{p}'_1\mathbf{p}_3\mathbf{p}'_2$, from lemma 8 and $\|\mathbf{p}_1\mathbf{p}_3\| \ge \|\mathbf{p}_1\mathbf{p}_2\|$. If $\angle \mathbf{p}_1\mathbf{p}_2\mathbf{p}_3 \le 5\pi/6$, then **y** is within $\angle \mathbf{p}'_1\mathbf{p}_3\mathbf{p}_2 \subseteq \angle \mathbf{p}'_1\mathbf{p}_3\mathbf{p}'_2$ (see figure 7(b)). If $\angle \mathbf{p}_1\mathbf{p}_2\mathbf{p}_3 > 5\pi/6$, then

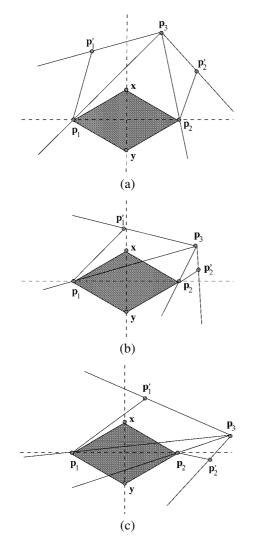


Figure 7. The three cases for lemma 9.

which implies that the ray $\mathbf{p}_2 \mathbf{y}$ does not intersect with the ray $\mathbf{p}_3 \mathbf{p}_2'$ (see figure 7(c)). So \mathbf{y} is within $\measuredangle \mathbf{p}_1' \mathbf{p}_3 \mathbf{p}_2'$. Therefore, in either case both \mathbf{x} and \mathbf{y} are within $\measuredangle \mathbf{p}_1' \mathbf{p}_3 \mathbf{p}_2'$. This completes the proof.

Now we are ready to prove the "disjoint diamonds" property of Euclidean MSTs.

Lemma 10. In any Euclidean MST, the two diamonds determined by any two edges are disjoint.

Proof. The lemma is true when two edges are incident to a common vertex as the angle between them is at least $\pi/3$. So we consider two edges $\mathbf{p}_1\mathbf{p}_2$ and $\mathbf{q}_1\mathbf{q}_2$ with distinct endpoints. We consider two cases.

Case 1. At least one of $\mathbf{p}_1\mathbf{p}_2$ and $\mathbf{q}_1\mathbf{q}_2$ does not cross the perpendicular bisector of the other. Without loss of generality, assume that \mathbf{q}_1 and \mathbf{q}_2 lie in the same side of the perpendicular bisector of $\mathbf{p}_1\mathbf{p}_2$ as \mathbf{p}_1 (see figure 8(a)). Let \mathbf{q}'_1 (\mathbf{q}'_2 respectively) be the vertex of $\mathbf{D}(\mathbf{p}_1\mathbf{q}_1)$ ($\mathbf{D}(\mathbf{p}_1\mathbf{q}_2)$ respectively) which lies on the opposite side of the line $\mathbf{p}_1\mathbf{q}_1$ ($\mathbf{p}_1\mathbf{q}_2$ respectively) from \mathbf{q}_2 (\mathbf{q}_1 respectively). Then from lemma 9,

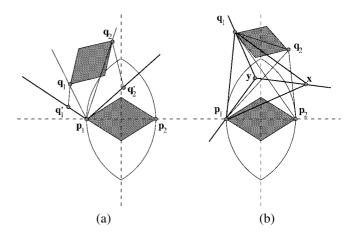


Figure 8. Two cases for lemma 10.

 $D(q_1q_2) \subseteq \measuredangle q'_1p_1q'_2$. On the other hand, since both q_1 and q_2 are outside $L(p_1p_2)$, $D(p_1p_2)$ is outside $\measuredangle q'_1p_1q'_2$. Thus, $D(p_1p_2)$ and $D(q_1q_2)$ are disjoint.

Case 2. Both $\mathbf{p}_1\mathbf{p}_2$ and $\mathbf{q}_1\mathbf{q}_2$ cross the perpendicular bisector of the other. Without loss of generality, assume that \mathbf{q}_1 lies in the same side of the perpendicular bisector of $\mathbf{p}_1\mathbf{p}_2$ as \mathbf{p}_1 (see figure 8(b)). Then \mathbf{p}_1 must lie in the same side of the perpendicular bisector of $\mathbf{q}_1\mathbf{q}_2$ as \mathbf{q}_1 , for otherwise

$$\|\mathbf{p}_2\mathbf{q}_1\| > \|\mathbf{p}_1\mathbf{q}_1\| > \|\mathbf{p}_1\mathbf{q}_2\| > \|\mathbf{p}_2\mathbf{q}_2\|,$$

