
Fair Rate Allocation over A Generalized Symmetric
Polymatroid with Box Constraints

Peng-Jun Wan∗†, Zhu Wang‡, Huaqiang Yuan∗, Jinling Zhang§, and Xufei Mao∗
∗ School of Computer Science, Dongguan University of Technology, P. R. China

† Department of Computer Science, Illinois Institute of Technology
‡ Department of Mathematics, Computer Science, And Statistics, State University of New York at Oneonta

§ School of Information, Renmin University of China, P. R. China

Abstract—Motivated by the fair rate allocation in a multi-
access Gaussian channel, this paper studies the problem of fair
rate allocation over a generalized symmetric polymatroid with
box constraints. The best-known algorithm for this problem has
time complexity 𝒪

(
𝑛5 ln𝒪(1) 𝑛

)
. In this paper, we present a

divide-and-conquer algorithm for this problem with quadratic
running time. It is an implementation of a refined decomposing
method for the more general separate concave maximization over
a polymatroid with box constraints. A key ingredient of the
algorithm is a linear-time algorithm for a generalized knapsack
problem.

I. INTRODUCTION

This paper is motivated by the following fair rate allocation
problem in a multi-access Gaussian channel between a base
station and a set 𝐸 of 𝑛 users [27]. For each user 𝑗 ∈ 𝐸,
let 𝑝𝑗 be the signal to noise ratio of the signal from user 𝑗
perceived by the base station. With the successive interference
cancellation by the base station, the (rate) capacity region [27]
of these users is the polytope

Ω :=

{
𝑥 ∈ ℝ

𝑛
+ :

∑
𝑖∈𝑆

𝑥𝑖 ≤ log(1 +
∑
𝑖∈𝑆

𝑝𝑖), ∀𝑆 ⊆ 𝐸

}
.

As such, the capacity region is a polymatroid [4], and indeed
is a generalized symmetric polymatroid [27]. For practical
applications, additional upper and/or lower bounds have to be
imposed on the rate allocations. In many scenarios, serving a
user at a rate below its minimum requirement is futile, while
serving a user at a rate above its maximum requirement is
wasteful. Furthermore, the maximum rate limits can be used
to cap the rates of any set of users such as those that have
subscribed to a lower tier of service. In general, the lower
bound on rate allocation is specified by a vector 𝑎 ∈ Ω, and
the upper bound on rate allocation is specified by a positive
vector 𝑏 ∈ ℝ

𝑛
+ with 𝑏 ≥ 𝑎. The truncated capacity region is

then the polytope

Ω′ := Ω ∩ {
𝑥 ∈ ℝ

𝑛
+ : 𝑎 ≤ 𝑥 ≤ 𝑏

}
.

Suppose that each user 𝑗 ∈ 𝐸 has a weighted 𝜃-fair utility
function 𝑓𝑗 [16] given by

𝑓𝑗 (𝑥𝑗) =

{ 𝑤𝑗

1−𝜃𝑥
1−𝜃
𝑗 , if 𝜃 > 0 and 𝜃 ∕= 1;

𝑤𝑗 ln𝑥𝑗 , if 𝜃 = 1
(1)

where 𝑤𝑗 > 0. The fair rate allocation problem seeks a rate
allocation 𝑥 ∈ Ω′ maximizing

∑
𝑗∈𝐸 𝑓𝑗 (𝑥𝑗).

The above fair rate allocation problem is a special case of
the Separable Concave Maximization (SCM) problem over
a polymatroid with box constraints. Let 𝐸 be a finite set of
𝑛 users, 2𝐸 denote the collection of subsets of 𝐸, and ℝ

𝐸
+

(respectively, ℝ𝐸) denote the set of non-negative (respectively,
real) vectors indexed by 𝐸. This problem is specified by 𝑛
univariate concave and non-decreasing utility functions 𝑓𝑗 for
𝑗 ∈ 𝐸, a (polymatroidal) rank function 𝑟 on 2𝐸 , a vector
𝑎 ∈ ℝ

𝐸
+ satisfying that

∑
𝑗∈𝑆 𝑎𝑗 ≤ 𝑟 (𝑆) for any 𝑆 ⊆ 𝐸, and

a positive vector 𝑏 ∈ ℝ
𝐸
+ satisfying that 𝑎 ≤ 𝑏, and can be

formulated as the following optimization problem:

max
∑

𝑗∈𝐸 𝑓𝑗 (𝑥𝑗)

𝑠.𝑡.
∑

𝑗∈𝑆 𝑥𝑗 ≤ 𝑟 (𝑆) , ∀𝑆 ⊆ 𝐸;

𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗 , ∀𝑗 ∈ 𝐸.

(2)

Note that the set of vectors 𝑥 ∈ ℝ
𝐸
+ satisfying the first

constraint is exactly the polymatroid of 𝑟. Thus, the feasibility
region is a bi-truncation of the polymatroid by 𝑎 from below
and 𝑏 from above. If 𝑟 is a generalized symmetric function,
i.e., there exist a strictly concave and increasing function 𝜙 on
ℝ+ with 𝜙 (0) = 0 and a positive vector 𝑝 ∈ ℝ

𝐸
+ such that

𝑟 (𝑆) = 𝜙 (𝑝 (𝑆)) , ∀𝑆 ⊆ 𝐸, (3)

then the set of vectors 𝑥 ∈ ℝ
𝐸
+ satisfying the first constraint

is a generalized symmetric polymatroid, and the feasibility re-
gion is a bi-truncation of a generalized symmetric polymatroid.
If the second constraint is replaced by the simple non-negative
constraint 𝑥𝑗 ≥ 0 ∀𝑗 ∈ 𝐸, then the problem becomes the well-
studied SCM over a polymatroid [9], [8]. If the first constraint
is replaced by the single constraint

∑
𝑗∈𝐸 𝑥𝑗 ≤ 𝑟 (𝐸), then the

problem is referred to as the generalized knapsack problem.
Despite of exponential number inequalities defining poly-

matroid, the problem SCM over a polymatroid can be solved
by a decomposing method [9], [8]. This method requires
minimizing the difference between the rank function and a
modulus function, which itself is submodular. A number of
polynomial-time but very expensive algorithms [10], [20],
[12], [6], [18], [13], [14] have been proposed for minimizing
a general submodular function. Among them, the fastest
one is that of [14] that requires 𝒪

(
𝑛4 ln𝒪(1) 𝑛

)
running

289



time. Assume that the generalized knapsack problem can be
solved in 𝑡 (𝑛) time. Then, the overall running time is then

𝒪
(
𝑛max

{
𝑛4 ln𝒪(1) 𝑛, 𝑡 (𝑛)

})
. If the rank 𝑟 is a generalized

symmetric function [9], then the decomposing method may be
implemented with running time 𝒪 (𝑛max {𝑛, 𝑡 (𝑛)}), as there
exists a linear-time algorithm for minimizing the difference
between a generalized symmetric rank function and a modulus
function [29].

The decomposing method [9], [8] is not directly applicable
to the problem SCM over a bi-truncation of a polymatroid
as the bi-truncation of a polymatroid is not a polymatroid in
general. However, the maximum utility can only be achieved at
maximal rates in the bi-truncation of the polymatroid, which
also form the set of maximal rates of the polymatroid of a
“bi-truncated” rank function [7], [8], [22] defined by

𝑟 (𝑆) = min
𝑇⊆𝐸

{𝑟 (𝑇 ) + 𝑏 (𝑆 ∖ 𝑇 )− 𝑎 (𝑇 ∖ 𝑆)}

for each 𝑆 ⊆ 𝐸. Thus, the decomposing method [9], [8] can
be applied to this polymatroid. But the minimization of the
difference between the bi-truncated rank function and a mod-
ulus function has to resort to the very expensive algorithms
for minimizing a general submodular function. Such challenge
remains even if the rank 𝑟 itself is a generalized symmetric
function, as the bi-truncated rank 𝑟 is no longer a generalized
symmetric function. Thus, even with a generalized symmetric
rank 𝑟, the implementation of the decomposing method [9],
[8] for SCM over a bi-truncation of a polymatroid would still
have 𝒪

(
𝑛max

{
𝑛4 ln𝒪(1) 𝑛, 𝑡 (𝑛)

})
running time.

The main objective of this paper is to develop an efficient
algorithm for the special case of the problem SCM over a
truncated polymatroid in which each 𝑓𝑗 is a weighted 𝜃-fair
utility function given in equation (1), and 𝑟 is a generalized
symmetric function given in equation (3). This special case is
referred to as Fair Rate Allocation (FRA) over a bi-truncation
of a generalized symmetric polymatroid, which models the fair
rare allocations in a large class of communication systems
[5], [22], [23], [24], [27]. For this purpose, we first provide
a refined decomposing method for the more general SCM
over a bi-truncation of a polymatroid. Compared to the classic
decomposing method in [9], [8], the refined decomposing
method has broader applicability: The feasibility region is a
bi-truncation of a polymatroid, and each 𝑓𝑗 may have arbitrary
domain instead of the whole real line. The latter is pertinent
as the domain of the 𝜃-fair utility function given in equation
(1) is either a non-negative real line or the positive real
line. In addition, the refined decomposing method has more
algorithmic advantages leading to fixing the rates of certain
users iteratively and thus speeding up the algorithm. After that,
we give a quadratic-time divide-and-conquer implementation
of the refined decomposing method for FRA over a bi-
truncation of a generalized symmetric polymatroid. A key
ingredient of this implementation is a linear-time waterfilling
algorithm for the generalized knapsack problem. By exploiting
the special structure of the optimal solution of the generalized
knapsack problem, we are able to achieve a linear-time im-

plementation per divide-and-conquer step with a collection of
data structures. The overall running time of the divide-and-
conquer algorithm is quadratic, a significant improvement of
the best-known 𝒪

(
𝑛5 ln𝒪(1) 𝑛

)
time complexity.

