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Abstract. Energy conservation is a critical issue in ad hoc wireless networks for node and network life, as the nodes are powered by batteries
only. One major approach for energy conservation is to route a communication session along the route which requires the lowest total energy
consumption. This optimization problem is referred to as Minimum-Energy Routing. While the minimum-energy unicast routing problem
can be solved in polynomial time by shortest-path algorithms, it remains open whether the minimum-energy broadcast routing problem
can be solved in polynomial time, despite the NP-hardness of its general graph version. Recently three greedy heuristics were proposed
in [11]: MST (minimum spanning tree), SPT (shortest-path tree), and BIP (broadcasting incremental power). They have been evaluated
through simulations in [11], but little is known about their analytical performances. The main contribution of this paper is a quantitative
characterization of their performances in terms of approximation ratios. By exploring geometric structures of Euclidean MSTs, we have
been able to prove that the approximation ratio of MST is between 6 and 12, and the approximation ratio of BIP is between 13/3 and 12.
On the other hand, we show that the approximation ratio of SPT is at least n/2, where n is the number of receiving nodes. To the best of our
knowledge, these are the first analytical results for the minimum-energy broadcasting problem.
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1. Introduction

Ad hoc wireless networks have received significant attention
in recent years due to their potential applications in battlefield,
emergency disaster relief and other applications [10,11]. Un-
like wired networks or cellular networks, no wired backbone
infrastructure is installed in ad hoc wireless networks. A com-
munication session is achieved either through a single-hop
transmission if the communication parties are close enough,
or through relaying by intermediate nodes otherwise. Om-
nidirectional antennas are used by all nodes to transmit and
receive signals. They are attractive in their broadcast nature.
A single transmission by a node can be received by many
nodes within its vicinity. This feature is extremely useful
for multicasting/broadcasting communications. For the pur-
pose of energy conservation, each node can dynamically ad-
just its transmitting power based on the distance to the re-
ceiving node and the background noise. In the most common
power-attenuation model [9], the signal power falls as 1/rκ ,
where r is the distance from the transmitter antenna and κ is
a real constant between 2 and 4 dependent on the wireless
environment. Assume that all receivers have the same power
threshold for signal detection, which is typically normalized
to one. With these assumptions, the power required to sup-
port a link between two nodes separated by a distance r is rκ .
A key observation here is that relaying a signal between two
nodes may result in lower total transmission power than com-
municating over a large distance due to the nonlinear power
attenuation. As a simple illustration, consider three nodes
p1,p2 and p3 with ‖p1p2‖ > ‖p1p3‖ and assume κ = 2
(see figure 1). Node p1 wants to send a message to node p2.

∗ Corresponding author.

Figure 1. Reduce energy consumption through relaying.

It has two options. It can transmit the signal directly to node
p2, with a energy consumption of ‖p1p2‖2. Alternatively, it
can send the message to node p3 and let it retransmit to node
p2, with a total energy consumption of ‖p1p3‖2 + ‖p3p2‖2.
Therefore, if the angle � p1p3p2 is obtuse, the second option
consumes less total energy. A crucial issue is then how to
find a route with the minimum total energy consumption for a
given communication session. This problem is referred to as
Minimum-Energy Routing [7,10,11].

Minimum-energy broadcast/multicast routing in a simple
ad hoc networking environment has been addressed by the pi-
oneering work in [2,3,7,11]. To assess the complexities one
at a time, the nodes in the network are assumed to be ran-
domly distributed in a two-dimensional plane and there is no
mobility. Nevertheless, as argued in [11], the impact of mo-
bility can be incorporated into this static model because the
transmitting power can be adjusted to accommodate the new
locations of the nodes as necessary. In other words, the ca-
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pability to adjust the transmission power provides consider-
able “elasticity” to the topological connectivity, and hence
may reduce the need for handoffs and tracking. In addi-
tion, as assumed in [11], there are sufficient bandwidth and
transceiver resources. Under these assumptions, centralized
(as opposed to distributed) algorithms were presented by [11]
for minimum-energy broadcast/multicast routing. These cen-
tralized algorithms, in this simple networking environment,
are expected to serve as the basis for further studies on dis-
tributed algorithms in a more practical network environment,
with limited bandwidth and transceiver resources, as well as
the node mobility.

Three greedy heuristics were proposed in [11] for the
minimum-energy broadcast routing problem: MST (min-
imum spanning tree), SPT (shortest-path tree), and BIP
(broadcasting incremental power). They have been evalu-
ated through simulations in [11], but little is known about
their analytical performances in terms of the approximation
ratio. Here, the approximation ratio of a heuristic is the maxi-
mum ratio of the energy needed to broadcast a message based
on the arborescence generated by this heuristic to the least
necessary energy by any arborescence for any set of points.
We believe that the analytical performance is very essential
and more convincing in evaluating these heuristics. For the
minimum-energy broadcast routing problem, one may come
up with several seemingly reasonable greedy heuristics. But
it is hard to tell from simulation outputs which one is bet-
ter or worse. For a pure illustration purpose, another slight
variation of BIP, which is referred to as Broadcast Average
Incremental Power (BAIP), will be introduced in section 3.
Indeed, all the three heuristics proposed in [11] only have sub-
tle differences. These subtle differences, however, can have a
great impact on the heuristics’ analytical performances. In
fact, we will show that the approximation ratios of MST and
BIP are between 6 and 12 and between 13/3 and 12, re-
spectively; on the other hand, the approximation ratios of
SPT and BAIP are at least n/2 and 4n/lnn − o(1), respec-
tively, where n is the number of nodes. To the best of our
knowledge, these are the first quantitative characterizations
of heuristics for the minimum-energy broadcast routing prob-
lem.

