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Abstract In this paper, we study the connectivity of

multihop wireless networks with the log-normal shadowing

model by investigating the critical transmission power re-

quired by each node for asymptotic vanishing of the isolated

nodes, and the precise distribution of the number of isolated

nodes. The vanishing of isolated nodes is not only a pre-

requisite but also a good indication of network connectivity.

Most of the known works on network connectivity under

such a shadowing model were obtained only based on

simulation studies or ignoring the important boundary ef-

fect to avoid the challenging technical analysis, and thus

hardly applied to practical wireless networks. It is ex-

tremely challenging to take the complicated boundary effect

into consideration under such a realistic shadowing model

because the transmission area of each node is an irregular

region other than a circular area. Assume the wireless nodes

are represented by a Poisson point process with density n

over a unit-area disk. With the boundary effect taken into

consideration, we first obtain an explicit formula for the

expected number of isolated nodes, we then derive an upper

and a lower bounds of the critical transmission power for

asymptotic vanishing of the isolated nodes. The tightness of

the upper and lower bounds for the critical transmission

power are analyzed via numerical analysis by using the

software engineering approach. When a wireless network

consists of n nodes distributed independently and uniformly

over a unit-area disk, we derive the precise distribution of

the number of the isolated nodes under such a realistic

shadowing model with the linear power assignment, taking

the boundary effect into consideration.

Keywords Connectivity � Critical transmission power �
Random deployment � Isolated nodes � Log-normal

shadowing

1 Introduction

Connectivity is one of the most fundamental properties of

multi-hop wireless networks. It is the premise for enabling

a network with proper functions. Under the unit-disk

communication model in which two networking nodes are

directly connected if and only if their Euclidean distance is

no more than a given threshold, network connectivity has

been extensively studied (e.g., [1, 2, 7, 17, 22, 24]). The

unit-disk communication model of multihop wireless net-

works is based on the path loss phenomenon alone, and

assumes that the received signal strength at a receiving

node from a transmitting node is only determined by a

deterministic function of the Euclidean distance between

the two nodes. This simple radio propagation model is also

referred to as the path-loss model. Under such a simple

communication model, the communication range of each

node is a perfect circular disk. Two nodes can directly

communicate with each other if and only if they are within

each other’s communication ranges.

However, in reality, the received signal strength often

shows probabilistic variations induced by the shadowing

effects that are unavoidably caused by different levels of
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clutter (e.g., various background noises and obstructions

such as buildings and trees) on the propagation path. In

order to better capture physical reality, the variations of the

received signal strength should be considered. It has been

shown that a more accurate and realistic modeling of the

physical layer is indeed important for better understanding

of wireless multi-hop network characteristics [20, 26]. This

generalized radio propagation model is referred to as a log-

normal shadowing model which has been widely used by

many researchers [3, 4, 6, 8, 11, 12, 14, 19]. The gener-

alized shadowing model provides a good abstraction of

large scale wireless multi-hop networks, and is an realistic

model for many types of wireless multihop network ap-

plications such as sensor wireless networks for bush fire

monitoring, ocean temperature monitoring, volcano

monitoring, etc.

The study of multihop wireless networks with the log-

normal shadowing model can date back to the early of

1980s [4, 6]. Under such a realistic model, researchers have

investigated fundamental problems related to network

connectivity such as the largest connected component in

the network, the relation between having a connected

network and having no isolated node, etc. [3, 8, 11, 12, 14,

19]. But most of the known results on network connectivity

were obtained only based on simulation studies or ignoring

the important boundary effect to avoid the challenging

technical analysis, and thus hardly applied to practical

wireless networks. It is extremely challenging to take the

complicated boundary effect into consideration under such

a realistic shadowing model because the transmission area

of each node is an irregular region other than a circular

area. To the best of our knowledge, under such a realistic

shadowing model, only few theoretical results were ob-

tained by analytical studies in multihop wireless networks

when the important boundary effect is taken into

consideration.

Assume that all the networking nodes transmit at a

uniform power. The critical transmission power for

asymptotic vanishing of isolated nodes is the minimum

transmission power required for each node to ensure that

the probability for vanishing of isolated nodes goes to one

as the node density n!1. Determining the critical

transmission power is crucial because if the transmission

power is too large, it will waste energy on radio commu-

nication and result in excessive interference. In addition,

minimizing energy consumption is generally an important

goal in wireless multi-hop networks, especially in wireless

sensor networks where sensor nodes are typically battery-

powered and replacing or recharging batteries is often very

difficult or impossible.

In this paper, we first study connectivity of multihop

wireless networks with the log-normal shadowing model

by investigating the critical transmission power required by

each node for asymptotic vanishing of isolated nodes in the

network. The vanishing of isolated nodes is not only a

prerequisite but also a good indication of network con-

nectivity. Under the unit-disk communication model, it is

well-known that the probability of having a connected

network equals the probability of having no isolated nodes

in the network as the node density n!1 (see [15]). With

the log-normal shadowing model, such a result is predicted

and has been verified by simulation studies (see [3]).

Therefore, it is of great importance to study the critical

transmission power required by each node for asymptotic

vanishing of isolated nodes in the network under such a

realistic shadowing model. Then, we investigate the precise

distribution of the number of isolated nodes when the linear

power assignment is adapted for each node of the network.

Assume the wireless networking nodes are represented

by a Poisson point process with density n over a unit-area

disk in R
2, and any two nodes are directly connected if and

only if the power received by one node from the other

node, as determined by the log-normal shadowing model,

is not less than a given threshold. The contributions of this

paper are listed below:

1. With the complicated boundary effect taken into

consideration, we first obtained an explicit formula

for the expected number of the isolated nodes in the

network under such a realistic shadowing model. The

explicit formula allows people to control the expected

number of isolated nodes by tuning the node density or

even the transmission power. Thus, the desired level of

network connectivity can be expected;

2. We then derived analytically an upper and a lower

bounds for the critical power each node needs to

transmit in order to ensure that the probability of

having no isolated nodes converges to one as n!1
under such a realistic shadowing model. The tightness

of the asymptotic upper and lower bounds for the

critical transmission power are analyzed via numerical

analysis by using the software engineering approach;

3. When a wireless network consists of n nodes distribut-

ed independently and uniformly over a unit-area disk,

we derived the precise distribution of the number of

isolated nodes in the network with the linear power

assignment for each link under such a realistic

shadowing model, taking the complicated boundary

effect into consideration.