i.e., both \mathbf{p}_1 and \mathbf{p}_2 lie in the same side of the perpendicular bisector of q_1q_2 as q_2 , which contradicts to the assumption. Since \mathbf{q}_2 is outside $\mathbf{L}(\mathbf{p}_1\mathbf{p}_2)$ and $\|\mathbf{p}_1\mathbf{q}_2\| > \|\mathbf{p}_2\mathbf{q}_2\|$, we have $\|\mathbf{p}_1\mathbf{q}_2\| > \|\mathbf{p}_1\mathbf{p}_2\|$. As $\|\mathbf{p}_1\mathbf{q}_2\| > \|\mathbf{p}_1\mathbf{q}_1\|$, \mathbf{q}_2 is outside $\triangle q_1 p_1 p_2$. Similarly, any of these four points p_1, p_2, q_1 and \mathbf{q}_2 is outside the triangle determined by the other three points. This implies that the convex hull determined by these four points is a quadrilateral. Note that $\mathbf{p}_1\mathbf{p}_2$ and $\mathbf{q}_1\mathbf{q}_2$ cannot be the two diagonals of the quadrilateral as they do not cross each other. Neither can be $\mathbf{p}_1\mathbf{q}_1$ and $\mathbf{p}_2\mathbf{q}_2$ as they are separated by the perpendicular bisector of $\mathbf{p}_1\mathbf{p}_2$. Thus, the two diagonals must be $\mathbf{p}_1\mathbf{q}_2$ and $\mathbf{p}_2\mathbf{q}_1$, and consequently the boundary of the quadrilateral is $\mathbf{p}_1\mathbf{p}_2\mathbf{q}_2\mathbf{q}_1$. From the previous argument its four sides are all less than its two diagonals, and hence, its four inner angles are all more than $\pi/3$. Without loss of generality, we assume that $\|\mathbf{p}_1\mathbf{q}_1\| \ge \|\mathbf{p}_2\mathbf{q}_2\|$. Then $\|\mathbf{p}_1\mathbf{q}_1\| \ge \|\mathbf{p}_1\mathbf{p}_2\|$, for otherwise \mathbf{q}_1 would be inside $B(\mathbf{p}_1, \|\mathbf{p}_1\mathbf{p}_2\|)$ and \mathbf{q}_2 would be inside $B(\mathbf{p}_2, \|\mathbf{p}_1\mathbf{p}_2\|)$, which is impossible. Similarly, $\|\mathbf{p}_1\mathbf{q}_1\| \ge \|\mathbf{q}_1\mathbf{q}_2\|$. Therefore, both $\angle q_1 p_1 q_2$ and $\angle p_1 q_1 p_2$ are less than $\pi/3$. Since both $\angle q_2 p_1 p_2$ and $\angle \mathbf{p}_2 \mathbf{q}_1 \mathbf{q}_2$ are less than $\pi/2$, we have

$$\angle \mathbf{q}_1 \mathbf{p}_1 \mathbf{p}_2, \angle \mathbf{p}_1 \mathbf{q}_1 \mathbf{q}_2 \in \left(\frac{\pi}{3}, \frac{5\pi}{6}\right).$$

Let **x** be the point inside $\measuredangle q_1 p_1 p_2$ such that $\triangle p_1 q_1 x$ is equilateral. Then both $p_1 p_2$ and $q_1 q_2$ are outside $\triangle p_1 q_1 x$. In addition,

$$\angle \mathbf{x}\mathbf{p}_1\mathbf{p}_2, \angle \mathbf{x}\mathbf{q}_1\mathbf{q}_2 \in \left(0, \frac{\pi}{2}\right)$$

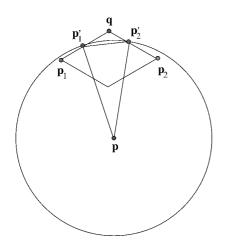


Figure 9. The calculation of the sticking-out area.

and

$$\|\mathbf{p}_1\mathbf{x}\| \ge \|\mathbf{p}_1\mathbf{p}_2\|, \quad \|\mathbf{q}_1\mathbf{x}\| \ge \|\mathbf{q}_1\mathbf{q}_2\|.$$

Let **y** be the center of $\triangle \mathbf{p}_1 \mathbf{q}_1 \mathbf{x}$. Then from lemma 8,

$$\mathbf{D}(\mathbf{p}_1\mathbf{p}_2) \subseteq \measuredangle \mathbf{p}_1\mathbf{y}\mathbf{x}, \mathbf{D}(\mathbf{q}_1\mathbf{q}_2) \subseteq \measuredangle \mathbf{q}_1\mathbf{y}\mathbf{x}.$$

This implies that $\mathbf{D}(\mathbf{p}_1\mathbf{p}_2)$ and $\mathbf{D}(\mathbf{q}_1\mathbf{q}_2)$ are disjoint.