The remaining of this paper is organized as follows. In sec-
tion 2, we analyze the challenges for minimum-energy broad-
cast routing and briefly overview the three greedy heuristics
developed in [11]. In section 3, we construct some diffi-
cult instances to illustrate the poor performances of SPT and
BAIP. These instances lead to the lower bounds on the ap-
proximation ratios of SPT and BAIP. In section 4, we ob-
tain lower bounds on the approximation ratios of MST and
BIP by constructing some instances. In section 5, we de-
rive upper bounds on the approximation ratios of MST and
BIP. A cornerstone to the analysis of the upper bounds is
an elegant structure property of Euclidean MST, which is
explored in section 6. Finally, in section 7, we summa-
rize our results and point out several future research direc-
tions.

2. Preliminaries

In this paper, we assume the network nodes are given as a
finite point1 set P in a two-dimensional plane. For any real
number κ , we useG(κ) to denote the weighted complete graph
over P in which the weight of an edge e is ‖e‖κ .

The minimum-energy unicast routing is essentially a
shortest-path problem in G(κ). Consider any unicast path
from a node p ∈ P to another node q ∈ P :

p = p0p1 · · · pm−1pm = q.

In this path, the transmission power of each node pi , 0 � i �
m−1, is ‖pipi+1‖κ and the transmission power of pm is zero.
Thus the total transmission energy required by this path is

m−1∑
i=0

‖pipi+1‖κ ,

which is the total weight of this path in Gκ . So by apply-
ing any shortest-path algorithm such as the Dijkstra’s algo-
rithm [4], one can solve the minimum-energy unicast routing
problem.

However, for broadcast applications (in general multicast
applications), Minimum-Energy Routing is far more chal-
lenging. Any broadcast routing is viewed as an arborescence
(a directed tree) T , rooted at the source node of the broad-
casting, that spans all nodes. We use fT (p) to denote the
transmission power of the node p required by T . For any leaf
node p of T , fT (p) = 0. For any internal node p of T ,

fT (p) = max
pq∈T ‖pq‖κ ,

in other words, the κ th power of the longest distance be-
tween p and its children in T . The total energy required
by T is

∑
p∈P fT (p). Thus, the minimum-energy broad-

cast routing problem is different from the conventional link-
based minimum spanning tree (MST) problem. Indeed, while
the MST can be solved in polynomial time by algorithms
such as Prim’s algorithm and Kruskal’s algorithm [4], it is
still unknown whether the minimum-energy broadcast rout-
ing problem can be solved in polynomial time. In its gen-
eral graph version, the minimum-energy broadcast routing
can be shown to be NP-hard [5], and even worse, it can-
not be approximated within a factor of (1 − ε) log�, unless
NP ⊆ DTIME[nO(log logn)], by an approximation-preserving
reduction from the Connected Dominating Set problem [6],
where � is the maximal degree and ε is any arbitrary small
positive constant. However, this intractability of its general
graph version does not necessarily imply the same hardness
of its geometric version. In fact, as shown later in the pa-
per, its geometric version can be approximated within a con-
stant factor. Nevertheless, this suggests that the minimum-
energy broadcast routing problem is considerably harder than
the MST problem. Recently, Clementi et al. [2] proved that

1 The terms node, point and vertex are interchangeable in this paper: node is
a network term, point is a geometric term, and vertex is a graph term.
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the minimum-energy broadcast routing problem is a NP-hard
problem and obtained a parallel but weaker result to ours.

Three greedy heuristics have been proposed for the mini-
mum-energy broadcast routing problem by [11]. The MST
heuristic first applies the Prim’s algorithm to obtain a MST,
and then orient it as an arborescence rooted at the source node.
The SPT heuristic applies the Dijkstra’s algorithm to obtain a
SPT rooted at the source node. The BIP heuristic is the node
version of Dijkstra’s algorithm for SPT. It maintains, through-
out its execution, a single arborescence rooted at the source
node. The arborescence starts from the source node, and new
nodes are added to the arborescence one at a time on the mini-
mum incremental cost basis until all nodes are included in the
arborescence. The incremental cost of adding a new node to
the arborescence is the minimum additional power increased
by some node in the current arborescence to reach this new
node. The implementation of BIP is based on the standard
Dijkstra’s algorithm, with one fundamental difference on the
operation whenever a new node q is added. Whereas the Dijk-
stra’s algorithm updates the node weights (representing the
current knowing distances to the source node), BIP updates
the cost of each link (representing the incremental power to
reach the head node of the directed link). This update is per-
formed by subtracting the cost of the added link pq from the
cost of every link qr that starts from q to a node r not in the
new arborescence.