The following standard notations and terms are used in this
paper. For any 𝑠, 𝑡 ∈ ℝ, 𝑠 ∨ 𝑡 stands for max {𝑠, 𝑡} and 𝑠 ∧ 𝑡
stands for min {𝑠, 𝑡}. For any 𝑥 ∈ ℝ

𝐸 and any 𝑆 ⊆ 𝐸, let
𝑥(𝑆) denote

∑
𝑗∈𝑆 𝑥𝑗 and 𝑥𝑆 ∈ ℝ

𝑆 be the restriction of 𝑥 on
𝑆. Suppose that 𝐴 and 𝐵 are disjoint subsets of 𝐸. For any
𝑦 ∈ ℝ

𝐴 and 𝑧 ∈ ℝ
𝐵 , the direct sum of 𝑦 and 𝑧, denoted by

𝑦 ⊕ 𝑧, is the vector 𝑥 ∈ ℝ
𝐴∪𝐵 with 𝑥𝑗 = 𝑦𝑗 for each 𝑗 ∈ 𝐴

and 𝑥𝑗 = 𝑧𝑗 for each 𝑗 ∈ 𝐵. For two vectors 𝑥, 𝑦 ∈ ℝ
𝐸 , we

write 𝑥 ≤ 𝑦 to denote that 𝑥𝑗 ≤ 𝑦𝑗 for each 𝑗 ∈ 𝐸, and 𝑥 < 𝑦
to denote that 𝑥 ≤ 𝑦 and 𝑥 ∕= 𝑦. For a subset Φ of ℝ

𝐸 , a
vector 𝑥 ∈ ℝ

𝐸 is called maximal in Φ if 𝑥 ∈ Φ and there is
no 𝑦 ∈ Φ such that 𝑥 < 𝑦.

II. FUNDAMENTALS OF POLYMATROID

In this section, we introduce some fundamental properties
of polymatroids that are relevant to this paper. We further refer
the interested reader to [8] for background on submodular set
functions, [21] for background on polymatroid and submodular
function minimization.

Consider a finite ground set 𝐸. A real-valued function
defined on 2𝐸 is referred to as a set function on 𝐸. Let 𝑟
be a set function on 𝐸. 𝑟 is submodular if for any 𝐴,𝐵 ⊆ 𝐸,

𝑟(𝐴) + 𝑟(𝐵) ≥ 𝑟(𝐴 ∪𝐵) + 𝑟(𝐴 ∩𝐵).

If the above inequality holds strictly for any 𝐴 and 𝐵 neither
of which is a subset of each other, then 𝑟 is said to strictly
submodular. 𝑟 is increasing if 𝑟(𝐴) ≤ 𝑟(𝐵) for any 𝐴 ⊂
𝐵 ⊆ 𝐸. 𝑟 is a (polymatroidal) rank if 𝑟 is increasing and
submodular and 𝑟(∅) = 0.

A vector 𝑥 ∈ ℝ
𝐸 is a subbase of 𝑟 if 𝑥 ∈ ℝ

𝐸
+ and

𝑥(𝐴) ≤ 𝑟(𝐴) for each 𝐴 ⊆ 𝐸. The set of all subbases
of 𝑟 is a polytope, which is called the polymatroid of 𝑟. A
vector 𝑥 ∈ ℝ

𝐸 is a base of 𝑟 if 𝑥 is a maximal subbase of
𝑟. Equivalently, a subbase 𝑥 of 𝑟 is a base of 𝑟 if and only
if 𝑥 (𝐸) = 𝑟 (𝐸) [8], [21]. The set of all bases of 𝑟 is a also
polytope, which is called the base polytope of 𝑟. The base
polytope of 𝑟 has the following symmetric exchange property
[17]:

Lemma 2.1: Let 𝑥 and 𝑦 be two bases of 𝑟, and suppose
𝑥𝑖 < 𝑦𝑖 for some 𝑖 ∈ 𝐸. Then there exist 𝑗 ∈ 𝐸 with 𝑥𝑗 > 𝑦𝑗
and 𝜀 > 0 such that both the vector obtained from 𝑥 by shifting
𝜀 from 𝑥𝑗 to 𝑥𝑖 and the vector obtained from 𝑦 by shifting 𝜀
from 𝑦𝑖 to 𝑦𝑗 are bases of 𝑟.

Clearly, for any subbase 𝑎 of 𝑟, there exists a base 𝑥 of 𝑟
such that 𝑥 ≥ 𝑎. A vector 𝑥 ∈ ℝ

𝑛 is a superbase of 𝑟 if there
exists a base 𝑦 of 𝑟 such that 𝑦 ≤ 𝑥.

Consider a vector 𝑢 ∈ ℝ
𝐸
+. By treating 𝑢 as a modular

function on 2𝐸 defined by 𝑢 (𝑆) =
∑

𝑒∈𝑆 𝑢 (𝑒) for each 𝑆 ⊆
𝐸, the difference 𝑟 − 𝑢 is also a set function on 2𝐸 , which
is referred to as a rank-modulus difference. The collection of
minimizers of 𝑟 − 𝑢 is closed under taking intersections and
unions [21]. In particular, the union of all minimizers of 𝑟−𝑢

290



is also a minimizer of 𝑟, and hence it is the unique maximal
minimizer of 𝑟 − 𝑢. When 𝑟 is strictly submodular, then the
collection of minimizers of 𝑟 − 𝑢 is a chain [25], [26], i.e.,
for any two minimizers 𝑇1 and 𝑇2 of 𝑟 − 𝑢, either 𝑇1 ⊆ 𝑇2

or 𝑇2 ⊆ 𝑇1. Rank-modulus difference and its minimizers play
essential roles in algorithmic applications. For example, for
any 𝑢 ∈ ℝ

𝐸
+ the following statements hold:

∙ 𝑢 is a subbase of 𝑟 iff ∅ is a minimizer of 𝑟 − 𝑢.
∙ 𝑢 is a superbase of 𝑟 iff 𝐸 is a minimizer of 𝑟 − 𝑢.
∙ 𝑢 is a base of 𝑟 iff both ∅ and 𝐸 are minimizers of 𝑟−𝑢.
∙ If 𝑢 is not a subbase of 𝑟 and 𝑢 (𝐸) ≤ 𝑟 (𝐸), then neither

∅ nor 𝐸 is a minimizer of 𝑟 − 𝑢.
In general, the minimizers of 𝑟− 𝑢 are fully characterized by
the lemma [29] below.

Lemma 2.2: Let 𝑇 be a subset of 𝐸. The following state-
ments are equivalent:

1) 𝑇 is a minimizer of 𝑟 − 𝑢.
2) For each maximal subbase 𝑣 of 𝑟 satisfying 𝑣 ≤ 𝑢, we

have 𝑣 (𝑇 ) = 𝑟 (𝑇 ) and 𝑣 (𝑒) = 𝑢 (𝑒) for any 𝑒 ∈ 𝐸 ∖𝑇 .
3) For some maximal subbase 𝑣 of 𝑟 satisfying 𝑣 ≤ 𝑢, we

have 𝑣 (𝑇 ) = 𝑟 (𝑇 ) and 𝑣 (𝑒) = 𝑢 (𝑒) for any 𝑒 ∈ 𝐸 ∖𝑇 .
Suppose that 𝑟 is a generalized symmetric function. It is

easy to verify that 𝑟 is strictly submodular, strictly increasing,
and 𝑟(∅) = 0. Thus, 𝑟 is a rank function. In addition, it has
the following essential algorithmic property:

Theorem 2.3: For any 𝑢 ∈ ℝ
𝐸
+, let 𝐿𝑢/𝑝 be a list of 𝐸 in the

decreasing ordering of 𝑢𝑗/𝑝𝑗 . Then, the maximal minimizer
of 𝑟 − 𝑢 is a prefix of the list 𝐿𝑢/𝑝.

A. Restriction And Contraction

Let 𝐴 be a subset of 𝐸. The restriction of 𝑟 on 𝐴,
denoted by 𝑟𝐴, is the rank function on 2𝐴 defined by
𝑟𝐴 (𝑆) = 𝑟 (𝑆) for any 𝑆 ⊆ 𝐴. The contraction of 𝑟 on
𝐴, denoted by 𝑟𝐴, is the rank function on 2𝐸∖𝐴 defined by
𝑟𝐴 (𝑆) = 𝑟 (𝑆 ∪𝐴)−𝑟 (𝐴) for any 𝑆 ⊆ 𝐸 ∖𝐴. The following
subbase/base “composition” property [8] holds.

Lemma 2.4: Suppose 𝑦 is a subbase of 𝑟𝐴 and 𝑧 is a subbase
of 𝑟𝐴. Then 𝑥 := 𝑦 ⊕ 𝑧 is a subbase of 𝑟. Moreover, 𝑥 is a
base of 𝑟 if and only if both 𝑦 is a base of 𝑟𝐴 and 𝑧 is a base
of 𝑟𝐴.

Conversely, the following “decomposition” property [8]
holds.

Lemma 2.5: Let 𝑥 be a subbase of 𝑟, and 𝑦 and 𝑧 be the
restrictions of 𝑥 to 𝐴 and 𝐸 ∖𝐴 respectively. Then, 𝑦 is also
a subbase of 𝑟𝐴. Furthermore, if 𝑦 is a base of 𝑟𝐴 then 𝑧 is
a also subbase of 𝑟𝐴.