The results obtained in this paper can be used as design

guidelines for all practical multihop wireless networks in

which both the shadowing and boundary effects must be

taken into consideration.

In what follows, o is the origin of the Euclidean plane

R
2, and D is the unit-area (closed) disk centered at o. We
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assume that Pn is the Poisson point process over D with

density n. The symbols O; o; � always refer to the limit

n!1. An event is said to be asymptotic almost sure

(abbreviated by a.a.s.) if it occurs with a probability con-

verges to one as n!1. The Euclidean norm of a point

x 2 R
2 is denoted by xk k, and the Euclidean distance be-

tween two points u and v is denoted by uvk k. The Lebesgue

measure (or area) of a measurable set A � R
2 is denoted by

Aj j. For a set U of finite number of points, Uj j denotes the

number of points in U: The disk of radius r centered at x is

denoted by D x; rð Þ.
The remaining of this paper is organized as follows. In

Sect. 2, we give a literature review for related works of our

paper. The log-normal shadowing model is introduced and

explained in Sect. 3. In Sect. 4, we derive an explicit for-

mula for the expected number of the isolated nodes in the

network. An upper and a lower bounds of the critical

transmission power for asymptotic vanishing of isolated

nodes are obtained in Sect. 5. The tightness of the

asymptotic upper and lower bounds for the critical trans-

mission power are analyzed via numerical analysis in Sect.

6. In Sect. 7, we derive the precise distribution of the

number of isolated nodes in the network with the linear

power assignment under such a realistic shadowing model.

Finally, we conclude our paper and discuss some future

research in Sect. 8.

2 Related works

Under the unit-disk communication model, network con-

nectivity has been extensively studied, and a large number

of existing research works are available in the literature

[1, 2, 7, 17, 22, 24]. Gupta and Kumar [7] showed that if

each node uses the transmission radius

rðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log n þ cðnÞ
pn

r

;

where cðnÞ is a positive parameter depending only on n,

then the network is connected a.a.s. if and only if cðnÞ
! 1, assuming the n nodes are uniformly distributed in a

unit-area disk on the plane. Penrose [15] proved that the

longest edge of the minimum spanning tree (MST) equals

the critical transmission range for connectivity, he then

derived in [16] the asymptotic distribution of the longest

edge of the MST. Xue and Kumar [24] obtained several

results including a sufficient condition on the average node

degree for connectivity. They proved that every node must

connect to at least H(log n) closest neighbors if the network

is to be connected as n!1, assuming that the n nodes are

randomly and uniformly distributed in a unit square on the

plane. Philips et al. [17] provided a necessary condition on

the average node degree (i.e. the expected number of

neighbors of an arbitrary node) required for connectivity

and showed that the average node degree must grow

logarithmically with the area of the network to ensure that

the network is connected, assuming that the networking

nodes are represented by a Poisson point process with

density n in the plane.

The log-normal shadowing model is a more realistic

radio propagation model and has been widely used by

many researchers for network connectivity [3, 8, 11, 12, 14,

19]. Hekmat and Mieghem [8] investigated the largest

connected component in wireless ad-hoc networks through

simulations, where the n nodes are uniformly distributed in

a bounded region on the plane. This paper also obtained a

formula to evaluate the size of the largest connected

component on average. In [3], Bettstetter and Hartmann

studied the relationship between the probability of having a

connected network and the probability of having no iso-

lated node, where the wireless devices are represented by a

Poisson point process with density n. This paper predicted

that the two probabilities are exactly equal when n!1;
and verified by using simulation that the two probabilities

are almost equal when n is sufficiently large. Mukherjee

and Avidor [11] investigated , the probability distribution

for the minimal number of hops required to connect an

arbitrary source node to a destination node by ignoring the

boundary effect, and they also studied in [12] the con-

nectivity of the network by analyzing the probability that a

node cannot communicate with a random destination node

at distance D when at most two hops allowed, and then

derived the cumulative distribution function of the total

transmit energy required per data packet when the distance

between the source and the destination node is D, and at

most two hops are allowed. Through simulation studies,

Stuedi et al. [19] investigated how the transmission range

affects the end-to-end connection probability in a log-

normal shadowing model and compared the results to

theoretical bounds and measurements in the path-loss

model.

It has been shown that the log-normal shadowing results

in higher connectivity as the shadowing deviation increases

[11, 14]. By ignoring the boundary effect, Mukherjee and

Avidor [11] presented an analytic procedure to compute the

node isolation probability with such a realistic shadowing

model and proved that the presence of log-normal shad-

owing improves network connectivity by showing that the

node isolation probability decreases as shadowing in-

creases. Muetze et al. [14] demonstrated that such a be-

havior is mainly caused by an unnatural bias of the log-

normal shadowing radio propagation model: as the shad-

owing deviation grows, the radio transmission range not

only becomes more irregular, but also enlarges. This

naturally leads to an improved connectivity. To avoid this
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effect, Muetze et al. [14] analyzed connectivity and radio

interference under the log-normal shadowing model using

a normalization that compensates for the enlarged radio

transmission range. Their simulation studies showed that

the log-normal shadowing still improves the connectivity

of a multihop wireless network and even reduces radio

interference.

A recent work [10] by Li and Yang, investigated connec-

tivity of large scale wireless networks with a log-normal

shadowing model from a percolation-based perspective and

derived an analytical upper bound on the critical node density

for asymptotic connectivity of the wireless network based on

the connection function. Another recent work [9] provided a

theoretical framework for studying the effects of correlated

shadowing, in the number of relays that are capable of helping

two source nodes to exchange their messages and apply this

framework to compute the network outage probability. With

the uniform power assignment, when the transmission power

is properly chosen so that the expected node degree of the

network is equal to ln nþ nðnÞ, where nðnÞ approaches to a

constant as the number of nodes n!1; a recent work [21]

derived the distribution of the number of isolated nodes in the

network under the log-normal shadowing model.

Most of the results mentioned above were only obtained

based on simulation studies or ignoring the important

boundary effect to avoid the challenging analysis by as-

suming the toroidal metric as done in the literature. To the

best of our knowledge, only few theoretical results on

network connectivity were obtained by analytical studies in

multihop wireless networks under such a realistic shad-

owing model when the complicated boundary effect is

taken into consideration.