The performance of these three greedy heuristics have
been evaluated in [11] by simulation studies. However, their
analytic performances in terms of the approximation ratio re-
main open. The subsequent sections of this paper will derive
the bounds on their approximation ratios.

3. Greedy is not always good

Greedy approaches are the most natural and widely used tech-
niques in designing practical heuristics for optimization prob-
lems. For the minimum-energy broadcast routing problem,
one may think of many greedy heuristics, in addition to the
three greedy heuristics proposed in [11]. The real challenge,
however, is how to come up with a provably good one. Two
greedy heuristics may only have a slight difference, but the
small variation could have a great impact on the heuristics’
analytic performances. In addition, some heuristics may per-
form quite well or even optimally in some situations, but may
perform very poorly in some other situations. For the purpose
of an illustration, in this section, we compare two example
heuristics: one is SPT and the other is a new one. The “hard”
instance constructed in this section cannot only lead to lower
bounds on the approximation ratios of these two heuristics,
but also help to design an overall good greedy heuristic. For
the simplicity, we only consider κ = 2 in this section.

We begin with the SPT algorithm. Let ε be a sufficiently
small positive number. Consider m nodes p1,p2, . . . ,pm
evenly distributed on a cycle of radius 1 centered at a node o
(see figure 2). For 1 � i � m, let qi be the point in the line

Figure 2. A bad instance for SPT.

segment opi with ‖oqi‖ = ε. We consider a broadcasting
from the node o to these n = 2m nodes

p1,p2, . . . ,pm,q1,q2, . . . ,qm.

The SPT is the superposition of paths oqipi , 1 � i � m. Its
total energy consumption is

ε2 + m(1 − ε)2.

On the other hand, if the transmission power of node o is set
to 1, then the signal can reach all other points. Thus, the
minimum energy consumed by all broadcasting methods is at
most 1. So the approximation ratio of SPT is at least ε2 +
m(1 − ε)2. As ε → 0, this ratio converges to n/2 = m.

The second greedy heuristic is similar to the Chvatal’s al-
gorithm [1] for the Set Cover Problem and is a variation of
BIP. Like BIP, an arborescence, which starts with the source
node, is maintained throughout the execution of the algo-
rithm. However, unlike BIP, many new nodes can be added
one at a time. Similar to the Chvatal’s algorithm [1], the new
nodes added are chosen to have the minimal average incre-
mental cost, which is defined as the ratio of the minimum
additional power increased by some node in the current ar-
borescence to reach these new nodes to the number of these
new nodes. We refer to this heuristic as the Broadcast Av-
erage Incremental Power, abbreviated by BAIP. In contrast
to the 1 + logm approximation ratio of the Chvatal’s algo-
rithm [1], where m is the largest set size in the Set Cover
Problem, we show that the approximation ratio of BAIP is
at least 4n/lnn − o(1), where n is the number of receiving
nodes.

Consider the following instance of minimum-energy broad-
casting. All nodes lie on the x-axis with the source at the ori-
gin, the ith receiving node at the position

√
i for 1 � i �

n − 1, and the nth receiving node at the position
√
n− ε

for some sufficiently small real number ε > 0. For any
1 � k � n− 1, the minimal transmission power of the source
to reach k receiving nodes is (

√
k)2 = k, and thus, the av-

erage incremental power cost at the origin to reach these k

nodes is k/k = 1. On the other hand, the minimal trans-
mission power of the source to reach all n receiving nodes is
(
√
n − ε)2 = n− ε, and thus, the average power efficiency is
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(n − ε)/n = 1 − ε/n. So, BAIP will let the source to trans-
mit at power n − ε to reach all nodes. However, the optimal
routing is a directed path consisting of all nodes from left to
right. So, the minimum power consumption is

n−1∑
i=1

(√
i − √

i − 1
)2 + (√

n − ε − √
n − 1

)2

<

n∑
i=1

(√
i − √

i − 1
)2

= 1 +
n−1∑
i=1

1

(
√
i + 1 + √

i)2

� 1 +
n−1∑
i=1

1

4i

� 1 + ln(n − 1)+ 1

4

= ln(n − 1)+ 5

4
.

Thus, the approximation ratio of BAIP is at least

n − ε∑n−1
i=1 (

√
i − √

i − 1)2 + (
√
n − ε − √

n− 1)2
.

As ε → 0, this ratio converges to

n∑n
i=1(

√
i − √

i − 1)2

= n

1 + ∑n−1
i=1 1/(

√
i + 1 + √

i)2

� n

1 + ∑n−1
i=1 1/(4i)

� n

1 + (ln(n− 1)+ 1)/4

= 4n

ln(n− 1)+ 5

= 4n

lnn
− o(1).

Interestingly, SPT generates the optimal solution in the
second instance, while BAIP can provide near-optimal or op-
timal solution for the first instance. On the other hand, MST
and BIP have a lot similarities to SPT and BAIP, but have con-
stant approximation ratios as proved later. Thus, one should
carefully design and select greedy heuristics.

4. Lower bounds on approximation ratios

In this section, we will derive lower bounds on approximation
ratios of MST and BIP. We begin with MST.

Theorem 1. The approximation ratio of MST is at least 6 for
any κ � 2.

Figure 3. A bad instance for MST.