In general, for any two disjoint subsets 𝐴 and 𝐵 of 𝐸,
𝑟𝐴𝐵 denotes the set function on 2𝐴 defined by 𝑟𝐴𝐵 (𝑆) =
𝑟 (𝑆 ∪𝐵)− 𝑟 (𝐵) for any 𝑆 ⊆ 𝐴. Then, 𝑟𝐴𝐵 can be regarded
as the restriction of 𝑟𝐵 on 𝐴.

A pair of minimizers of 𝑟− 𝑢 have the following property.
Lemma 2.6: Suppose that 𝑇1 ⊆ 𝑇2 are two minimizers of

𝑟 − 𝑢. Then, 𝑢𝑇1 is a superbase of 𝑟𝑇1 , 𝑢𝑇2∖𝑇1 is a base of
𝑟
𝑇2∖𝑇1

𝑇1
, and 𝑢𝐸∖𝑇2 is a subbase of 𝑟𝐸∖𝑇2

𝑇2
.

Proof. Let 𝑣 be a maximal subbase of 𝑟 satisfying 𝑣 ≤ 𝑢.
By Lemma 2.2, 𝑣 (𝑇1) = 𝑟 (𝑇1), 𝑣 (𝑇2) = 𝑟 (𝑇2), and 𝑣𝑗 = 𝑢𝑗

for any 𝑗 ∈ 𝐸 ∖ 𝑇1. Thus, 𝑣𝑇1 is a also a base of 𝑟𝑇1 , and
𝑣𝑇1 ≤ 𝑢𝑇1 . So, 𝑢𝑇1 is a superbase of 𝑟𝑇1 .

Similarly, 𝑣𝑇2 is also a base of 𝑟𝑇2 . By Lemma 2.5, 𝑣𝑇2∖𝑇1

is a base of 𝑟
𝑇2∖𝑇1

𝑇1
, and 𝑣𝐸∖𝑇2 is a subbase of 𝑟

𝐸∖𝑇2

𝑇2
. As

𝑢𝑇2∖𝑇1 = 𝑣𝑇2∖𝑇1 and 𝑢𝐸∖𝑇2 = 𝑣𝐸∖𝑇2 , the lemma holds.
If 𝑟 is a generalized symmetric function given in equation

(3), then 𝑟𝐴𝐵 (𝑆) = 𝜙 (𝑞0 + 𝑝 (𝑆)) − 𝜙 (𝑞0) for any 𝑆 ⊆ 𝐴.
So, 𝑟𝐴𝐵 is also generalized symmetric on 2𝐴. Suppose that
𝑢 ∈ ℝ

𝐸
+ and 𝐿 is a list of 𝐴 in the decreasing ordering of

𝑢𝑗/𝑝𝑗 . Based on Theorem 2.3, a procedure MinDiff-2(𝐿, 𝑞0)
was given in [29] to produce in linear time the minimum value
𝛿 of 𝑟𝐴𝐵−𝑢𝐴 and the length 𝑘1 (respectively, 𝑘2) of the shortest
(respectively, longest) prefix minimizer of 𝑟𝐴𝐵 − 𝑢𝐴 in 𝐿.

B. Truncations

Consider a vector 𝑏 ∈ ℝ
𝐸
+. The upper truncation [8] of 𝑟

by 𝑏, denoted by 𝑟𝑏, is a rank function on 2𝐸 defined by for
any 𝑆 ⊆ 𝐸,

𝑟𝑏 (𝑆) = 𝑏 (𝑆) + min
𝑇⊆𝑆

{𝑟 (𝑇 )− 𝑏 (𝑇 )} .

For a vector 𝑥 ∈ ℝ
𝐸
+, the following equivalent properties

holds:
∙ 𝑥 is a subbase of 𝑟𝑏 if and only if 𝑥 ≤ 𝑏 and 𝑥 is a

subbase of 𝑟;
∙ 𝑥 is a base of 𝑟𝑏 if and only if 𝑥 is a maximal subbase

of 𝑟 satisfying that 𝑥 ≤ 𝑏;
Consider a subbase 𝑎 of 𝑟. The lower truncation [8] of 𝑟

by 𝑎, denoted by 𝑟𝑎, is a rank function on 2𝐸 defined by for
any 𝑆 ⊆ 𝐸,

𝑟𝑎 (𝑆) = 𝑎 (𝑆) + min
𝑆⊆𝑇⊆𝐸

{𝑟 (𝑇 )− 𝑎 (𝑇 )} .

For a vector 𝑥 ∈ ℝ
𝐸
+, 𝑥 is a base of 𝑟𝑎 if and only if 𝑥 ≥ 𝑎

and 𝑥 is a base of 𝑟.
Consider a subbase 𝑎 of 𝑟 and a vector 𝑏 ∈ ℝ

𝐸
+ with 𝑏 ≥ 𝑎.

The bi-truncation of 𝑟 by 𝑎 from below and 𝑏 from above [7],
[8], [22], denoted by 𝑟𝑏𝑎, is a rank function on 2𝐸 defined by
for any 𝑆 ⊆ 𝐸,

𝑟𝑏𝑎 (𝑆) = min
𝑇⊆𝐸

{𝑟 (𝑇 ) + 𝑏 (𝑆 ∖ 𝑇 )− 𝑎 (𝑇 ∖ 𝑆)} .

𝑟𝑏𝑎 is also the upper truncation of 𝑟𝑎 by 𝑏, and the lower
truncation of 𝑟𝑏 by 𝑎 (observing that 𝑎 is also a subbase of
𝑟𝑏). In addition, we have the following characterization of the
bases of 𝑟𝑏𝑎.

Lemma 2.7: For a vector 𝑥 ∈ ℝ
𝐸
+,

∙ 𝑥 is a base of 𝑟𝑏𝑎 if and only if 𝑥 is a maximal subbase
of 𝑟 satisfying that 𝑎 ≤ 𝑥 ≤ 𝑏.

∙ when 𝑏 is a superbase of 𝑟, 𝑥 is a base of 𝑟𝑏𝑎 if and only
if 𝑥 is a base of 𝑟 and 𝑎 ≤ 𝑥 ≤ 𝑏.

The above lemma implies that the set of maximal rates
of the intersection of the polymatroid of 𝑟 with the box{
𝑥 ∈ ℝ

𝐸 : 𝑎 ≤ 𝑥 ≤ 𝑏
}

is exactly the base polytope of 𝑟𝑏𝑎.
Thus the optimization problem described in equation (2)
is equivalent to compute a base 𝑥 of 𝑟𝑏𝑎 maximizing∑

𝑗∈𝐸 𝑓𝑗 (𝑥𝑗).

291



The following lemma presents an important base composi-
tion property of 𝑟𝑏𝑎.

Lemma 2.8: Suppose that 𝑎 ≤ 𝑢 ≤ 𝑏 is not a subbase of 𝑟,
and 𝑇1 and 𝑇2 are two minimizers of 𝑟 − 𝑢 with 𝑇1 ⊆ 𝑇2.

Let 𝑦 be a base of
(
𝑟𝑇1

)𝑢𝑇1

𝑎𝑇1
, and 𝑧 be a base of (𝑟𝑇2

)
𝑏𝐸∖𝑇2

𝑢𝐸∖𝑇2 .
Then,

1) 𝑦 is base of 𝑟𝑇1 ;
2) 𝑦 ⊕ 𝑢𝐴2∖𝐴1 is a base of 𝑟𝑇2 ;
3) 𝑦 ⊕ 𝑢𝐴2∖𝐴1 ⊕ 𝑧 is a base of 𝑟𝑏𝑎.

Proof. (1). By Lemma 2.6, 𝑢𝑇1 is a superbase of 𝑟𝑇1 . Since

𝑦 be a base of
(
𝑟𝑇1

)𝑢𝑇1

𝑎𝑇1
, 𝑦 is also a base of 𝑟𝑇1 by Lemma

2.7.
(2). By Lemma 2.6, 𝑢𝑇2∖𝑇1 is a base of 𝑟

𝑇2∖𝑇1

𝑇1
. Thus 𝑦 ⊕

𝑢𝑇2∖𝑇1 is also a base of 𝑟𝑇2 by Lemma 2.4.
(3). Denote 𝑥 := 𝑦 ⊕ 𝑢𝐴2∖𝐴1 ⊕ 𝑧. Clearly, 𝑎 ≤ 𝑥 ≤ 𝑏.

Since 𝑧 is also a subbase of 𝑟𝑇2
, 𝑥 is also a subbase of 𝑟 by

Lemma 2.4. Assume to the contrary that 𝑥 is not a base of 𝑟𝑏𝑎.
Then, by by Lemma 2.7, there exists a subbase 𝑣 of 𝑟 such that
𝑎 ≤ 𝑥 < 𝑣 ≤ 𝑏. By Lemma 2.5, 𝑣𝑇2 is a subbase of 𝑟𝑇2 . Since
𝑦 ⊕ 𝑢𝐴2∖𝐴1 ≤ 𝑣𝑇2 and 𝑦 ⊕ 𝑢𝐴2∖𝐴1 is a base of 𝑟𝑇2 , we must
have that 𝑣𝑇2 = 𝑦⊕𝑢𝑇2∖𝑇1 and hence is a base of 𝑟𝑇2 . Again
by Lemma 2.5 𝑣𝐸∖𝑇2 is also a subbase of 𝑟𝑇2

. Since 𝑥 < 𝑣,
we must have that 𝑢𝐸∖𝑇2 ≤ 𝑧 < 𝑣𝐸∖𝑇2 ≤ 𝑏𝐸∖𝑇2 . By Lemma

2.7, 𝑧 is not a base of (𝑟𝑇2
)
𝑏𝐸∖𝑇2

𝑢𝐸∖𝑇2 , which is a contradiction,
Thus, 𝑥 must be a base of 𝑟𝑏𝑎.