Let *P* be any point set of radius one. According to lemma 10, the total area covered by the diamonds through the edges in mst(P) equals to

$$\frac{\sqrt{3}}{6} \sum_{e \in \operatorname{mst}(P)} \|e\|^2.$$

Let **p** be any point in *P*. Then every point in *P* has distance of at most one from **p**. Since all edges of mst(p) have lengths of at most one, all diamonds are contained in $B(\mathbf{p}, 2/\sqrt{3})$. This implies that

$$\frac{\sqrt{3}}{6} \sum_{e \in \operatorname{mst}(P)} \|e\|^2 \leqslant \pi \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4\pi}{3}.$$

Therefore,

$$\sum_{e \in \mathrm{mst}(P)} \|e\|^2 \leqslant \frac{8\pi}{\sqrt{3}} \approx 14.51$$

This estimation is quite loose and fails in getting the desired 12 upper bound. In the next, we will provide a tighter estimation which can lead to the 12 upper bound.

We observe that the total area of the diamonds is no more than the area of the disk $B(\mathbf{p}, 1)$ plus the sticking-out areas of these diamonds beyond $B(\mathbf{p}, 1)$. Let $\mathbf{D}(\mathbf{p}_1\mathbf{p}_2)$ be any diamond which sticks out $B(\mathbf{p}, 1)$, and let \mathbf{q} be its vertex which is outside $B(\mathbf{p}, 1)$ (see figure 9). Let \mathbf{p}'_1 (\mathbf{p}'_2 respectively) be the intersection between $\mathbf{p}_1\mathbf{q}$ ($\mathbf{p}_2\mathbf{q}$ respectively) and the boundary of $B(\mathbf{p}, 1)$. Then the sticking-out area of $\mathbf{D}(\mathbf{p}_1\mathbf{p}_2)$ can be calculated by subtracting the area of the sector subtended by $\mathbf{p}\mathbf{p}'_1$ and $\mathbf{p}\mathbf{p}'_2$ from the area of the quadrilateral $\mathbf{pp}'_1\mathbf{qp}'_2$. The area of the quadrilateral $\mathbf{pp}'_1\mathbf{qp}'_2$ can be further calculated by summing up the areas of $\triangle \mathbf{pp}'_1\mathbf{p}'_2$ and $\triangle \mathbf{qp}'_1\mathbf{p}'_2$. As $\angle \mathbf{p}'_1\mathbf{qp}'_2$ is a constant $2\pi/3$, the area of $\triangle \mathbf{qp}'_1\mathbf{p}'_2$ is maximized when $\|\mathbf{qp}'_1\| = \|\mathbf{qp}'_2\|$. Let $\angle \mathbf{p}'_1\mathbf{pp}'_2 = \alpha$, then $\alpha \in (0, \pi/3]$ and the sticking-out area of $\mathbf{D}(\mathbf{p}_1\mathbf{p}_2)$ is at most

$$S(\alpha) = \frac{1}{2}\sin\alpha + \frac{\sqrt{3}}{6}(1 - \cos\alpha) - \frac{\alpha}{2}.$$

The area function $S(\alpha)$ has the following nice property.

Lemma 11. For any $\alpha, \beta \in (0, \pi/3)$,

1. if $\alpha + \beta \leq \pi/3$, $S(\alpha) + S(\beta) \leq S(\alpha + \beta)$;

2. if
$$\alpha + \beta \ge \pi/3$$
, $S(\alpha) + S(\beta) \le S(\alpha + \beta - \pi/3) + S(\pi/3)$.

Proof. The lemma follows from the following two equalities: for any α and β ,

$$S(\alpha + \beta) - S(\alpha) - S(\beta)$$

$$= \frac{4\sqrt{3}}{3} \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \left(\frac{\pi}{6} - \frac{\alpha + \beta}{2}\right),$$

$$S\left(\alpha + \beta - \frac{\pi}{3}\right) + S\left(\frac{\pi}{3}\right) - S(\alpha) - S(\beta)$$

$$= \frac{4\sqrt{3}}{3} \sin\left(\frac{\alpha + \beta}{2} - \frac{\pi}{6}\right) \sin\left(\frac{\pi}{6} - \frac{\alpha}{2}\right) \sin\left(\frac{\pi}{6} - \frac{\beta}{2}\right).$$