Proof. Let ε be a sufficiently small positive real number.
Consider seven nodes o,p1, . . . ,p6 (see figure 3), which sat-
isfy that

‖op1‖ = 1,

‖opi‖ = 1 + ε, 2 � i � 6,

‖pipi+1‖ = 1, 1 � i � 5.

Then for any 1 � i � 5,

� piopi+1 <
π

3

and

� p6op1 >
π

3
.

Consider the two triangles op1p2 and op1p6. Since

‖op2‖ = ‖op6‖
and

� p6op1 >
� p1op2,

by Law of Cosine, we have

‖p1p6‖ > ‖p1p2‖ = 1.

We consider the broadcasting from the node o to nodes
p1, . . . ,p6. Then the path op1 · · · p5p6 is the unique MST.
Its total energy consumption is 6. On the other hand, it is
easy to show that the optimal routing is the star centered at
node o, whose total energy consumption is (1 + ε)κ . Thus,
the approximation ratio of MST is at least 6/(1 + ε)κ , which
converges to 6 as ε → 0. �

Now we develop a lower bound on the approximation ratio
of BIP.

Theorem 2. The approximation ratio of BIP is at least 13/3
for any κ = 2.
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Figure 4. An instance for BIP.

Proof. Let θ be a sufficiently small positive real number.
Consider six points p1, . . . ,p6 on a cycle of radius 1 centered
at node o (see figure 4), with

� p1op2 = � p5op6 = π

3
− 3θ,

� p2op3 = � p4op5 = π

3
− 2θ,

� p3op4 = π

3
− θ,

� p6op1 = π

3
+ 11θ.

Then

‖p1p2‖ = ‖p5p6‖
< ‖p2p3‖ = ‖p4p5‖
< ‖p3p4‖ < 1 < ‖p6p1‖.

Let q be the point in the perpendicular bisector of p1p6
such that p1q is perpendicular to p1p2. Choose a sufficiently
large integer m such that

1 −
(‖oq‖

m

)2

> ‖p3p4‖2.

Let q1, . . . ,qm+1 be the m + 1 points on the ray oq with

‖oqi‖ = i

m
‖oq‖

for 1 � i � m + 1. Then qm = q.
We consider a broadcasting from point o to points q1, . . . ,

qm+1,p1, . . . ,p6. The optimal solution is that the node o
transmits at power 1 to reach all nodes. Now let us examine
the output of the BIP algorithm. As m is sufficiently large, in
the first m+ 1 steps, the points q1, . . . ,qm+1 are sequentially
added, and the transmission power of the nodes o,q1, . . . ,qm
all has the transmission power (‖oq‖/m)2. Since the angles

� p1qm+1qm = � p6qm+1qm >
π

2
,

in the next two steps, the points p1 and p6 are added, and
the transmission power of point qm+1 is ‖p1qm+1‖2. At this

moment, the incremental power of all points o,q1, . . . ,qm to
reach any node pi for 2 � i � 5 is at least

1 −
(‖oq‖

m

)2

> ‖p3p4‖2 > ‖p1p2‖2 = ‖p5p6‖2,

and the incremental power of point qm+1 to reach any node
pi for 2 � i � 5 is also greater than ‖p1p2‖2 = ‖p5p6‖2 as

� p2p1qm+1 = � p5p6qm+1 > � p2p1qm = π

2
.

Thus, in the subsequent two steps, the points p2 and p5 are
added, and the transmission power of points p1 and p6 is
‖p1p2‖2 = ‖p5p6‖2. Similarly, in the last two steps, the
points p3 and p4 are added, and the transmission power of
points p2 and p5 is ‖p2p3‖2 = ‖p4p5‖2. The total power is

(m + 1)

(‖oq‖
m

)2

+ ‖p1qm+1‖2 + 2‖p1p2‖2 + 2‖p2p3‖2

= m + 1

m2 ‖oq‖2 + ‖p1qm+1‖2 + 2‖p1p2‖2 + 2‖p2p3‖2.

As θ → 0 and m → ∞, the polygon p1p2p3p4p5p6 con-
verges to a regular hexagon, and the nodes q and qm+1 con-
verge to the center of the triangle op1p6. Thus, the total power
consumption converges to 1/3+4 = 13/3. Consequently, the
approximation ratio of BIP is at least 13/3 ≈ 4.33. �

5. Upper bounds on approximation ratios

We have given some lower bounds on the approximation ra-
tios of MST and BIP by studying some special instances.
However, upper bounds on the approximation ratios of these
heuristics need to be analyzed for all possible instances. Our
deriving of the upper bounds relies extensively on the geo-
metric structures of Euclidean MSTs. We first observe that
as long as the cost of a link is an increasing function of the
Euclidean length of the link, the set of MSTs of any point set
coincides with the set of Euclidean MSTs of the same point
set. In fact, this can be followed from the Prim’s algorithm.
In particular, for any spanning tree T of a finite point set P ,
parameter

∑
e∈T ‖e‖2 achieves its minimum if and only if T

is a Euclidean MST of P . For any finite point set P , we use
mst(P ) to denote an arbitrary Euclidean MST of P . The ra-
dius of a point set P is defined as

inf
p∈P sup

q∈P
‖pq‖.