III. SEPARABLE CONCAVE MAXIMIZATION

In this section, we consider the following general separable
concave maximization problem

max
𝑥∈𝑄

∑
𝑗∈𝐸

𝑓𝑗 (𝑥𝑗) (4)

where 𝑄 is a convex subset of ℝ
𝐸 , and 𝑓𝑗 is a univariate

concave and continuous function for each 𝑗 ∈ 𝐸. We derive
a necessary condition as well a sufficient condition for an
optimal solution to this problem. Similar conditions have been
proven rigorously in [8] under the stronger assumption that the
domain of 𝑓𝑗 is the entire real line for each 𝑗 ∈ 𝐸, which is
not applicable for our applications. In addition, the proofs in
[8] are extraordinarily lengthy and complicated. In contrast,
the proof given in this section is short and simple.

Given 𝑥 ∈ 𝑄, an ordered pair (𝑖, 𝑗) of distinct elements of
𝐸 is said to be an exchangeable pair of 𝑥 w.r.t. 𝑄 if for some
𝜀 > 0, the vector obtained from 𝑥 by shifting 𝜀 from 𝑥𝑗 to
𝑥𝑖 is still in 𝑄. Since 𝑄 is convex, for any exchangeable pair
(𝑖, 𝑗) of 𝑥 w.r.t. 𝑄, then there exists 𝜀 > 0 such that for any
0 ≤ 𝜀′ ≤ 𝜀, the vector obtained from 𝑥 by shifting 𝜀′ from
𝑥𝑗 to 𝑥𝑖 is in 𝑄. In addition, the right derivative of 𝑓𝑖 at 𝑥𝑖,
denoted by 𝑓 ′

𝑖

(
𝑥+
𝑖

)
, exists; and the left derivative of 𝑓𝑗 at 𝑥𝑗 ,

denoted by 𝑓 ′
𝑗

(
𝑥−
𝑗

)
, exists (cf. [3], [19]).

For an arbitrary convex set 𝑄, we have the following
necessary conditions for 𝑥 being an optimal solution.

Theorem 3.1: Suppose that 𝑥 is an optimal solution to the
problem (4). Then for any exchangeable pair (𝑖, 𝑗) of 𝑥 w.r.t.
𝑄, 𝑓 ′

𝑖

(
𝑥+
𝑖

) ≤ 𝑓 ′
𝑗

(
𝑥−
𝑗

)
.

Proof. Let 𝜀 > 0 be such that for any 0 ≤ 𝜀′ ≤ 𝜀, the vector
obtained from 𝑥 by shifting 𝜀′ from 𝑥𝑗 to 𝑥𝑖 is in 𝑄. By the
optimality of 𝑥, we have

𝑓𝑖 (𝑥𝑖 + 𝜀′) + 𝑓𝑗 (𝑥𝑗 − 𝜀′) ≤ 𝑓𝑖 (𝑥𝑖) + 𝑓𝑗 (𝑥𝑗) ,

which implies that

𝑓𝑖 (𝑥𝑖 + 𝜀′)− 𝑓𝑖 (𝑥𝑖) ≤ 𝑓𝑗 (𝑥𝑗)− 𝑓𝑗 (𝑥𝑗 − 𝜀′) .

With 𝜀′approaching to 0, we get 𝑓 ′
𝑖

(
𝑥+
𝑖

) ≤ 𝑓 ′
𝑗

(
𝑥−
𝑗

)
. So, the

theorem holds.
For a polymatroid 𝑄, we have the following sufficient

conditions for 𝑥 being an optimal solution.
Theorem 3.2: Suppose that 𝑄 is a polymatroid of 𝑟, and 𝑥

is a base of 𝑟. Then 𝑥 is an optimal solution to the problem (4)
if for each exchangeable pair (𝑖, 𝑗) of 𝑥 w.r.t. 𝑄, 𝑓 ′

𝑖

(
𝑥+
𝑖

) ≤
𝑓 ′
𝑗

(
𝑥−
𝑗

)
.

Proof. Let 𝑄′ be the set of bases of 𝑟 which are optimal
solutions to the problem (4). Then, 𝑄′ is a convex and compact
subset of 𝑄. Assume 𝑥 is not optimal, then 𝑥 /∈ 𝑄′. Let 𝑦 ∈ 𝑄′

be the one in 𝑄′ which has the least Manhattan distance from
𝑥. Then 𝑥 ∕= 𝑦. By Lemma 2.1, there is an pair (𝑖, 𝑗) such
that 𝑥𝑖 < 𝑦𝑖 and 𝑥𝑗 > 𝑦𝑗 and 0 < 𝜀 < min {𝑥𝑖 − 𝑦𝑖, 𝑦𝑗 − 𝑥𝑗}
such that both the vector obtained from 𝑥 by shifting 𝜀 from
𝑥𝑗 to 𝑥𝑖 and the vector obtained from 𝑦 by shifting 𝜀 from
𝑦𝑖 to 𝑦𝑗 , denoted by 𝑧, are bases of 𝑟. The pair (𝑖, 𝑗) is an
exchange pair of 𝑥 w.r.t. 𝑄, and hence 𝑓 ′

𝑖

(
𝑥+
𝑖

) ≤ 𝑓 ′
𝑗

(
𝑥−
𝑗

)
.

Note that

𝑦𝑖 > 𝑧𝑖 = 𝑦𝑖 − 𝜀 > 𝑥𝑖,

𝑦𝑗 < 𝑧𝑗 = 𝑦𝑗 + 𝜀 < 𝑥𝑗 .

The concavity of 𝑓𝑖 and 𝑓𝑗 implies that

𝑓𝑖 (𝑦𝑖)− 𝑓𝑖 (𝑧𝑖) ≤ 𝜀𝑓 ′
𝑖

(
𝑧+𝑖

) ≤ 𝜀𝑓 ′
𝑖

(
𝑥+
𝑖

)
,

𝑓𝑗 (𝑦𝑗)− 𝑓𝑗 (𝑧𝑗) ≤ −𝜀𝑓 ′
𝑗

(
𝑧−𝑗

) ≤ −𝜀𝑓 ′
𝑗

(
𝑥−
𝑗

)
.

Thus, ∑
𝑘∈[𝑛]

𝑓𝑘 (𝑦𝑘)−
∑
𝑘∈[𝑛]

𝑓𝑘 (𝑧𝑘)

= [𝑓𝑖 (𝑦𝑖) + 𝑓𝑗 (𝑦𝑗)]− [𝑓𝑖 (𝑧𝑖) + 𝑓𝑗 (𝑧𝑗)]

≤ 𝜀
[
𝑓 ′
𝑖

(
𝑥+
𝑖

)− 𝑓 ′
𝑗

(
𝑥−
𝑗

)] ≤ 0.

So, 𝑧 ∈ 𝑄′. On the other hand,∑
𝑘∈[𝑛]

∣𝑦𝑘 − 𝑥𝑘∣ −
∑
𝑘∈[𝑛]

∣𝑧𝑘 − 𝑥𝑘∣

= (∣𝑦𝑖 − 𝑥𝑖∣+ ∣𝑦𝑗 − 𝑥𝑗 ∣)− (∣𝑧𝑖 − 𝑥𝑖∣+ ∣𝑧𝑗 − 𝑥𝑗 ∣)
= (𝑦𝑖 − 𝑥𝑖 + 𝑥𝑗 − 𝑦𝑗)− (𝑧𝑖 − 𝑥𝑖 + 𝑥𝑗 − 𝑦𝑗)

= (𝑦𝑖 − 𝑧𝑖)− (𝑧𝑗 − 𝑦𝑗) = 𝜀+ 𝜀 = 2𝜀 > 0.

Thus, 𝑧 has strictly smaller Manhattan distance from 𝑥 than 𝑦,
which contradicts to the choice of 𝑦. So, 𝑥 must be optimal.

292



IV. A REFINED DECOMPOSING METHOD

Suppose that 𝑟 is a (polymatroidal) rank function on 2𝐸 ,
and 𝑓𝑗 is a univariate non-negative, non-decreasing, concave
and continuous function 𝑓𝑗 for each user 𝑗 ∈ 𝐸. We define an
extended problem SCM(𝐴,𝐴0, 𝑎, 𝑏) where

∙ 𝐴 is a non-empty subset of 𝐸, and is referred as the
ground set,

∙ 𝐴0 is a subset of 𝐸 disjoint from 𝐴,
∙ 𝑎 is a subbase of 𝑟𝐴𝐴0

representing the lower bound, and
∙ 𝑏 is a positive vector in ℝ

𝐴
+ satisfying that 𝑏 ≥ 𝑎,

representing upper bound.
A feasible solution to this extended problem is a subbases
𝑥 of 𝑟𝐴𝐴0

satisfying that 𝑎 ≤ 𝑥 ≤ 𝑏, and the objective of
this extended problem is to compute a feasible solution 𝑥
maximizing

∑
𝑗∈𝐴 𝑓𝑗 (𝑥𝑗). In other words, it is the following

optimization problem:

max
∑

𝑗∈𝐴 𝑓𝑗 (𝑥𝑗)

𝑠.𝑡.
∑

𝑗∈𝑆 𝑥𝑗 ≤ 𝑟𝐴0
(𝑆) , ∀𝑆 ⊆ 𝐴;

𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗 , ∀𝑗 ∈ 𝐴.