3 The log-normal shadowing model

With the unit-disk communication model (the path-loss

model), the received power levels decrease as the distance

between the transmitter and the receiver increases. At-

tenuation of radio signals due to path-loss effect has been

modelled by averaging the measured signal power over

long times and distances around the transmitter. The av-

eraged power at any given distance r to the transmitter is

referred to as the area mean power pamðrÞ: Based on the

path-loss model, the area mean power pamðrÞ is expressed

as

pamðrÞ ¼ cptr

d0

r

� �a

; ð1Þ

where c is a constant depending on the receiver and

transmitter antenna gains and the wavelength, ptr is the

transmission power used by each node, a is the path-loss

exponent which indicates the rate at which the received

signal strength decreases with distance, and d0 is a close-in

reference distance such that d0� uvk k for any two nodes u

and v in the network. The value of a depends only on the

environment and terrain structure and can vary between 2

in free space and 6 in heavily built urban areas. The values

of d0 and ptr depend on the density n. When the node

density n is large, the minimum distance between any two

nodes in the network should be very small. So we assume

that d0 decreases as n increases and limn!1 d0 ¼ 0: This

assumption accords with intuition. The value of the trans-

mission power ptr will be chosen later in Sect. 5.

Under the unit-disk communication model, the com-

munication range of each node is a perfect circular disk

(see Fig. 1a). The node A can directly communicate with

all other nodes that are within its communication range.

But the unit-disk communication model could be inaccu-

rate because in reality the received power levels may show

significant variations around the area mean power value.

Due to these variations, short links could disappear while

long links could merge. The log-normal shadowing model

allows for random power variations around the area mean

power. With the log-normal shadowing model, the received

mean power taken over all possible locations that are at

distance r to the transmitter is equal to the area mean

power, similar to the path-loss model. However it is further

assumed that the time averaged received power varies from

location to location in an apparently random manner [5].

Assume that the received power at node v from node u is

equal to the received power at node u from node v: Let

prvð uvk kÞ denote the received power strength between the

nodes u and v under the log-normal shadowing model. The

basic assumption in this realistic shadowing model is that

the logarithm of prvð uvk kÞ is normally distributed around

the logarithm of the area mean power pamð uvk kÞ: That is,

10 log10 prvð uvk kÞ ¼ 10 log10 pamð uvk kÞ þ Zr; ð2Þ

where Zr is a zero-mean Gaussian (normal) distributed

random variable (in dB) with standard deviation r (also in

(b)

D

A

D

C

C

B B

(a)

A

Fig. 1 a Unit-disk communication model; b log-normal shadowing

model

Wireless Netw

123



dB). The standard deviation r is a nonnegative value and,

in case of severe signal fluctuations due to irregularities in

the surroundings of the receiving and transmitting anten-

nas, measurements indicates that it can be as high as 12 dB

[18].

Under the log-normal shadowing model, the communi-

cation range of each node is an irregular region other than a

circular area (see Fig. 1b). In this figure, the node C is

closer to node A than node D; the nodes A and D are

directly connected, but the nodes A and C are not because

of the shadowing effect between the nodes A and C:

When r ¼ 0; there is no shadowing; the received power

prvð uvk kÞ is then a deterministic function of the Euclidean

distance uvk k between u and v. The channel model is re-

duced to the unit-disk communication model where each

node has a circular transmission area. When r[ 0, the

received power prvð uvk kÞ is determined by both the de-

terministic function of the Euclidean distance uvk k be-

tween u and v and the shadowing effect represented by r.

The transmission area of each node is no longer a circular

area under the log-normal shadowing model. In real ap-

plications, r is larger than zero, hence, the model with

shadowing is more realistic than that without shadowing.

For any two nodes u and v, there exists a link between

them iff the received power prvð uvk kÞ under such a model

is not less than some given threshold pth (also in dB mil-

liwatts) assumed to be a constant in this paper, i.e.

prvð uvk kÞ� pth: ð3Þ

And we say that any two nodes are directly connected iff

there exists a link between them.

Define r0 as the distance where the area mean power

pamðr0Þ is equal the given threshold power pth: That is,

pamðr0Þ ¼ pth: Then

ra
0 ¼

cptr

pth

da
0 : ð4Þ

Thus r0 is the maximum transmission radius in the ab-

sence of shadowing (i.e., r ¼ 0: Two nodes u and v have a

link between them if and only if uvk k� r0; and the shad-

owing model is reduced to the unit-disk communication

model). Based on our assumption above, d0 decreases as n

increases and limn!1 d0 ¼ 0: When ptr is fixed, r0 de-

creases as n increases and limn!1 r0 ¼ 0: When n is fixed,

r0 increases as ptr increases.

If both sides of Eq. (2) minus 10 log10 pth; we have

10 log10

prvð uvk kÞ
pth

¼ 10 log10

pamð uvk kÞ
pth

þ Zr

¼ 10 log10

pamð uvk kÞ
pamðr0Þ

þ Zr

¼ 10a log10

r0

uvk k þ Zr

The second last equation holds since pamðr0Þ ¼ pth:
Then Eq. (3) is equivalent to

Zr� 10a log10ð uvk k=r0Þ: ð5Þ

Given any two nodes u and v; the probability that there

is a link between u and v is given by

Prðflinkðu; vÞ existsgÞ
¼ Prfprvð uvk kÞ� pthg
¼ PrfZr� 10a log10ð uvk k=r0Þg:

ð6Þ

Let x ¼ uvk k: Note that Prðflinkðu; vÞ existsgÞ depends

on x; n; and ptr: Let

f ðx; nÞ ¼ Prðflinkðu; vÞ existsgÞ
¼ PrfZr� 10a log10ðx=r0Þg:

ð7Þ

The following lemma demonstrates how the probability

f ðx; nÞ changes when the link length x, or the density n; or

the transmission power ptr changes.

Lemma 1 When n and ptr are fixed, the probability

f ðx; nÞ decreases as x increases; when n and x are fixed,

the probability f ðx; nÞ increases as ptr increases.