Thus, a point set of radius one can be covered by a disk of
radius one. A key result in this section is an upper bound
on the parameter

∑
e∈mst(P ) ‖e‖2 for any finite point set P of

radius one. Note that the supreme of the total edge lengths of
mst(P ),

∑
e∈mst(P ) ‖e‖, over all point sets P of radius one is

infinity. Amazingly, however, the parameter
∑

e∈mst(P ) ‖e‖2

is bounded from above by a constant for any point set P of
radius one, as shown later. We use c to denote the supreme of∑

e∈mst(P ) ‖e‖2 over all point sets P of radius one. The next
key theorem states that c is at most 12.
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Theorem 3. 6 � c � 12.

The proof of this theorem involves complicated geometric
arguments, and therefore we postpone it in section 6. Note
that for any point set P of radius one, the length of each edge
in mst(P ) is at most one. Therefore, theorem 3 implies that
for any point set P of radius one and any real number κ � 2,∑

e∈mst(P )

‖e‖κ �
∑

e∈mst(P )

‖e‖2 � c � 12.

In the next, we explore a relation between the minimum
energy required by a broadcasting and the energy required by
the Euclidean MST of the corresponding point set.

Lemma 4. For any point set P in the plane, the total an-
ergy required by any broadcasting among P is at least
(1/c)

∑
e∈mst(P ) ‖e‖κ .

Proof. Let T be an arborescence for a broadcasting among
P with the minimum energy consumption. For any none-leaf
node p in T , let Tp be a Euclidean MST of the point set con-
sisting p and all children of p in T . Suppose that the longest
Euclidean distance between p and its children is r . Then the
transmission power of node p is rκ , and all children of p lie in
the disk centered at p with radius r . From the definition of c,
we have

∑
e∈Tp

(‖e‖
r

)κ

� c,

which implies that

rκ � 1

c

∑
e∈Tp

‖e‖κ .

Let T ∗ denote the spanning tree obtained by superposing
of all Tp’s for non-leaf nodes of T . Then the total energy re-
quired by T is at least (1/c)

∑
e∈T ∗ ‖e‖κ , which is further no

less than (1/c)
∑

e∈mst(P ) ‖e‖κ . This completes the proof. �

Consider any point set P in a two-dimensional plane. Let
T be an arborescence oriented from some mst(P ). Then the
total energy required by T is at most

∑
e∈Tp

‖e‖κ . From
lemma 4, this total energy is at most c times the optimum
cost. Thus, the approximation ratio of the link-based MST
heuristic is at most c. Together with theorem 3, this observa-
tion leads to the following theorem.

Theorem 5. The approximation ratio of the link-based MST
heuristic is at most c, and therefore, is at most 12.

Finally, we derive an upper bound on the approximation
ratio of the BIP heuristic. Once again, the Euclidean MST
will play an important role.

Lemma 6. For any broadcasting among a point set P in
a two-dimensional plane, the total energy required by the

arborescence generated by the BIP algorithm is at most∑
e∈mst(P ) ‖e‖κ .

Proof. Remember that G(κ) is the complete graph over the
point set P , in which the weight of an edge e is ‖e‖κ . Let
T be the arborescence generated by the algorithm BIP. We
construct another weighted graphH over the same point set P
according to the execution of BIP for generating T . Suppose
that, during the execution of BIP, the nodes are added in the
order p1,p2, . . . ,pn, where p1 is the source node. Let Ti be
the arborescence just after the node pi is added. In H , the
weight of edge pipi+1 is equal to the incremental energy of
the link from a node in Ti to pi+1 chosen during the execution
of SPF; and the weight of any other edge, with at least one
node not in Ti , is the same as that in G(κ). Note that for
each edge pipi+1, its weight in H is not more than its weight
in G(κ). Therefore, for any spanning tree, its weight inH is no
more than its weight in G(κ). On the other hand, the execution
of the Prim’s algorithm on H will emulate the algorithm BIP
on G(κ) in the sense that it will add the required nodes in the
same order, and will output the path p1p2 · · · pn. The weight
of this path in H is exactly the total energy required by T ,
but is at most the weight of any MST in G(κ). This implies
that the total energy required by T is at most

∑
e∈mst(P ) ‖e‖κ .

This completes the proof. �

From the above lemma and lemma 4, we have the follow-
ing result for the BIP algorithm similar to theorem 5.

Theorem 7. The approximation ratio of the BIP heuristic is
at most c, and therefore, is at most 12.

6. Proof of theorem 3

This section is devoted to the proof of theorem 3. The lower
bound is very trivial as it can follow from the following in-
stance consisting of seven points: the center of a regular
hexagon and its six vertices. However, the deriving of the up-
per bound is very challenging. We first introduce some geo-
metric structures and notations to be used in this section. All
angles are measured in radians and take values in the range
[0, π]. For any three points p1,p2 and p3, the angle be-
tween the two rays p1p2 and p1p3 is denoted by � p2p1p3 or
� p3p1p2. The closed infinite area inside the angle � p2p1p3,
also referred to as a sector, is denoted by �p2p1p3. The trian-
gle determined by p1,p2 and p3 is denoted by �p2p1p3. The
open disk centered at p with radius r , denoted by B(p, r),
is the set of points, such that every point has distance less
than r from p. The lune through points p1 and p2, denoted
by L(p1p2), is the intersection of the two open disks of radius
‖p1p2‖ centered at p1 and p2 respectively (see figure 5(a)).
Thus, it consists of points whose distances from p1 and p2
are less than ‖p1p2‖. The open diamond subtended by a line
segment p1p2, denoted by D(p1p2), is the rhombus with sides
each of which has length (

√
3/3)‖p1p2‖ (see figure 5(b)).