For the problem SCM(𝐴,𝐴0, 𝑎, 𝑏), define

𝐴= := {𝑗 ∈ 𝐴 : 𝑎𝑗 = 𝑏𝑗} ,
𝐴< := {𝑗 ∈ 𝐴 : 𝑎𝑗 < 𝑏𝑗} .

Clearly, for each feasible solution 𝑥, we must have 𝑥𝑗 = 𝑏𝑗 for
any 𝑗 ∈ 𝐴=. Thus, users in 𝐴= are said to be fixed, and users
in 𝐴< is said to be free. In the trivial instance that 𝐴< = ∅,
𝑏 = 𝑎 is the unique optimal solution. So, we assume that
𝐴< ∕= ∅. There are two simple cases of the instance in which
the optimal solution is unique and directly computable:

∙ Case 1: 𝑏 is a subbase of 𝑟𝐴𝐴0
. In this case, 𝑏 is also the

unique optimal solution.
∙ Case 2: 𝐴< is a singleton {𝑗}. In this case, the unique

optimal solution 𝑥 is identical to 𝑏 except the value of
𝑥𝑗 , which is equal to 𝑏𝑗 +min𝑇⊆𝐴 (𝑟𝐴0

(𝑇 )− 𝑏 (𝑇 )).
Both cases can tested or solved by computing the minimum
value of 𝑟𝐴𝐴0

− 𝑏. For the instance which is of neither of the
above cases (i.e., ∣𝐴<∣ ≥ 2 and 𝑏 is not a subbase), we derive
a recursive relation subsequently.

The following problem, denoted by GKS(𝐴,𝐴0, 𝑎, 𝑏), is a
relaxation of the problem SCM(𝐴,𝐴0, 𝑎, 𝑏):

max
∑

𝑗∈𝐴 𝑓𝑗 (𝑥𝑗)

𝑠.𝑡.
∑

𝑗∈𝐴 𝑥𝑗 ≤ 𝑟𝐴0
(𝐴) ,

𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗 , ∀𝑗 ∈ 𝐴

Let 𝑢 be an optimal solution to the above relaxed problem.
If 𝑢 is a subbase of 𝑟𝐴𝐴0

, then 𝑢 is an optimal solution to
the problem SCM(𝐴,𝐴0, 𝑎, 𝑏). So we assume that 𝑢 is not a
subbase of 𝑟𝐴𝐴0

. Suppose that 𝐴1 and 𝐴2 be two minimizers
of 𝑟𝐴𝐴0

− 𝑢 with 𝐴1 ⊆ 𝐴2, and denote 𝐴2 = 𝐴 ∖ 𝐴2. Then,
neither 𝐴1 nor 𝐴2 is empty. Since 𝑎𝐴1 ≤ 𝑢𝐴1 and 𝑎𝐴1 is a
subbase of 𝑟𝐴1

𝐴0
, the problem SCM

(
𝐴1, 𝐴0, 𝑎

𝐴1 , 𝑢𝐴1
)

is well-

defined. Since 𝑢𝐴2 ≤ 𝑏𝐴2 and 𝑢𝐴2 is a subbase of 𝑟𝐴2

𝐴0∪𝐴2
, the

problem SCM
(
𝐴2, 𝐴0 ∪𝐴2, 𝑢

𝐴2 , 𝑏𝐴2

)
is also well-defined.

These two problems are referred as the “child” problems of the
“parent” problem SCM(𝐴,𝐴0, 𝑎, 𝑏). They have the following
composition relations.

Theorem 4.1: Consider any optimal solution 𝑦∗ to the
problem SCM

(
𝐴1, 𝐴0, 𝑎

𝐴1 , 𝑢𝐴1
)

and any optimal solution

𝑧∗ to the problem SCM
(
𝐴2, 𝐴0 ∪𝐴2, 𝑢

𝐴2 , 𝑏𝐴2

)
. Let 𝑥∗ =

𝑦∗ ⊕ 𝑢𝐴2∖𝐴1 ⊕ 𝑧∗. Then, 𝑥∗ is an optimal solution to the
problem SCM(𝐴,𝐴0, 𝑎, 𝑏).

Proof. Suppose that 𝑦 is an optimal base solution to the
problem SCM

(
𝐴1, 𝐴0, 𝑎

𝐴1 , 𝑢𝐴1
)
, and 𝑧 is an optimal base

solution to the problem SCM
(
𝐴2, 𝐴0 ∪𝐴2, 𝑢

𝐴2 , 𝑏𝐴2

)
. Let

𝑥 = 𝑦⊕𝑢𝐴2∖𝐴1⊕𝑧. By Lemma 2.8, 𝑥 is a base solution to the
problem SCM(𝐴,𝐴0, 𝑎, 𝑏). We prove the optimality of 𝑥 via
Theorem 3.2. Suppose that (𝑖, 𝑗) is an exchangeable pair of 𝑥
w.r.t. the feasibility region of the problem SCM(𝐴,𝐴0, 𝑎, 𝑏).
Then, for some 𝜀 > 0, the vector 𝑥 obtained from 𝑥 by shifting
𝜀 from 𝑥𝑗 to 𝑥𝑖 is also a feasible solution to the problem
SCM(𝐴,𝐴0, 𝑎, 𝑏). We show that 𝑓 ′

𝑖

(
𝑥+
𝑖

) ≤ 𝑓 ′
𝑗

(
𝑥−
𝑗

)
in three

cases.
Case 1: 𝑥𝑖 < 𝑢𝑖. Then, 𝑖 ∈ 𝐴1. In addition, 𝑗 ∈ 𝐴1 for

otherwise by Lemma 2.8

𝑥 (𝐴1) = 𝑥 (𝐴1) + 𝜀 = 𝑦 (𝐴1) + 𝜀 = 𝑟𝐴0
(𝐴1) + 𝜀,

which is impossible. We further claim that (𝑖, 𝑗) is also an ex-
changeable pair of 𝑦 w.r.t. the feasibility region of the problem
SCM

(
𝐴1, 𝐴0, 𝑎

𝐴1 , 𝑢𝐴1
)
. Indeed, let 𝜀′ = min {𝜀, 𝑢𝑖 − 𝑥𝑖}.

Then, 𝜀′ > 0. Let 𝑥 be the vector obtained from 𝑥 by shifting
𝜀′ from 𝑥𝑗 to 𝑥𝑖. Then, 𝑥 is also a feasible solution to the
problem SCM(𝐴,𝐴0, 𝑎, 𝑏). So, 𝑥 is a subbase of 𝑟𝐴𝐴0

and
𝑎 ≤ 𝑥 ≤ 𝑏. By Lemma 2.5, 𝑥𝐴1 is also a subbase of 𝑟𝐴1

𝐴0
.

Clearly, 𝑥𝐴1 ≥ 𝑎𝐴1 . In addition,

𝑥𝑖 = 𝑥𝑖 + 𝜀′ ≤ 𝑥𝑖 + 𝑢𝑖 − 𝑥𝑖 = 𝑢𝑖,

and for any 𝑘 ∈ 𝐴1 ∖ {𝑖}, 𝑥𝑘 ≤ 𝑥𝑘 = 𝑦𝑘 ≤ 𝑢𝑘. Thus,
𝑥𝐴1 ≤ 𝑢𝐴1 . So, 𝑥𝐴1 is a feasible solution to the problem
SCM

(
𝐴1, 𝐴0, 𝑎

𝐴1 , 𝑢𝐴1
)
. However, 𝑥𝐴1 is exactly the vector

obtained from 𝑦 by shifting 𝜀′ from 𝑦𝑗 to 𝑦𝑖. Thus, our
claim holds. As 𝑦 is an optimal solution to the problem
SCM

(
𝐴1, 𝐴0, 𝑎

𝐴1 , 𝑢𝐴1
)
, by Theorem 3.1 we have

𝑓 ′
𝑖

(
𝑥+
𝑖

)
= 𝑓 ′

𝑖

(
𝑦+𝑖

) ≤ 𝑓 ′
𝑗

(
𝑦−𝑗

)
= 𝑓 ′

𝑗

(
𝑥−
𝑗

)
.

Case 2: 𝑥𝑗 > 𝑢𝑗 . Then, 𝑗 ∈ 𝐴2. In addition, 𝑖 ∈ 𝐴2 for
otherwise 𝑖 ∈ 𝐴2 and by by Lemma 2.8

𝑥 (𝐴2) = 𝑥 (𝐴2)+𝜀 = 𝑦 (𝐴1)+𝑢 (𝐴2 ∖𝐴1)+𝜀 = 𝑟𝐴0
(𝐴2)+𝜀,

which is impossible. We further claim that (𝑖, 𝑗) is also
an exchangeable pair of 𝑧 w.r.t. the feasibility region of
the problem SCM