Proof According to Eq. (5), when n and ptr are fixed,

since log10ðx=r0Þ increases as x increases, it is easy to see

that the probability f ðx; nÞ is a decreasing function of the

link length x, which accords with intuition. When the

density n and the link length x are fixed, as ptr increases, r0

increases and log10ðx=r0Þ decreases. Therefore, the prob-

ability f ðx; nÞ increases as ptr increases, which also accords

with intuition. Thus, the lemma is proved. h

We assume that the maximum link length of the net-

work, denoted by Rn, only depends on the density n and the

transmission power ptr: Clearly, Rn increases as ptr in-

creases when n is fixed. Therefore, there is no link between

any two nodes in the network if their Euclidean distance is

greater than Rn: Thus,

f ðx; nÞ ¼
0 if x [ Rn;

Pr Zr� 10a log10

x

r0

� �

if x�Rn:

8

<

:

ð8Þ

4 The expected number of the isolated nodes

In this section we study the connectivity of multihop

wireless networks with the log-normal shadowing model

by investigating the number of isolated nodes in the

network. The vanishing of isolated nodes is not only a

prerequisite but also a good indication of network con-

nectivity. We derive an explicit formula for the expected

number of isolated nodes in the network under such a
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realistic model with the complicated boundary effect taken

into consideration.

The key technique used in this section is the Palm theory

for Poisson processes (see, e.g., Theorem 5 in [23]), which

is stated below.

Theorem 2 (Palm theory) Suppose that h U;Vð Þ is a

bounded measurable function defined on all pairs of the

form U;Vð Þ with V being a finite planar set and U being

a subset of V. Then for any positive integer k;

E
X

U�Pn; Uj j¼k

h U;Pnð Þ

2

4

3

5 ¼ nk

k!
E h X k;X k [ Pnð Þ½ �;

where X n is the uniform n-point process over D.

Let Mn denote the expected number of the degree d of a

node in the network. Then d is a Poisson random variable

and its expectation can be computed as follows (see [3,

13]):

Mn ¼ E d½ �

¼ n

Z 2p

0

Z 1

0

f ðr; nÞrdrdh

¼
Z Rn

0

2npf ðr; nÞrdr;

ð9Þ

where the last equation holds by Eq. (8).

The following theorem gives an explicit formula for the

expected number of the isolated nodes in the network with

the complicated boundary effect taken into consideration.

The proof of this theorem is given in Appendix.

Theorem 3 With the complicated boundary effect taken

into consideration, the expected number E N½ � of isolated

nodes in the network is equal to

npe	Mn
1
ffiffiffi

p
p 	 Rn

� �2

þ ne	Mn

Z

ffiffi

1
p

p

ffiffi

1
p

p
	Rn

2pe
2n
R b

0
dh
R Rn
ffiffiffiffiffiffiffiffiffiffiffiffi

1
p	r2 sin2 h
p

	r cos h
f ðq;nÞqdq

rdr;

where b is given by

b ¼ p	 arccos
r2 þ R2

n 	 1
p

2rRn

: ð10Þ

Partition the unit-area disk D into two sub regions Dð1Þ
and Dð2Þ; where Dð1Þ ¼ fx 2 D: distðx; oDÞ�Rng and

Dð2Þ ¼ fx 2 D: distðx; oDÞ\Rng (see Fig. 2).

A lower bound for the expected number E N½ � of isolated

nodes is derived in the lemma below. This lemma will be

used in Sect. 5 to obtain the critical transmission power for

vanishing of the isolated nodes in the network as n!1.

Lemma 4 With the complicated boundary effect taken

into consideration, the expected number E N½ � of isolated

nodes in the network is at least ne	Mn ; where Mn is given

in Eq(9).

Proof By Eqs. (21) and (18), for any x 2 D

E N½ � ¼ n

Z Z

x2Dð1Þ
þ
Z Z

x2Dð2Þ

 !

PrðX isolated j X¼ xÞdA

¼ ne	Mn Dð1Þj jþn

Z Z

x2Dð2Þ
PrðX isolated jX¼ xÞdA:

ð11Þ

Next we give an lower bound for the double integral on

Dð2Þ. Record that for each 1� i� k; the ith circular belt

region (annulus if it is contained in D) is the one with inner

radius ri	1 and outer radius ri: Then

Pr
X has no link with nodes in

the i-th circular belt region
j X ¼ x

� �

� Pr
X has no link with nodes in

the i-th annulus in Dðx;RnÞ
j X ¼ x

� �

¼ e	2npriMeri f ðri;nÞ;

where the last equality holds by Eq. (19). Therefore, for

any x 2 Dð2Þ;

Pr X is isolated j X ¼ xð Þ

¼ lim
k!1

Pr

For all 1� i� k; X has

no link with the nodes in

the i-th circular belt region

j X ¼ x

0

B

@

1

C

A

¼ lim
k!1

Y

k

i¼1

Pr
X has no link with nodes in

the i-th circular belt region
j X ¼ x

� �

� lim
k!1

Y

k

i¼1

e	2npriMeri f ðri;nÞ

¼ e	Mn ;

n

D(1)

R

o

D(2)

Fig. 2 The unit-area disk D is divided into two sub regions D(1) and

D(2)
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where the last equation holds from Eq. (20). Hence,
ZZ

x2Dð2Þ
PrðX isolated j X ¼ xÞdA� e	Mn Dð2Þj j:

Thus, by Eq. (11) we have

E N½ � � ne	Mn Dð1Þj j þ ne	Mn Dð2Þj j ¼ ne	Mn :

Therefore, the lemma is proved. h

5 Critical transmission power for asymptotic vanishing

of isolated nodes

In this section, we study the critical transmission power for

asymptotic vanishing of the isolated nodes in the network

under the log-normal shadowing model with the complicated

boundary effect taken into consideration. We will obtain

analytically an upper and a lower bounds for the critical

power each node needs to transmit in order to ensure that the

vanishing of the isolated nodes is a.a.s. (asymptotic almost

sure). Our asymptotic upper and lower bounds for the critical

transmission power used by each node are almost tight.