Note that the interior angles at p1 and p2 within D(p1p2) are
equal to π/3.
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(a) (b)

Figure 5. Illustration of (a) lune and (b) diamond.

(a)

(b)

Figure 6. Two extreme cases for D(p1p4) ⊆ �p1p3p2.

The Euclidean MSTs have many nice structure proper-
ties [8]. Some basic properties are listed below.

• Any pair of edges do not cross each other.

• The angles between any two edges incident to a common
vertex is at least π/3.

• The length of each edge is at most the radius of the vertex
set.

• The lune determined by each edge does not contain any
other vertices.

• Let p1p2 be any edge. Then the two endpoints of any other
edge are either both outside B(p1, ‖p1p2‖), or both out-
side B(p2, ‖p1p2‖).
In this section, we will first prove yet another structure

property of the Euclidean MSTs, which is very essential to
bound the constant c: The diamonds of any two edges are
disjoint. The proof of this property will make use of the fol-
lowing lemma.

Lemma 8. Let p1,p2 and p3 be any three points in the plane
with � p1p3p2 = 2π/3 and ‖p1p3‖ = ‖p2p3‖ (see figure 6).
Let p4 be any point in �p1p3p2 but outside �p1p2p3 with

� p2p1p4 = α. Then D(p1p4) ⊆ �p1p3p2 if and only if either
α ∈ [0, π/3) and ‖p1p4‖ � (sinπ/3)sin(π/3 − α)‖p1p2‖ or
α ∈ [π/3, 2π/3].

Proof. Note that D(p1p4) � �p1p3p2 if α > 2π/3; and
D(p1p4) ⊆ �p1p3p2 if α ∈ [π/3, 2π/3]. So we now assume
α ∈ [0, π/3). We fix α and calculate the maximum length
of p1p4 such that D(p1p4) ⊆ �p1p3p2. This happens when
D(p1p4) touches the ray p3p2, say at x. We consider this
extreme scenario. In this case,

� p3p1x =α, � p1xp3=
π

3
− α.

Applying the Laws of Sine in �p1p3x, we have

‖p1x‖
‖p1p3‖ = sinπ/3

sin(π/3 − α)
.

On the other hand, as �p1p2p3 and �p1p4x are similar,

‖p1p4‖
‖p1p2‖ = ‖p1x‖

‖p1p3‖ = sinπ/3

sin(π/3 − α)
.

Therefore, D(p1p4) ⊆ �p1p3p2 as long as ‖p1p4‖ �
(sinπ/3)/sin(π/3 − α)‖p1p2‖. �

In the next we apply the above lemma to show that the
diamond determined by any edge in a Euclidean MST is con-
tained in some sector defined in the next lemma.

Lemma 9. Let p1,p2 and p3 be any three points in the plane
with p3 being outside L(p1p2). Let p′

1 (p′
2 respectively) be

the vertex of D(p1p3) (D(p2p3) respectively) which lies on
the opposite side of the line p1p3 (p2p3 respectively) from p2
(p1 respectively) (see figure 7). Then D(p1p2) ⊆ �p′

1p3p′
2.

Proof. We assume by symmetry that p3 is above the line
p1p2 and to the right of the perpendicular bisector of p1p2.
Then ‖p1p3‖ � ‖p2p3‖. Since p3 is outside L(p1p2),
‖p1p3‖ � ‖p1p2‖ and � p1p3p2 < π/2. Therefore,

� p′
1p3p′

2 <
π

2
+ π

6
+ π

6
= 5π

6
,

� p1p2p3 � π

3
,

� p2p1p3 <
π

2
.

Let x and y be the other two vertices of D(p1p2) which
lie between the up side and the down side respectively of
the line p1p2. It is sufficient to show that both x and y are
within �p′

1p3p′
2. This is true when � p2p1p3 � π/6 (see fig-

ure 7(a)). So we assume that � p2p1p3 < π/6. In this case x
is within �p1p3p′

1, and thus within �p′
1p3p′

2, from lemma 8
and ‖p1p3‖ � ‖p1p2‖. If � p1p2p3 � 5π/6, then y is within
�p′

1p3p2 ⊆ �p′
1p3p′

2 (see figure 7(b)). If � p1p2p3 > 5π/6,
then

� p3p2y = 2π−� p1p2p3 − � p1p2y

� 2π−π − π

6
= 5π

6
,
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(a)

(b)

(c)

Figure 7. The three cases for lemma 9.

which implies that the ray p2y does not intersect with the ray
p3p′

2 (see figure 7(c)). So y is within �p′
1p3p′

2. Therefore, in
either case both x and y are within �p′

1p3p′
2. This completes

the proof. �

Now we are ready to prove the “disjoint diamonds” prop-
erty of Euclidean MSTs.