(
𝐴2, 𝐴0 ∪𝐴2, 𝑢

𝐴2 , 𝑏𝐴2

)
. Indeed, let 𝜀′ =

min {𝜀, 𝑥𝑗 − 𝑢𝑗}. Then, 𝜀′ > 0. Let 𝑥 be the vector obtained
from 𝑥 by shifting 𝜀′ from 𝑥𝑗 to 𝑥𝑖. Then, 𝑥 is also a feasible
solution to the problem SCM(𝐴,𝐴0, 𝑎, 𝑏). Since 𝑥𝐴1 So, 𝑥 is
a subbase of 𝑟𝐴𝐴0

and 𝑎 ≤ 𝑥 ≤ 𝑏. As 𝑥𝐴2 = 𝑥𝐴2 = 𝑦⊕𝑢𝐴2∖𝐴1 ,

293



𝑥𝐴2 is a base of 𝑟𝐴2

𝐴0
. By Lemma 2.5, 𝑥𝐴2 is also a subbase

of 𝑟𝐴2

𝐴0∪𝐴2
. Clearly, 𝑥𝐴2 ≤ 𝑏𝐴2 . In addition,

𝑥𝑗 = 𝑥𝑗 − 𝜀′ ≥ 𝑥𝑗 − (𝑥𝑗 − 𝑢𝑗) = 𝑢𝑗 ,

and for any 𝑘 ∈ 𝐴2 ∖ {𝑗}, 𝑥𝑘 ≥ 𝑥𝑘 = 𝑧𝑘 ≥ 𝑢𝑘. Thus,
𝑥𝐴2 ≥ 𝑢𝐴2 . So, 𝑥𝐴2 is a feasible solution to the problem
SCM

(
𝐴1, 𝐴0, 𝑎

𝐴1 , 𝑢𝐴1
)
. However, 𝑥𝐴2 is exactly the vector

obtained from 𝑧 by shifting 𝜀′ from 𝑧𝑗 to 𝑧𝑖. Thus, our
claim holds. As 𝑧 is an optimal solution to the problem
SCM

(
𝐴2, 𝐴0 ∪𝐴2, 𝑢

𝐴2 , 𝑏𝐴2

)
, by Theorem 3.1 we have

𝑓 ′
𝑖

(
𝑥+
𝑖

)
= 𝑓 ′

𝑖

(
𝑧+𝑖

) ≤ 𝑓 ′
𝑗

(
𝑧−𝑗

)
= 𝑓 ′

𝑗

(
𝑥−
𝑗

)
.

Case 3: 𝑥𝑖 ≥ 𝑢𝑖 and 𝑥𝑗 ≤ 𝑢𝑗 . It is easy to verify that (𝑖, 𝑗)
is also an exchangeable pair of 𝑢 with respect to feasibility
region of the problem GKS(𝐴,𝐴0, 𝑎, 𝑏). As 𝑢 is an optimal
solution to the problem GKS(𝐴,𝐴0, 𝑎, 𝑏), by Theorem 3.1 we
have

𝑓 ′
𝑖

(
𝑥+
𝑖

) ≤ 𝑓 ′
𝑖

(
𝑢+
𝑖

) ≤ 𝑓 ′
𝑗

(
𝑢−
𝑗

) ≤ 𝑓 ′
𝑗

(
𝑥−
𝑗

)
.

Finally, we show that 𝑥∗ is an optimal solution to the
problem SCM(𝐴,𝐴0, 𝑎, 𝑏). Clearly, 𝑎 ≤ 𝑥∗ ≤ 𝑏. As 𝑦∗ is a
subbase of 𝑟𝐴1

𝐴0
, 𝑢𝐴2∖𝐴1 is a base of 𝑟𝐴2∖𝐴1

𝐴0∪𝐴1
, and 𝑧∗ is a sub-

base of 𝑟𝐴2

𝐴0∪𝐴2
, 𝑥∗ is a subbase of 𝑟𝐴1

𝐴0
by Lemma 2.4. Thus,

𝑥∗ is a feasible solution to the problem SCM(𝐴,𝐴0, 𝑎, 𝑏). By
the optimality of 𝑦∗ and 𝑧∗, we have∑

𝑗∈𝐴1

𝑓𝑗
(
𝑦∗𝑗
) ≥ ∑

𝑗∈𝐴1

𝑓𝑗 (𝑦𝑗) ,∑
𝑗∈𝐴2

𝑓𝑗
(
𝑧∗𝑗
) ≥ ∑

𝑗∈𝐴2

𝑓𝑗 (𝑧𝑗) .

Thus, ∑
𝑗∈𝐴

𝑓𝑗
(
𝑥∗
𝑗

) ≥ ∑
𝑗∈𝐴

𝑓𝑗 (𝑥𝑗) .

The optimality of 𝑥∗ then follows from the optimality of 𝑥.

We remark that the above decomposing method is a re-
finement of the decomposing method presented in [9] in two
aspects. First, a pair of minimizers 𝐴1 and 𝐴2 is utilized.
The advantage of employing dual minimizers is obvious: more
users may become fixed. In particular, the entire subset 𝐴2∖𝐴1

becomes fixed. The child problems may have smaller size. For
certain rank 𝑟 such as the generalized symmetric rank, the dual
minimizers can be computed at no additional cost. Second, The
child problems have closer upper bounds and lower bounds.
Indeed, Some of them are identical, and thus the corresponding
users also have fixed rates.

V. A DIVIDE-AND-CONQUER ALGORITHM

In this section, we assume that the rank 𝑟 is a generalized
symmetric rank as defined in equation (3), and 𝑓𝑗 is a
fairness function as defined in (3). Then, the problem given in
equation (2) is an instance of FRA over a bi-truncation of a
generalized symmetric polymatoid. We present a divide-and-
conquer implementation of the refined decomposing method
given in the previous section with quadratic time complexity.

A. Strengthening Lower/Upper Bounds

In this subsection, we strengthen the lower bound 𝑎 and
the upper bound 𝑏 without affecting the optimality while
ensuring [𝑎𝑗 , 𝑏𝑗 ] lies within the domain of 𝑓𝑗 for each 𝑗 ∈ 𝐸.
This property is essential to the algorithm for the generalized
knapsack problem to be developed in the next subsection.
The strengthening of the lower/upper bounds is based on the
following theorem.

Theorem 5.1: For any base 𝑣 of 𝑟𝑏𝑎 and any 𝑗 ∈ 𝐸,

𝑎𝑗 ∨ {𝑏𝑗 ∧ [𝑟 (𝐸)− 𝑟 (𝐸 ∖ {𝑗})]} ≤ 𝑣𝑗 ≤ 𝑏𝑗 ∧ 𝑟 ({𝑗}) .
Proof. By Lemma 2.7, 𝑎𝑗 ≤ 𝑣𝑗 ≤ 𝑏𝑗 ∧ 𝑟 ({𝑗}). We only

need to prove that

𝑣𝑗 ≥ 𝑏𝑗 ∧ [𝑟 (𝐸)− 𝑟 (𝐸 ∖ {𝑗})] .
Since 𝑟𝑏𝑎 is the lower truncation of 𝑟𝑏 by 𝑎, we have

𝑟𝑏 (𝐸) = 𝑟𝑏𝑎 (𝐸) = 𝑣𝑗 +
∑

𝑖∈𝐸∖{𝑗}
𝑣𝑖

≤ 𝑣𝑗 + 𝑟𝑏𝑎 (𝐸 ∖ {𝑗}) ≤ 𝑣𝑗 + 𝑟𝑏 (𝐸 ∖ {𝑗}) ,
which implies that 𝑣𝑗 ≥ 𝑟𝑏 (𝐸) − 𝑟𝑏 (𝐸 ∖ {𝑗}). Thus, it is
sufficient to show that

𝑟𝑏 (𝐸)− 𝑟𝑏 (𝐸 ∖ {𝑗}) ≥ 𝑏𝑗 ∧ [𝑟 (𝐸)− 𝑟 (𝐸 ∖ {𝑗})] .
We consider two cases.

Case 1: Some 𝑇 ⊆ 𝐸 ∖ {𝑗} is a minimizer of 𝑟− 𝑏 over all
subsets of 𝐸. Then

𝑟𝑏 (𝐸) = 𝑏 (𝐸) + [𝑟 (𝑇 )− 𝑏 (𝑇 )] ,

𝑟𝑏 (𝐸 ∖ {𝑗}) = 𝑏 (𝐸 ∖ {𝑗}) + [𝑟 (𝑇 )− 𝑏 (𝑇 )] .

So, 𝑟𝑏 (𝐸)− 𝑟𝑏 (𝐸 ∖ {𝑗}) = 𝑏𝑗 .
Case 2: For some 𝑇 ⊆ 𝐸 ∖ {𝑗}, 𝑇 ∪ {𝑗} is a minimizer of

𝑟 − 𝑏 over all subsets of 𝐸. Then

𝑟𝑏 (𝐸) = 𝑏 (𝐸) + [𝑟 (𝑇 ∪ {𝑗})− 𝑏 (𝑇 ∪ {𝑗})]
= 𝑏 (𝐸 ∖ {𝑗}) + [𝑟 (𝑇 ∪ {𝑗})− 𝑏 (𝑇 )] ,

and

𝑟𝑏 (𝐸 ∖ {𝑗}) ≤ 𝑏 (𝐸 ∖ {𝑗}) + [𝑟 (𝑇 )− 𝑏 (𝑇 )] .

So,

𝑟𝑏 (𝐸)− 𝑟𝑏 (𝐸 ∖ {𝑗}) ≥ 𝑟 (𝑇 ∪ {𝑗})− 𝑟 (𝑇 )

≥ 𝑟 (𝐸)− 𝑟 (𝐸 ∖ {𝑗}) .
Thus, the theorem holds.
Since an optimal solution is achieved some base of 𝑟𝑏𝑎, the

above theorem implies that for each 𝑗 ∈ 𝐸, we can replace 𝑏𝑗
by 𝑏𝑗 ∧ 𝑟 ({𝑗}) and then replace 𝑎𝑗 by

𝑎𝑗 ∨ {𝑏𝑗 ∧ [𝑟 (𝐸)− 𝑟 (𝐸 ∖ {𝑗})]}
without affecting the optimality. Note that for the general-
ized symmetric rank 𝑟 as defined in equation (3), 𝑟 (𝐸) =
𝜙 (𝑝 (𝐸)), and 𝑟 (𝐸 ∖ {𝑗}) = 𝜙 (𝑝 (𝐸)− 𝑝𝑗) for each 𝑗 ∈ 𝐸.
By first calculating 𝑝 (𝐸) in linear time, the above replace-
ments can be done in linear time. After the replacements, for
each 𝑗 ∈ 𝐸 we have 𝑏𝑗 ≥ 𝑎𝑗 > 0 and consequently, [𝑎𝑗 , 𝑏𝑗 ]
lies within the domain of 𝑓𝑗 .