Recall that f ðx; nÞ defined in Eq. (5) denotes the prob-

ability that any two random nodes u and v separated by the

distance x ¼ uvk k are directly connected, and that Mn defined

in Eq. (9) is the expected number of the degree of a node in

the network. Note that Mn depends only on the density n and

the transmission power ptr, and that Rn increases as ptr in-

creases when n is fixed. By Lemma 1, the value of f ðx; nÞ
increase as ptr increases when n is fixed. Therefore, the value

of Mn increases as ptr increases when n is fixed. Let

nðnÞ ¼ Mn 	 ln n: ð12Þ

Next we prove that if the transmission power ptr is

chosen large enough so that lim
n!1

nðnÞ ¼ þ1 and

lim
n!1

n
1þe

2 Rne	
1	e

2
nðnÞ ¼ 0 for some arbitrarily small e [ 0;

then under such a realistic shadowing model with the

complicated boundary effect taken into consideration,

vanishing of the isolated nodes is a.a.s. (Theorem 6). If the

transmission power ptr is chosen not too large so that

lim sup
n!1

nðnÞ ¼ c\þ1 (i.e., c is a finite constant), then

with the complicated boundary effect taken into consid-

eration, the probability that the network has isolated nodes

is positive as n!1 (Theorem 7).

If the probability f ðr; nÞ ¼ 1 (i.e., the shadowing model

is reduced to the unit-disk communication model), then Eq.

(12) is reduced to

Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln nþ nðnÞ
pn

r

; ð13Þ

where Rn is the minimal transmission radius of each node

(determined by the minimal transmission power) required

for connectivity of multihop wireless networks under the

unit-disk communication model (see [7]).

In general, under the log-normal shadowing model, the

link-existing probability f ðr; nÞ is a function of the link

length r; the density n and the transmission power ptr. The

analysis is much more complicated and challenging when

the boundary effect is taken into consideration.

First we give a lemma that will be used to obtain an

a.a.s. upper bound of the critical transmission power for

vanishing of the isolated nodes in the network.

Lemma 5 When n is sufficiently large, for any x 2 Dð2Þ
we have

n

ZZ

Dðx;RnÞ nD
f ðq; nÞqdqdh� 1þ e

2
Mn

for some arbitrarily small e [ 0.

Proof In Fig. 4, it is easy to see that

Dðx;RnÞ nD
�

�

�

�� ]axbj j for all x 2 Dð2Þ: Recall that b ¼
\axc: When the point x is very close to the boundary of the

unit-area disk D, the value of b can be greater than p
2
: Since

lim
n!1

Rn ¼ 0 and the radius of D is 1
ffiffi

p
p ; the value of max

x2Dð2Þ
b

goes to p
2

as n!1: Therefore, we can choose n suffi-

ciently large so that for all x 2 Dð2Þ; we have

b�ð1þ eÞ p
2

for some arbitrarily small e [ 0. Thus, we have

n

ZZ

Dðx;RnÞ nD
f ðq; nÞqdqdh

� n

ZZ

]axb

f ðq; nÞqdqdh

¼ n

Z b

	b
dh
Z Rn

0

f ðq; nÞqdq

¼ b
p

Z Rn

0

2pnf ðq; nÞqdq

� 1þ e
2

Mn:

Hence, the lemma is proved. h

Now we are ready to derive an upper bound of the cri-

tical transmission power to ensure that vanishing of the

isolated nodes in the network is a.a.s.

Theorem 6 Let N denotes the number of isolated nodes

in the network. With the complicated boundary effect tak-

en into consideration, if the transmission power ptr is
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chosen large enough so that lim
n!1

nðnÞ ¼ þ1 and

lim
n!1

n
1þe

2 Rne	
1	e

2
nðnÞ ¼ 0; then lim

n!1
PrðN ¼ 0Þ ¼ 1:

Proof Let X be a random point with uniform distribution

over D and independent of Pn as we used in Sect. 4. By the

Markov’s inequality, Eqs. (20), (22) and Lemma 5, we have

PrðN � 1Þ�E N½ �

¼ n

ZZ

x2Dð1Þ
þ
ZZ

x2Dð2Þ

 !

PrðX isisolatedjX ¼ xÞdA

¼ ne	Mn Dð1Þj j

þ n

ZZ

x2Dð2Þ
e
	Mn þ n

RR

Dðx;RnÞ nDf ðq;nÞqdqdh

dA

� ne	Mn Dð1Þj j þ ne	
1	e

2 Mn Dð2Þj j
� e	nðnÞ þ n

1þe
2 e	

1	e
2

nðnÞ
Dð2Þj j

� e	nðnÞ þ 2
ffiffiffi

p
p

n
1þe

2 Rne	
1	e

2
nðnÞ

! 0:

The last equation holds since lim
n!1

nðnÞ ¼ þ1;
lim

n!1
n

1þe
2 Rne	

1	e
2

nðnÞ ¼ 0; and Dð2Þj j � 2
ffiffiffi

p
p

Rn: Thus,

lim
n!1

PrðN ¼ 0Þ ¼ 1 and Theorem 6 holds. h

The next theorem shows that if the transmission power

ptr is chosen not too large so that lim sup
n!1

nðnÞ ¼ n0 for

some positive constant n0\þ1, then the probability that

the network has isolated nodes is positive as n!1.

Theorem 7 Let N denotes the number of isolated nodes

in the network. With the complicated boundary effect taken

into consideration, if the transmission power ptr is chosen

not too large so that lim sup
n!1

nðnÞ ¼ n0\þ1; then

lim inf
n!1

PrðN� 1Þ[ 0: ð14Þ

Proof By Lemma 4, the expected number of isolated

nodes E N½ � satisfies

E N½ � � ne	Mn ¼ ne	ðln nþnðnÞÞ ¼ e	nðnÞ:

Then

lim inf
n!1

E N½ � � lim inf
n!1

e	nðnÞ

¼ e
	lim sup

n!1
nðnÞ
¼ e	n0 [ 0:

Since the value of the random variable N is either zero or

positive integers, lim inf
n!1

PrðN� 1Þmust be a positive value.

Otherwise, if lim inf
n!1

PrðN � 1Þ ¼ 0; then lim inf
n!1

E N½ � ¼ 0;

which is a contradiction.

This completes the proof of the theorem. h

Equation (14) in Theorem 7 is equivalent to

lim sup
n!1

PrðN ¼ 0Þ\1:

That is, the probability for asymptotic vanishing of the

isolated nodes in the network is strictly less than one: Thus,

Theorem 7 gives an lower bound for the critical trans-

mission power used by each node to ensure that vanishing

of isolated nodes in the network is a.a.s.

6 Tightness analysis via numerical analysis

In this section, we analyze the tightness of the upper and

the lower bounds of the critical transmission power ob-

tained in Sect. 5 via numerical analysis using the software

engineering approach.