Lemma 10. In any Euclidean MST, the two diamonds deter-
mined by any two edges are disjoint.

Proof. The lemma is true when two edges are incident to a
common vertex as the angle between them is at least π/3. So
we consider two edges p1p2 and q1q2 with distinct endpoints.
We consider two cases.

Case 1. At least one of p1p2 and q1q2 does not cross the
perpendicular bisector of the other. Without loss of gener-
ality, assume that q1 and q2 lie in the same side of the per-
pendicular bisector of p1p2 as p1 (see figure 8(a)). Let q′

1
(q′

2 respectively) be the vertex of D(p1q1) (D(p1q2) respec-
tively) which lies on the opposite side of the line p1q1 (p1q2
respectively) from q2 (q1 respectively). Then from lemma 9,

(a) (b)

Figure 8. Two cases for lemma 10.

D(q1q2) ⊆ �q′
1p1q′

2. On the other hand, since both q1 and
q2 are outside L(p1p2), D(p1p2) is outside �q′

1p1q′
2. Thus,

D(p1p2) and D(q1q2) are disjoint.
Case 2. Both p1p2 and q1q2 cross the perpendicular bi-

sector of the other. Without loss of generality, assume that q1
lies in the same side of the perpendicular bisector of p1p2 as
p1 (see figure 8(b)). Then p1 must lie in the same side of the
perpendicular bisector of q1q2 as q1, for otherwise

‖p2q1‖ > ‖p1q1‖ > ‖p1q2‖ > ‖p2q2‖,
i.e., both p1 and p2 lie in the same side of the perpendicu-
lar bisector of q1q2 as q2, which contradicts to the assump-
tion. Since q2 is outside L(p1p2) and ‖p1q2‖ > ‖p2q2‖, we
have ‖p1q2‖ > ‖p1p2‖. As ‖p1q2‖ > ‖p1q1‖, q2 is out-
side �q1p1p2. Similarly, any of these four points p1,p2,q1
and q2 is outside the triangle determined by the other three
points. This implies that the convex hull determined by these
four points is a quadrilateral. Note that p1p2 and q1q2 can-
not be the two diagonals of the quadrilateral as they do not
cross each other. Neither can be p1q1 and p2q2 as they are
separated by the perpendicular bisector of p1p2. Thus, the
two diagonals must be p1q2 and p2q1, and consequently the
boundary of the quadrilateral is p1p2q2q1. From the previ-
ous argument its four sides are all less than its two diagonals,
and hence, its four inner angles are all more than π/3. With-
out loss of generality, we assume that ‖p1q1‖ � ‖p2q2‖.
Then ‖p1q1‖ � ‖p1p2‖, for otherwise q1 would be inside
B(p1, ‖p1p2‖) and q2 would be inside B(p2, ‖p1p2‖), which
is impossible. Similarly, ‖p1q1‖ � ‖q1q2‖. Therefore, both
� q1p1q2 and � p1q1p2 are less than π/3. Since both � q2p1p2

and � p2q1q2 are less than π/2, we have

� q1p1p2, � p1q1q2 ∈
(
π

3
,

5π

6

)
.

Let x be the point inside �q1p1p2 such that �p1q1x is equi-
lateral. Then both p1p2 and q1q2 are outside �p1q1x. In
addition,

� xp1p2, � xq1q2 ∈
(

0,
π

2

)
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Figure 9. The calculation of the sticking-out area.

and

‖p1x‖ � ‖p1p2‖, ‖q1x‖ � ‖q1q2‖.
Let y be the center of �p1q1x. Then from lemma 8,

D(p1p2) ⊆ �p1yx,D(q1q2) ⊆ �q1yx.

This implies that D(p1p2) and D(q1q2) are disjoint. �

Let P be any point set of radius one. According to
lemma 10, the total area covered by the diamonds through
the edges in mst(P ) equals to

√
3

6

∑
e∈mst(P )

‖e‖2.

Let p be any point in P . Then every point in P has distance of
at most one from p. Since all edges of mst(p) have lengths of
at most one, all diamonds are contained in B(p, 2/

√
3). This

implies that
√

3

6

∑
e∈mst(P )

‖e‖2 � π

(
2√
3

)2

= 4π

3
.

Therefore,

∑
e∈mst(P )

‖e‖2 � 8π√
3

≈ 14.51.

This estimation is quite loose and fails in getting the desired
12 upper bound. In the next, we will provide a tighter estima-
tion which can lead to the 12 upper bound.

We observe that the total area of the diamonds is no more
than the area of the disk B(p, 1) plus the sticking-out ar-
eas of these diamonds beyond B(p, 1). Let D(p1p2) be any
diamond which sticks out B(p, 1), and let q be its vertex
which is outside B(p, 1) (see figure 9). Let p′

1 (p′
2 respec-

tively) be the intersection between p1q (p2q respectively)
and the boundary of B(p, 1). Then the sticking-out area of
D(p1p2) can be calculated by subtracting the area of the sec-
tor subtended by pp′

1 and pp′
2 from the area of the quadri-

lateral pp′
1qp′

2. The area of the quadrilateral pp′
1qp′

2 can be
further calculated by summing up the areas of �pp′

1p′
2 and

�qp′
1p′

2. As � p′
1qp′

2 is a constant 2π/3, the area of �qp′
1p′

2
is maximized when ‖qp′

1‖ = ‖qp′
2‖. Let � p′

1pp′
2 = α,

then α ∈ (0, π/3] and the sticking-out area of D(p1p2) is
at most

S(α) = 1

2
sin α +

√
3

6
(1 − cosα) − α

2
.