We first prove the first equality.

$$S(\alpha + \beta) - S(\alpha) - S(\beta)$$

$$= \frac{1}{2} (\sin(\alpha + \beta) - \sin\alpha - \sin\beta)$$

$$+ \frac{\sqrt{3}}{6} ((\cos\alpha + \cos\beta) - (\cos(\alpha + \beta) + 1))$$

$$= \left(\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha + \beta}{2} - \sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}\right)$$

$$+ \frac{\sqrt{3}}{3} \left(\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2} - \cos^2\frac{\alpha + \beta}{2}\right)$$

$$= \sin\frac{\alpha + \beta}{2} \left(\cos\frac{\alpha + \beta}{2} - \cos\frac{\alpha - \beta}{2}\right)$$

$$+ \frac{\sqrt{3}}{3}\cos\frac{\alpha + \beta}{2} \left(\cos\frac{\alpha - \beta}{2} - \cos\frac{\alpha + \beta}{2}\right)$$

$$= \frac{2\sqrt{3}}{3}\sin\frac{\alpha}{2}\sin\frac{\beta}{2} \left(\cos\frac{\alpha + \beta}{2} - \sqrt{3}\sin\frac{\alpha + \beta}{2}\right)$$

$$= \frac{4\sqrt{3}}{3}\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\left(\frac{\pi}{6} - \frac{\alpha + \beta}{2}\right).$$

Now we prove the second equality.

$$S\left(\alpha + \beta - \frac{\pi}{3}\right) + S\left(\frac{\pi}{3}\right) - S(\alpha) - S(\beta)$$

$$= \left(S(\alpha + \beta) - S(\alpha) - S(\beta)\right)$$

$$- \left(S(\alpha + \beta) - S\left(\alpha + \beta - \frac{\pi}{3}\right) - S\left(\frac{\pi}{3}\right)\right)$$

$$= \frac{4\sqrt{3}}{3} \sin\frac{\alpha}{2} \sin\frac{\beta}{2} \sin\left(\frac{\pi}{6} - \frac{\alpha + \beta}{2}\right)$$

$$- \frac{4\sqrt{3}}{3} \sin\left(\frac{\alpha + \beta}{2} - \frac{\pi}{6}\right) \sin\frac{\pi}{6} \sin\left(\frac{\pi}{6} - \frac{\alpha + \beta}{2}\right)$$

$$= \frac{4\sqrt{3}}{3} \sin\left(\frac{\alpha + \beta}{2} - \frac{\pi}{6}\right)$$

$$\times \left(\sin\frac{\pi}{6} \sin\left(\frac{\alpha + \beta}{2} - \frac{\pi}{6}\right) - \sin\frac{\alpha}{2} \sin\frac{\beta}{2}\right)$$

$$= \frac{2\sqrt{3}}{3} \sin\left(\frac{\alpha + \beta}{2} - \frac{\pi}{6}\right)$$

$$\times \left(\cos\left(\frac{\pi}{3} - \frac{\alpha + \beta}{2}\right) - \cos\frac{\alpha - \beta}{2}\right)$$

$$= \frac{4\sqrt{3}}{3} \sin\left(\frac{\alpha + \beta}{2} - \frac{\pi}{6}\right) \sin\left(\frac{\pi}{6} - \frac{\alpha}{2}\right) \sin\left(\frac{\pi}{6} - \frac{\beta}{2}\right).$$

Suppose that there are *k* diamonds which stick out $B(\mathbf{p}, 1)$. For any $1 \le i \le k$, let α_i be the inner angle of the arc between the two intersection points of the boundary $B(\mathbf{p}, 1)$ and the boundary of the *i*th sticking-out diamond. Then $\alpha_i \in (0, \pi/3]$ and

$$\sum_{i=1}^k \alpha_i < 2\pi.$$

By repeatedly applying the two inequalities in lemma 11, the total sticking-out area of the diamonds is

$$\sum_{i=1}^{k} S(\alpha_i) \leqslant \left\lceil \frac{\sum_{i=1}^{k} \alpha_i}{\pi/3} \right\rceil S\left(\frac{\pi}{3}\right)$$
$$\leqslant 6S\left(\frac{\pi}{3}\right) = 2\sqrt{3} - \pi.$$

Thus the total area of diamonds is at most

$$\pi + 2\sqrt{3} - \pi = 2\sqrt{3}.$$

Therefore,

$$\sum_{e \in mst(P)} \|e\|^2 \leqslant \frac{2\sqrt{3}}{\sqrt{3}/6} = 12$$

This completes the proof of theorem 3.