In Theorem 6 of Sect. 5, we obtained an upper bound of

the critical transmission power ptr satisfying that the

probability of having no isolated nodes goes to one as the

density n goes to infinity, i.e.,

lim
n!1

PrðN ¼ 0Þ ¼ 1;

where N is the number of the isolated nodes in the network.

We verify this theorem through numerical analysis. We

use the software engineering approach and develop an

application to obtain the approximate numerical values of

the transmission power ptr that satisfies

PrðN ¼ 0Þ� 1	 1

ln n
; ð15Þ

for any given value of n: The values of the parameters used

in this program are listed below: the path-loss exponent

a ¼ 3; the reference distance d0 ¼ 0:001, the standard de-

viation r ¼ 4 dB, the threshold power pth ¼ 50 dB, the

maximum transmission radius Rn ¼ 0:1; and the constant c

in Eq. (1) is chosen to be c ¼ 1
2

0:05
0:001

� 	3
so that Eq. (4) holds

when a ¼ 3; r0 ¼ 0:05 and ptr ¼ 2pth:

For each given value of n; we use a loop structure to get

the value for ptr in the program. The initial value of ptr is

set to pth ¼ 50 dB. The value of ptr is increased by one

every iteration of the loop until Eq. (15) holds. When the

loop exits, ptr holds the value of the critical transmission

power satisfying that Eq. (15) holds. The program calcu-

lates such values of critical transmission power for

n ¼ 300; 400; 500; . . .; 1600:

The 3rd row (UB) of Table 1 and the red curve in Fig. 3

depict how the upper bounds of the critical transmission

power ptr for asymptotic vanishing of the isolated nodes

evolve as the total number of nodes n increases. Note that

the deployment region is a unit-area disk.
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In Theorem 7 of Sect. 5, we obtained a lower bound of

the critical transmission power ptr satisfying that the

probability that the network has isolated nodes is positive

as n!1, i.e.,

lim
n!1

PrðN � 1Þ[ 0:

We verify this theorem via numerical analysis. We write

another Java program to obtain approximate numerical

values of the transmission power ptr that satisfies

PrðN ¼ 0Þ� 0:3þ 1

ln n
; ð16Þ

for any given value of n: The values of the parameters

a; d0; r; pth;Rn; and c are the same as those we used above.

For each given value of n; we use a loop structure to get

the value for ptr in the program. The initial value of ptr is

set to 2000 dB. The value of ptr is decreased by one every

iteration of the loop until Eq. (16) holds. When the loop

exits, ptr holds the value of the critical transmission power

satisfying that Eq. (16) holds. The program calculates such

values of the critical transmission power for n ¼
300; 400; 500; . . .; 1600: The 2nd row (LB) of Table 1 and

the blue curve in Fig. 3 depict how the lower bounds of the

critical transmission power ptr for asymptotic vanishing of

the isolated nodes evolve as the total number of nodes n

increases.

7 Precise distribution of the number of isolated nodes

in the network

In this section, we study the connectivity of a multihop

wireless network with the log-normal shadowing model by

investigating the distribution of the number of the isolated

nodes in the network. We assume that the wireless network

consists of n nodes which are distributed independently and

uniformly over a unit-area disk, and that the linear power

assignment is adopted for all the links in the network. We

derive the precise distribution of the number of isolated nodes

in the network with the complicated boundary effect taken

into consideration under such a realistic shadowing model.

With the linear power assignment, for any link ðu; vÞ in

the network, the transmission power assigned to both ends

u and v of the link is given by

pu ¼ pv ¼ k uvk ka; ð17Þ

where a is the path-loss exponent and k is a constant.

Given any two nodes u and v in the network separated

by the distance x ¼ uvk k: Recall that by Eq. (5), f ðx; nÞ
denotes the probability that u and v are directly connected,

and that Rn is the maximum link length of the network.

Based on the assumption for Eq. (8) in Sect. 3, there is no

link between u and v if uvk k[ Rn: When uvk k�Rn; the

probability that u and v are directly connected is equal to

PrfZr� 10a log10ð uvk k=r0Þg; where Zr is a zero-mean

Gaussian distributed random variable with standard de-

viation r: Therefore, Rn can be considered as the maximum

transmission radius of every node in the network.

We first give a lemma that shows the probability of the

existence of any link only depends on n (the number of

nodes in the network) when the linear power assignment is

adopted for each link. This lemma will be used to derive

the precise distribution of the number of isolated nodes in

the network.

Lemma 8 For a multihop wireless network with max-

imum link length Rn, under the log-normal shadowing

model with the linear power assignment for each link, the

probability of the existence of any link depends only on n.

Table 1 The lower bounds (LB) and upper bounds (UB) of the critical transmission power ptr for vanishing of the isolated nodes as the number

of nodes n increases

n 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

LB 384 234 167 129 105 87 75 65 57 51 50 50 50 50

UB 635 362 247 187 150 124 106 92 81 72 65 59 54 50

The power unit for both LB and UB is dB

Fig. 3 The upper and lower bounds of the critical transmission power

for asymptotic vanishing of the isolated nodes
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Proof Given any link ðu; vÞ in the network with link

length uvk k�Rn. By Eq. (8), the probability that the link

ðu; vÞ exists is given by

Prðflinkðu; vÞ existsgÞ ¼ PrfZr� 10 log10ð uvk ka=ra
0Þg;

where r0 is the maximum transmission radius in the ab-

sence of shadowing (i.e., r ¼ 0). Under the log-normal

shadowing model with the presence of shadowing, we have

r[ 0: By Eqs. (4) and (17),

Prðflinkðu; vÞ existsgÞ
¼ PrfZr� 10 log10ð uvk ka=ra

0Þg

¼ Pr Zr� 10 log10 uvk ka cptr

pth

da
0

� �
� �� �

¼ Pr Zr� 10 log10 uvk ka ck uvk ka

pth

da
0

� �
� �� �

¼ Pr Zr� 10 log10

pth

ckda
0

� �� �

¼ 1

r
ffiffiffiffiffiffi

2p
p

Z þ1

10 log10
pth

ckda
0

� � e	
x2

2r2 dx:

The last equality holds since Zr is a zero-mean Gaussian

distributed random variable with standard deviation r:
Since pth; c; k; d0 and r are all constants when n is fixed,

the probability that the link ðu; vÞ exists depends only on n.