The area function S(α) has the following nice property.

Lemma 11. For any α, β ∈ (0, π/3),

1. if α + β � π/3, S(α) + S(β) � S(α + β);

2. if α+β � π/3, S(α)+S(β) � S(α+β−π/3)+S(π/3).

Proof. The lemma follows from the following two equali-
ties: for any α and β,

S(α + β)− S(α) − S(β)

= 4
√

3

3
sin

α

2
sin

β

2
sin

(
π

6
− α + β

2

)
,

S

(
α + β − π

3

)
+ S

(
π

3

)
− S(α) − S(β)

= 4
√

3

3
sin

(
α + β

2
− π

6

)
sin

(
π

6
− α

2

)
sin

(
π

6
− β

2

)
.

We first prove the first equality.

S(α + β)− S(α) − S(β)

= 1

2

(
sin(α + β)− sin α − sinβ

)

+
√

3

6

(
(cosα + cosβ)− (

cos(α + β)+ 1
))

=
(

sin
α + β

2
cos

α + β

2
− sin

α + β

2
cos

α − β

2

)

+
√

3

3

(
cos

α + β

2
cos

α − β

2
− cos2 α + β

2

)

= sin
α + β

2

(
cos

α + β

2
− cos

α − β

2

)

+
√

3

3
cos

α + β

2

(
cos

α − β

2
− cos

α + β

2

)

= 2
√

3

3
sin

α

2
sin

β

2

(
cos

α + β

2
− √

3 sin
α + β

2

)

= 4
√

3

3
sin

α

2
sin

β

2
sin

(
π

6
− α + β

2

)
.
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Now we prove the second equality.

S

(
α + β − π

3

)
+ S

(
π

3

)
− S(α) − S(β)

= (
S(α + β)− S(α) − S(β)

)

−
(
S(α + β)− S

(
α + β − π

3

)
− S

(
π

3

))

= 4
√

3

3
sin

α

2
sin

β

2
sin

(
π

6
− α + β

2

)

− 4
√

3

3
sin

(
α + β

2
− π

6

)
sin

π

6
sin

(
π

6
− α + β

2

)

= 4
√

3

3
sin

(
α + β

2
− π

6

)

×
(

sin
π

6
sin

(
α + β

2
− π

6

)
− sin

α

2
sin

β

2

)

= 2
√

3

3
sin

(
α + β

2
− π

6

)

×
(

cos

(
π

3
− α + β

2

)
− cos

α − β

2

)

= 4
√

3

3
sin

(
α + β

2
− π

6

)
sin

(
π

6
− α

2

)
sin

(
π

6
− β

2

)
.

�

Suppose that there are k diamonds which stick out B(p, 1).
For any 1 � i � k, let αi be the inner angle of the arc between
the two intersection points of the boundary B(p, 1) and the
boundary of the ith sticking-out diamond. Then αi ∈ (0, π/3]
and

k∑
i=1

αi < 2π.

By repeatedly applying the two inequalities in lemma 11, the
total sticking-out area of the diamonds is

k∑
i=1

S(αi)�
⌈∑k

i=1 αi

π/3

⌉
S

(
π

3

)

� 6S

(
π

3

)
= 2

√
3 − π.

Thus the total area of diamonds is at most

π + 2
√

3 − π = 2
√

3.

Therefore,

∑
e∈mst(P )

‖e‖2 � 2
√

3√
3/6

= 12.

This completes the proof of theorem 3.

7. Summary and future works

In this paper, we have provided the theoretical performance
analysis for the heuristics presented in [11]. The approxima-
tion ratio of SPT is at least n/2, and thus, less favorable from
the theoretical perspective. The other two heuristics, link-
based MST and BIP, have constants bounded approximation
ratios. Specifically, the approximation ratio of the link-based
MST heuristic is between 6 and c, which is at most 12; the
approximation ratio of the BIP heuristic is between 13/3 and
c � 12. However, there are still several challenging issues for
future research.

First of all, the exact value of the constant c remains un-
solved. A tighter upper bound on c can lead to tighter up-
per bounds on the approximation ratios of both the link-
based MST heuristic and the BIP heuristic. From the deriv-
ing of the 12 upper bound, we observe there are still rooms
to improve the upper bound. For example, it is very un-
likely for the diamonds to fill the unit disk fully. At least
this is true for small number of nodes. However, the treat-
ment of large number of nodes is quite challenging, and more
geometric properties of the Euclidean MSTs have to be ex-
plored.

The second interesting problem is how to construct
“harder” instances that can lead to better lower bounds on the
approximation ratios of both the MST and BIP.

A major challenge, and a topic of continued research, is the
development of distributed algorithms of MST and BIP. These
algorithms should take advantage of the geometric properties
for fast implementation. Furthermore, it is important to study
the impact of limited bandwidth and transceiver resources,
as well as to develop mechanisms to cope with node mobil-
ity [11].
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