294



B. Waterfilling for Generalized Knapsack Problem

Let 𝑆 be a non-empty subset of 𝐸, and 𝜇 be a positive
parameter s.t. 𝑎 (𝐴) < 𝜇 < 𝑏 (𝐴). By strengthening of the
upper/lower bounds, we assume that [𝑎𝑗 , 𝑏𝑗 ] lies in the domain
of 𝑓𝑗 for each 𝑗 ∈ 𝑆. The following optimization problem is
a general form of the generalized knapsack problem arising
from the decomposing method:

max
∑

𝑗∈𝑆 𝑓𝑗 (𝑥𝑗)

𝑠.𝑡.
∑

𝑗∈𝑆 𝑥𝑗 ≤ 𝜇,

𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗 , ∀𝑗 ∈ 𝑆

(5)

In this subsection, we present a linear-time algorithm which
not only computes an optimal solution to the above problem,
but also produces two useful orderings of 𝑆 by taking advan-
tage of the special structure of the optimal solution. Thus, our
algorithm is stronger and more general than the classic ones
in [2], [15], [28].

Since the objective function is strictly concave and the
feasibility region is a convex polytope, there is a unique
optimal solution 𝑢. The Karush-Kuhn-Tucker conditions (e.g.,
[1]) for the problem (5) stipulate that there exists a unique
𝜆 > 0, which is the Lagrangian multiplier of the budget
constraint, such that for each 𝑖 ∈ 𝑆,

𝑢𝑖 = 𝑎𝑖 ∨
[
𝑏𝑖 ∧ (𝑓 ′

𝑖)
−1

(𝜆)
]
.

The optimal solution 𝑢 and the Lagrangian multiplier 𝜆 have
the following water-filling interpretation. Each user 𝑖 ∈ 𝑆 is
treated as a water container, and those water containers form
a water tank with a stair-case floor. The Lagrangian multiplier
𝜆 > 0 is reparameterized by the water level ℓ = 𝜆−1/𝜃 > 0,
and

(𝑓 ′
𝑖)

−1
(𝜆) = (𝑓 ′

𝑖)
−1

(
ℓ−1/𝜃

)
= 𝑤

1/𝜃
𝑖 ℓ = 𝑠𝑖ℓ.

For each 𝑖 ∈ 𝑆, the container 𝑖 is specified by three parameters:

∙ the floor area 𝑠𝑖 = 𝑤
1/𝜃
𝑖 ;

∙ the floor height 𝑓 ′
𝑖 (𝑎𝑖)

−1/𝜃
= 𝑎𝑖𝑤

−1/𝜃
𝑖 = 𝑎𝑖/𝑠𝑖;

∙ the ceiling height 𝑓 ′
𝑖 (𝑏𝑖)

−1/𝜃
= 𝑏𝑖𝑤

−1/𝜃
𝑖 = 𝑏𝑖/𝑠𝑖.

At a water level ℓ, since the container 𝑖 holds water of volume
𝑢𝑖 = 𝑎𝑖 ∨ [𝑏𝑖 ∧ (𝑠𝑖ℓ)]. Thus, the maximum water level ℓ is the
unique water level at which the total water volume held by all
containers in 𝑆 is exactly the budget 𝜇. Accordingly, 𝑢 and ℓ
can be computed in three steps:

1) Find the maximum value ℓ among the values in

{𝑎𝑖/𝑠𝑖 : 𝑖 ∈ 𝑆} ∪ {𝑏𝑖/𝑠𝑖 : 𝑖 ∈ 𝑆}
such that

∑
𝑖∈𝑆 𝑎𝑖 ∨ [𝑏𝑖 ∧ (𝑠𝑖ℓ)] ≤ 𝜇.

2) Partition 𝑆 into three sets:

𝑆0 = {𝑖 ∈ 𝑆 : 𝑎𝑖/𝑠𝑖 > ℓ} ,
𝑆1 = {𝑖 ∈ 𝑆 : 𝑎𝑖/𝑠𝑖 ≤ ℓ < 𝑏𝑖/𝑠𝑖} ,
𝑆2 = {𝑖 ∈ 𝑆 : 𝑏𝑖/𝑠𝑖 ≤ ℓ} .

Then, 𝑢𝑖 = 𝑎𝑖 for each 𝑖 ∈ 𝑆0; 𝑢𝑖 = 𝑏𝑖 for each 𝑖 ∈ 𝑆2;
and 𝑎𝑖 ≤ 𝑢𝑖 < 𝑏𝑖 for each 𝑖 ∈ 𝑆1.

3) Compute ℓ = 𝜇−𝑎(𝑆0)−𝑏(𝑆1)
𝑠(𝑆1)

. Then, 𝑢𝑖 = 𝑠𝑖ℓ for each
𝑖 ∈ 𝑆1.

In order to be able to compute 𝑢 and ℓ in linear time, the
following two lists of 𝑆 are made available as part of the input:
a list 𝐿𝑎/𝑠 (respectively, 𝐿𝑏/𝑠) of 𝑆 in the non-decreasing
order of floor (respectively, ceiling) heights. These two lists
also enable to compute in linear time a list 𝐿𝑢/𝑠 of 𝑆 in the
non-decreasing order of 𝑢𝑖/𝑠𝑖: it is the concatenation of the
sublist of 𝐿𝑏/𝑠 consisting of the users in 𝑆2, and the sublist
of 𝐿𝑎/𝑠 consisting of the users in 𝑆 ∖ 𝑆2 = 𝑆0 ∪ 𝑆1. Suppose
we further want to produce in linear time a list 𝐿𝑢/𝑝 of 𝑆
in the decreasing order of 𝑢𝑖/𝑝𝑖, where 𝑝𝑖 is the parameter
appearing equation (3) defining a generalized symmetric rank.
Then, the following three lists of 𝑆 are also made available as
part of the input: a list 𝐿𝑎/𝑝 (respectively, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝) of 𝑆
in the decreasing order of 𝑎𝑗/𝑝𝑗 (respectively, 𝑏𝑗/𝑝𝑗 , 𝑠𝑗/𝑝𝑗).
Due to the special structure of 𝑢, 𝐿𝑢/𝑝 can be merged from
the sublist of 𝐿𝑏/𝑝 consisting of the users in 𝑆2, the sublist
of 𝐿𝑎/𝑝 consisting of the users in 𝑆0, and the sublist of 𝐿𝑠/𝑝

consisting of the users in 𝑆1.
Now, we describe an linear-time procedure WF implement-

ing the above waterfilling method. The vectors 𝑎, 𝑏, 𝑠 and 𝑝 are
stored as globally accessible arrays indexed by 𝐸 and thus are
not included in the input of the procedure WF. The vector 𝑢 is
also maintained as a global array indexed by 𝐸 and thus are not
included in the output of the procedure WF. Thus, the input of
the procedure WF is a tuple

(
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, 𝐿𝑏/𝑠, 𝜇

)
,

and the output of the procedure WF is a pair
(
𝐿𝑢/𝑝, 𝐿𝑢/𝑠

)
.

The following data structures and variables are used in the
procedure WF. The procedure WF iteratively scans the two
lists 𝐿𝑎/𝑠 and 𝐿𝑏/𝑠 to find the next lowest floor/ceiling height,
which is chosen as the next water level ℓ, and bookkeeps the
previous water level by a variable ℓ′. At any moment, each
user (or water container) 𝑖 is in one of the states:

∙ state 0, if the container 𝑖 has not yet been visited
∙ state 1, if the container 𝑖 has been visited and but not yet

filled fully.
∙ state 2, if the container 𝑖 has been visited and also filled

fully.

An array 𝑠𝑡𝑎𝑡𝑒 indexed by 𝐸 is used to store and update the
states of the containers (users). The total floor area of the
containers in the state 1 is maintained by the variable 𝜎. The
procedure WF is split into two steps. Step 1 computes the
water level ℓ, the optimal solution 𝑢, the array 𝑠𝑡𝑎𝑡𝑒, and a list
𝐿𝑢/𝑠; while Step 2 computes a list 𝐿𝑢/𝑝. They are elaborated
below.

Step 1 of the procedure WF begins with initialization. Along
the list 𝐿𝑎/𝑠, each entry of the array 𝑠𝑡𝑎𝑡𝑒 is initialized to 0,
and 𝜇 is reduced by 𝑎 (𝑆). The previous water level ℓ′ is
initialized to the floor height of the first user in 𝐿𝑎/𝑠. The
variable 𝜎 is initialized to 0. The list 𝐿𝑢/𝑠 is initialized to an
empty list.