7. Summary and future works

In this paper, we have provided the theoretical performance analysis for the heuristics presented in [11]. The approximation ratio of SPT is at least n/2, and thus, less favorable from the theoretical perspective. The other two heuristics, linkbased MST and BIP, have constants bounded approximation ratios. Specifically, the approximation ratio of the link-based MST heuristic is between 6 and c, which is at most 12; the approximation ratio of the BIP heuristic is between 13/3 and $c \leq 12$. However, there are still several challenging issues for future research.

First of all, the exact value of the constant c remains unsolved. A tighter upper bound on c can lead to tighter upper bounds on the approximation ratios of both the linkbased MST heuristic and the BIP heuristic. From the deriving of the 12 upper bound, we observe there are still rooms to improve the upper bound. For example, it is very unlikely for the diamonds to fill the unit disk fully. At least this is true for small number of nodes. However, the treatment of large number of nodes is quite challenging, and more geometric properties of the Euclidean MSTs have to be explored.

The second interesting problem is how to construct "harder" instances that can lead to better lower bounds on the approximation ratios of both the MST and BIP.

A major challenge, and a topic of continued research, is the development of distributed algorithms of MST and BIP. These algorithms should take advantage of the geometric properties for fast implementation. Furthermore, it is important to study the impact of limited bandwidth and transceiver resources, as well as to develop mechanisms to cope with node mobility [11].

References

- V. Chvátal, A greedy heuristic for the set-covering problem, Mathematics of Operations Research 4(3) (1979) 233–235.
- [2] A. Clementi, P. Crescenzi, P. Penna, G. Rossi and P. Vocca, On the complexity of computing minimum energy consumption broadcast subgraphs, in: 18th Annual Symposium on Theoretical Aspects of Computer Science, LNCS 2010 (2001) pp. 121–131.
- [3] A. Clementi, P. Penna and R. Silvestri, On the power assignment problem in radio networks, in: *Electronic Colloquium on Computational Complexity* (2000). Preliminary results in: *APPROX'99* and *STACS'2000*.
- [4] T.J. Cormen, C.E. Leiserson and R.L. Rivest, *Introduction to Algorithms* (MIT Press and McGraw-Hill, 1990).
- [5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, 1979).
- [6] S. Guha and S. Khuller, Approximation algorithms for connected dominating sets, Algorithmica 20 (1998) 347–387.
- [7] L.M. Kirousis, E. Kranakis, D. Krizanc and A. Pelc, Power consumption in packet radio networks, Theoretical Computer Science 243 (2000) 289–305.
- [8] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction (Springer-Verlag, 1985).
- [9] T.S. Rappaport, Wireless Communications: Principles and Practices (Prentice Hall, 1996).

MINIMUM-ENERGY BROADCASTING IN STATIC AD HOC WIRELESS NETWORKS

- [10] S. Singh, C.S. Raghavendra and J. Stepanek, Power-aware broadcasting in mobile ad hoc networks, in: *Proceedings of IEEE PIMRC'99*, Osaka, Japan (September 1999).
- [11] J.E. Wieselthier, G.D. Nguyen and A. Ephremides, On the construction of energy-efficient broadcast and multicast trees in wireless networks, in: *IEEE Infocom*'2000 (2000).

Peng-Jun Wan has been an Assistant Professor in Computer Science at Illinois Institute of Technology since 1997. He received his PhD in computer science from University of Minnesota in 1997, MS in operations research and control theory from Chinese Academy of Science in 1993, and BS in applied mathematics from Qsinghua University in 1990. His research interests include optical networks and wireless networks.

E-mail: wan@cs.iit.edu

Gruia Calinescu is an Assistant Professor of Computer Science at the Illinois Institute of Technology. He has a Diploma from University of Bucharest and a PhD from Georgia Institute of Technology. His research interests are in the area of algorithms. He is a Member of the ACM. E-mail: calinescu@cs.iit.edu

Xiang-Yang Li has been an Assistant Professor of Computer Science at the Illinois Institute of Technology since 2000. He received MS (2000) and PhD (2001) degrees in computer science from University of Illinois at Urbana-Champaign. He received his Bachelor degree in computer science and Bachelor degree in business management from Tsinghua University, P.R. China, in 1995. His research interests span the computational geometry, wireless ad hoc networks, optical networks, and cryptography. He

is a Member of the ACM and IEEE. E-mail: xli@cs.iit.edu

Ophir Frieder is the IITRI Professor of Computer Science at the Illinois Institute of Technology. His research interests span the general area of distributed information systems. He is a Member of ACM and a Fellow of the IEEE. E-mail: ophir@cs.iit.edu

617