This completes the proof of the lemma. h

By Lemma 8, let p denote the probability f ðx; nÞ that any

link ðu; vÞ with x ¼ uvk k�Rn exists in the network. Then p

is independent of the link length x ¼ uvk k: Thus, Eq. (12)

can be reduced to

nðnÞ ¼
Z Rn

0

2nprf ðr; nÞdr 	 ln n ¼ nppR2
n 	 ln n:

Solving the equation for Rn, we have

Rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln nþ nðnÞ
pnp

s

;

where Rn is the maximum transmission radius of each node

in the network based on the discussion above.

Now we are ready to derive the precise distribution of

the number of isolated nodes in the network under the log-

normal shadowing model with linear power assignment,

taking the complicated boundary effect into consideration.

Theorem 9 Assume that limn!1 p ln n ¼ 1 and

limn!1 nðnÞ is equal to some constant n; and that the

linear power assignment is adopted for every link in the

network. Under the log-normal shadowing model with the

complicated boundary effect taken into consideration, the

total number of isolated nodes is asymptotically Poisson

with mean e	n:

Proof First we assume that nðnÞ is equal to the constant n
for all n: We apply Theorem 1 in the paper by Yi et al. [25],

where nodes are active independently with probability p1,

and links are up independently with probability p2. By

setting p1 ¼ 1 (since all nodes are active in our model) and

p2 ¼ p; and using the result of Theorem 1 in the paper [25],

the total number of isolated nodes in the network is

asymptotically Poisson with mean e	n:

Next we assume that nðnÞ is a function of n: Since

limn!1 nðnÞ ¼ n; it is easy to verify that the asymptotic

equivalent relations of Lemma 3, Lemma 4, Lemma 5 and

Lemma 6 in the paper [25] still hold as n!1: Therefore,

the asymptotic equivalent relation of the equation Eq. (2) in

[25] still hold as n!1: Thus, Theorem 1 in [25] is still

true when nðnÞ is a function of n with limn!1 nðnÞ ¼ n:
This completes the proof of Theorem 9. h

8 Conclusion and future work

In this paper, we first assume that the wireless nodes are

represented by a Poisson point process with density n over

a unit-area disk. With the complicated boundary effect

taken into consideration, we obtained an explicit formula

for the expected number of isolated nodes in the network.

Then we derived an upper and a lower bounds of the cri-

tical transmission power for asymptotic vanishing of the

isolated nodes. The tightness of the upper and lower

bounds for the critical transmission power are analyzed via

numerical analysis by using the software engineering ap-

proach. When a wireless network consists of n nodes dis-

tributed independently and uniformly over a unit-area disk,

we derived the precise distribution of the number of the

isolated nodes in the network under such a realistic shad-

owing model with the linear power assignment for each

link. Our results can be extended from the following

aspects: (1) It is well-known that, under the unit-disk

communication model, the probability of having a con-

nected network is equal to the probability of having no

isolated nodes in the network when the node density n!
1: With the log-normal shadowing model, this result was

verified only by simulation. There is a need to provide a

rigorous analytical proof for this result under such a real-

istic shadowing model with the boundary effect taken into

consideration. (2) Our upper and lower bounds of the cri-

tical transmission power for asymptotic vanishing of the

isolated nodes are not tight. A more refined argument may

lead to a precise bound for the critical transmission power

for asymptotic vanishing of the isolated nodes in the

network.
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Appendix

This appendix is dedicated to the proof of Theorem 3 in

Sect. 4.

Proof of Theorem 3 Let X be a random point with uni-

form distribution over D and independent of Pn. For any

finite planar set V and any subset U of V ; define h U;Vð Þ as

follows: hðU;VÞ ¼ 1 if Uj j ¼ 1 and the node in U is iso-

lated from all the nodes in V ; and hðU;VÞ ¼ 0 otherwise.

Note that D is partitioned into two sub-regions Dð1Þ and

Dð2Þ (see Fig. 2).

Let N denote the number of isolated nodes in the

network, then by the Palm Theory,

E N½ � ¼
X

Y2Pn

E hð Yf g;PnÞ½ � ¼ E
X

Y2Pn

hð Yf g;PnÞ
" #

¼ nE hð Xf g; Xf g [ PnÞ½ �
¼ n Pr X isisolatedin Xf g [ Pnð Þ

¼ n

ZZ

x2D
PrðX isisolatedin Xf g [ PnjX ¼ xÞdA:

¼ n

ZZ

x2Dð1Þ
þ
ZZ

x2Dð2Þ

 !

PrðX isolatedin Xf g[

PnjX ¼ xÞdA:

ð18Þ

To compute the integral, we equally partition the

interval ½0;Rn� into k subintervals with r0 ¼ 0\ r1\
r2\ � � �\rk ¼ Rn: Let Mri ¼ ri 	 ri	1 ¼ Rn

k
; where

i ¼ 1; 2; . . .; k:

First we calculate the integral on Dð1Þ. For any x 2
Dð1Þ; the disk Dðx;RnÞ is divided into k 	 1 concentric

annuli and the center disk Dðx; r1Þ: We consider the

center disk Dðx; r1Þ as an annulus with inner radius r0 ¼
0 and outer radius r1: For each 1� i� k; the ith annulus

is the one with inner radius ri	1 and outer radius ri:

The area of the ith annulus can be written as 2priMeri ;

where

Meri ¼ Mri þ oðMriÞ ¼
Rn

k
þ o

1

k

� �

as k!1: Let Ni denote the number of nodes in the ith

annulus, 1� i� k, then Ni is a Poisson random variable

with mean nð2priMeriÞ: For every 1� i� k; we have

Pr X has no link with nodes in i-th annulusjX ¼ xð Þ

¼
X

1

j¼0

Pr

X has no link

with nodes in

the i-th annulus

jX ¼ x

0

B

@

1

C

A

j Ni ¼ j

0

B

@

1

C

A

�

Pr Ni ¼ j j X ¼ xð Þ

¼
X

1

j¼0

1	 f ðri; nÞð Þ j ð2npriMeriÞ j

j!
e	2npriMeri

 !

¼ e	2npriMeri

X

1

j¼0

ð2npriMeri 1	 f ðri; nÞð ÞÞ j

j!

¼ e	2npriMeri f ðri;nÞ:

ð19Þ

For any x 2 Dð1Þ; we have

Pr X isolated in Xf g [ Pn j X ¼ xð Þ

¼ lim
k!1

Pr

For all 1� i� k;

X has no link with

nodes in i-th annulus

j X ¼ x

0

B

@

1

C

A

¼ lim
k!1

Y

k

i¼1

Pr

X has no link with

nodes in the

i-th annulus

jX ¼ x

0

B

@

1

C

A

¼ lim
k!1

Y

k

i¼1

e	2npriMeri f ðri;nÞ

¼ elimk!1
Pk

i¼1
	2nprið Þ R

kþo 1
kð Þð Þf ðri;nÞ

¼ elimk!1
Pk

i¼1
	2nprið ÞR

k
f ðri;nÞþ

Pk

i¼1
	2nprið Þo 1

kð Þf ðri;nÞ

¼ elimk!1
Pk

i¼1
	2nprið ÞR

k
f ðri;nÞ

� 	

¼ e
	
R Rn

0
2nprf ðr;nÞdr

¼ e	Mn :

ð20Þ

Therefore,
ZZ

x2Dð1Þ
PrðX isolated j X ¼ xÞdA

¼ e	Mn Dð1Þj j

¼ pe	Mn
1
ffiffiffi

p
p 	 Rn

� �2

:

ð21Þ

Next we calculate the integral on Dð2Þ. For any x 2
Dð2Þ; the region Dðx;RnÞ \ D is divided into k 	 1
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concentric circular belt regions and the center disk Dðx; r1Þ:
For each 1� i� k; the ith circular belt region (annulus if it

is contained in D) is the one with inner radius ri	1 and

outer radius ri: Let li denote the arc length of the ith

circular belt region and l0i ¼ 2pri 	 li, then its area can be

written as liMeri ; where

Meri ¼ Mri þ oðMriÞ ¼
Rn

k
þ o

1

k

� �

as k!1: (If the ith annulus is entirely contained in D,

then li ¼ 2pri:) Let Ni denote the number of nodes in the

ith circular belt region, 1� i� k, then Ni is a Poisson

random variable with mean nðliMeriÞ:
For any 1� i� k;

Pr
X has no link with nodes in

the i-th circular belt region
j X ¼ x

� �

¼
X

1

j¼0

Pr

X has no link with

nodes in i-th

circular belt region

j X ¼ x

0

B

@

1

C

A

j Ni ¼ j

0

B

@

1

C

A

�

Pr Ni ¼ j j X ¼ xð Þ

¼
X

1

j¼0

1	 f ðri; nÞð Þ j ðnliMeriÞ j

j!
e	nliMeri

 !

¼ e	nliMeri

X

1

j¼0

ðnliMeri 1	 f ðri; nÞð ÞÞ j

j!

¼ e	nliMeri f ðri;nÞ:

So, for any x 2 Dð2Þ;
Pr X is isolated j X ¼ xð Þ

¼ lim
k!1

Pr

For all 1� i� k; X has

no link with the nodes in

the i-thth circular belt region

j X ¼ x

0

B

@

1

C

A

¼ lim
k!1

Y

k

i¼1

Pr
X has no link with nodes

in i-th circular belt region
j X ¼ x

� �

¼ lim
k!1

Y

k

i¼1

e	nliMeri f ðri;nÞ

¼ elimk!1
Pk

i¼1
	nlið Þ Rn

k
þo 1

kð Þð Þf ðri;nÞ

¼ elimk!1 	n
Pk

i¼1
2pri	l0ið ÞRn

k
f ðri;nÞ

� 	

¼ e
	
R Rn

0
2nprf ðr;nÞdr þ limk!1 n

Pk

i¼1
l0i

Rn
k

f ðri;nÞ

¼ e
	Mn þ n

RR

Dðx;RnÞnD
f ðq;nÞqdqdh

;

ð22Þ

where the double integral over the region Dðx;RnÞnD in the

last equation is based on the polar coordinate system (q; h)

with the point x as the origin and ray ox as the fixed direction.

Next we calculate the double integral over the region

Dðx;RnÞnD. Extend ox to c on the boundary oD (see Fig.

4). Let a and b be the two intersection points of oDðx;RnÞ
and oD such that a is above oc: Under the polar coordinate

system (q; h) mentioned above, the equation of the circle

oDðx;RnÞ is q ¼ Rn and the equation of the arc oD \
Dðx;RnÞ is given by

q cos hþ xk kð Þ2þ q sin hð Þ2¼ ak k2:

That is,

q2 þ 2 xk kq cos h	 ð ak k2	 xk k2Þ ¼ 0:

Solving this quadratic equation for q; we have

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

p
	 xk k2

sin2 h

r

	 xk k cos h:

Let b ¼ \axc: By the law of cosine, we have

cosðp	 bÞ ¼
xk k2þR2

n 	 1
ffiffi

p
p
� �2

2Rn xk k :

Thus,

b ¼ p	 arccos
xk k2þR2

n 	 1
p

2Rn xk k :

Hence,
ZZ

Dðx;RnÞnD
f ðq; nÞqdqdh

¼
Z b

	b
dh
Z Rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
p	 xk k2

sin2 h
p

	 xk k cos h
f ðq; nÞqdq

¼ 2

Z b

0

dh
Z Rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
p	 xk k2sin2 h
p

	 xk k cos h
f ðq; nÞqdq:

Therefore,

β

Rn

D(2)

D(1)

o

a

b

cx

Fig. 4 When x 2 Dð2Þ, a part of the disk Dðx;RnÞ is outside of the

unit-area disk D
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ZZ

x2Dð2Þ
PrðX isolated j X ¼ xÞdA

¼
ZZ

x2Dð2Þ
e
	
R Rn

0
2nprf ðr;nÞdr þ n

RR

Dðx;RÞnD
f ðq;nÞqdqdh

dA

¼ e	Mn

Z

ffiffi

1
p

p

ffiffi

1
p

p
	Rn

2pe
2n
R b

0
dh
R Rn
ffiffiffiffiffiffiffiffiffiffiffiffi

1
p	r2 sin2 h
p

	r cos h
f ðq;nÞqdq

rdr:

ð23Þ

The last equation holds by setting r ¼ xk k:
Thus, Theorem 3 follows by combining Eqs. (21) and

(23). h
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