After the initialization, the following iteration is repeated
until 𝜇 = 0. First along the two lists 𝐿𝑎/𝑠 and 𝐿𝑏/𝑠 the next
lowest floor or ceiling height ℓ (ties is broken by choosing the

295



floor height) and the corresponding user (water container) 𝑘
are selected. The binary variable 𝜒 distinguishes whether the
height is a floor height (𝜒 = 0) or a ceiling height (𝜒 = 1).
Then ℓ can be achieved if and only if the volume of the
additional water to be filled, which is 𝜎 (ℓ− ℓ′), does not
exceed the available water volume 𝜇. Accordingly, we consider
two cases:

∙ Case 1: ℓ can be achieved. Then 𝜇 is reduced by
𝜎 (ℓ− ℓ′), and ℓ′ is replaced by ℓ. If ℓ is the floor height
of the user 𝑘 (i.e., 𝜒 = 1), then the user 𝑘 enters the state
1; hence 𝑠𝑡𝑎𝑡𝑒𝑘 is updated to 1 and 𝜎 is increased by 𝑠𝑘.
If ℓ is the ceiling height of the user 𝑘 (i.e., 𝜒 = 1), then
the user 𝑘 enters the state 2; hence 𝑠𝑡𝑎𝑡𝑒𝑘 is updated to 2,
𝜎 is decreased by 𝑠𝑘, 𝑢𝑘 is fixed to 𝑏𝑘, and 𝑘 is appended
to the list 𝐿𝑢/𝑠.

∙ Case 2: ℓ cannot be achieved. Then we find the maximum
water level ℓ′+𝜇/𝜎 using up all water; hence ℓ is updated
to this level and 𝜇 is reduced to 0.

After the exit of the above iterations, along the list 𝐿𝑎/𝑠,
for each user 𝑖 in the state 0 (respectively, 1), 𝑢𝑖 is fixed to 𝑎𝑖
(respectively, 𝑠𝑖ℓ) and appended to 𝐿𝑢/𝑠. Clearly, this steps
takes linear time.

Step 2 of the procedure WF produces the list 𝐿𝑢/𝑝 of
𝑆. First, the sublist �̃�𝑎/𝑝 (respectively, �̃�𝑠/𝑝, �̃�𝑏/𝑝) of 𝐿𝑎/𝑝

(respectively, 𝐿𝑠/𝑝, 𝐿𝑏/𝑝) consisting of the users in the state 0
(respectively, 1, 2) is extracted from 𝐿𝑎/𝑝 (respectively, 𝐿𝑠/𝑝,
𝐿𝑏/𝑝). Then, the three lists �̃�𝑎/𝑝, �̃�𝑠/𝑝, and �̃�𝑏/𝑝 are merged
into a single list 𝐿𝑢/𝑝 of 𝑆. Clearly, this step also takes linear
time.

In summary, we have the following result.
Theorem 5.2: WF

(
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, 𝐿𝑏/𝑠, 𝜇

)
com-

putes an optimal solution 𝑢 to the problem (5) as well as
two lists 𝐿𝑢/𝑝 and 𝐿𝑢/𝑠 in linear time.

C. Putting Together

We begin with the introduction of the data structures to
be used. First, there are seven arrays indexed by 𝐸 which
are globally accessible to all the procedure calls. Among
them, a static array 𝑝 is used for storing the vector 𝑝 in the
definition of 𝑟; and static array 𝑠 defined by 𝑠𝑗 = 𝑤

1/𝜃
𝑗 for

each 𝑗 ∈ 𝐸, where 𝑤𝑗 and 𝜃 are the two parameters in the
definition of 𝑓𝑗 . Two arrays 𝑎 and 𝑏 are used for storing and
updating the strengthened lower bound 𝑎 and upper bound
𝑏 respectively. At the end of the algorithm, 𝑏 is returned as
the final solution. The array 𝑢 is to store the optimal solution
to the generalized knapsack problem. The array 𝑐𝑙𝑎𝑠𝑠 is to
indicate the membership of 𝐴1, 𝐴2 ∖𝐴1, and 𝐴2 in a problem
with ground set 𝐴 by 𝑐𝑙𝑎𝑠𝑠𝑗 = 0 (respectively, 1, 2) if 𝑗 is
in 𝐴2 ∖𝐴1 (respectively, 𝐴1, 𝐴2). The array 𝑠𝑡𝑎𝑡𝑒 is used by
the procedure WF. Second, five lists are used as the input to
the procedure WF: a list 𝐿𝑎/𝑝 (respectively, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝) of 𝐴
in the decreasing order of 𝑎𝑗/𝑝𝑗 (respectively, 𝑏𝑗/𝑝𝑗 , 𝑠𝑗/𝑝𝑗),
and a list 𝐿𝑎/𝑠 (respectively, 𝐿𝑏/𝑠) of 𝐴 in the increasing order
of 𝑎𝑗/𝑠𝑗 (respectively, 𝑏𝑗/𝑠𝑗). Third, two lists are used as the
output by the procedure WF: a list 𝐿𝑢/𝑝 of 𝐴 in the decreasing

order of 𝑢𝑗/𝑝𝑗 , and a list 𝐿𝑢/𝑠 of 𝐴 in the increasing order
of 𝑢𝑗/𝑠𝑗 .

With the above data structures, we describe a proper repre-
sentation of a problem SCM(𝐴,𝐴0, 𝑎, 𝑏). First, 𝑎 and 𝑏 can be
skipped as they are globally accessible and updated throughout
the execution of algorithm. Second, 𝐴0 can be replaced by a
single parameter 𝑞0 = 𝑝 (𝐴0) as

𝑟𝐴𝐴0
(𝑆) = 𝜙 (𝑞0 + 𝑝 (𝑆))− 𝜙 (𝑞0)

for each 𝑆 ⊆ 𝐴. Third, for the achieving linear-
time computation, 𝐴 is represented by the five lists
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, and 𝐿𝑏/𝑠 for 𝐴. Thus, the
problem SCM(𝐴,𝐴0, 𝑎, 𝑏) is represented by the tuple(
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, 𝐿𝑏/𝑠, 𝑞0

)
. Accordingly, we name the

recursive procedure to solve the problem SCM(𝐴,𝐴0, 𝑎, 𝑏) by
problem DC

(
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, 𝐿𝑏/𝑠, 𝑞0

)
.

The main algorithm for the problem SCM(𝐸, ∅, 𝑎, 𝑏),
named DC-Main, simply prepares the seven
arrays 𝑝, 𝑤, 𝑎, 𝑏, 𝑢, 𝑐𝑙𝑎𝑠𝑠, 𝑠𝑡𝑎𝑡𝑒 and the five lists
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, 𝐿𝑏/𝑠 of 𝐸, calls the procedure
DC

(
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, 𝐿𝑏/𝑠, 0

)
, and finally returns 𝑏.

The preparation takes linearithmatic time. In the remaining
of this subsection, we elaborate on the divide-and-conquer
design of the procedure DC

(
𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝐿𝑎/𝑠, 𝐿𝑏/𝑠, 𝑞0

)
for the problem SCM(𝐴,𝐴0, 𝑎, 𝑏).

Direct computation: First, ∣𝐴<∣ is computed along the
list 𝐿𝑏𝑝. If ∣𝐴<∣ = 0, then 𝑏𝐴 is optimal and the procedure
stops and returns. Otherwise, the minimum 𝛿 of 𝑟𝐴𝐴0

− 𝑏𝐴 is
computed along the list 𝐿𝑏/𝑝 with parameter 𝑞0 by applying
the procedure MinDiff-2. If 𝛿 = 0, then 𝑏𝐴 is a subbase of
𝑟𝐴𝐴0

and hence is optimal; so the procedure stops and returns.
If ∣𝐴<∣ = 1 then for the unique 𝑗 ∈ 𝐴<, 𝑏𝑗 is reset to 𝑏𝑗 + 𝛿
and the procedure stops and returns. Clearly, this part takes
linear time.

Division: This part is logically split into three steps. Step
1 essentially computes𝑢 and the two minimizers 𝐴1 and 𝐴2.
First, 𝑎 (𝐴), 𝑏 (𝐴), 𝑝 (𝐴) and 𝜇 = 𝜙 (𝑞0 + 𝑝 (𝐴)) − 𝜙 (𝑞0)
are computed along the list 𝐿𝑏/𝑝. If 𝑎 (𝐴) = 𝜇 then 𝑎𝐴

is a base of 𝑟𝐴𝐴0
and is optimal; hence 𝑏𝐴 is reset to 𝑎𝐴

and the procedure stops and returns. If 𝑏 (𝐴) ≤ 𝜇 then 𝑢𝐴

is set to 𝑏𝐴, and 𝐿𝑢/𝑝 and 𝐿𝑢/𝑠 are set to 𝐿𝑏/𝑝 and 𝐿𝑏/𝑠

respectively; otherwise, the procedure WF is applied to the
tuple

(
𝐿𝑎/𝑠, 𝐿𝑏/𝑠, 𝐿𝑎/𝑝, 𝐿𝑏/𝑝, 𝐿𝑠/𝑝, 𝜇

)
to compute an optimal

solution 𝑢𝐴 together with the two lists 𝐿𝜐/𝑠 and 𝐿𝑢/𝑝 of 𝐴.
Finally, the minimum value 𝛿 of 𝑟𝐴𝐴0

− 𝑢𝐴 and the length 𝑘1
(respectively, 𝑘2) of the shortest (respectively, longest) prefix
minimizer 𝐴1 (respectively, 𝐴2) in 𝐿𝑢/𝑝 are computed by
applying the procedure MinDiff-2

(
𝐿𝑢/𝑝, 𝑞0

)
. If 𝛿 = 0, then

𝑏𝐴 is reset to 𝑢𝐴, and and the procedure stops and returns.
Clearly, this step takes linear time.

Step 2 of the Division part computes 𝑞2 = 𝑝 (𝐴2), updates
the array arrays 𝑐𝑙𝑎𝑠𝑠, resets 𝑎 and 𝑏, and create the list 𝐿𝑏/𝑝

1

of 𝐴1 and the list 𝐿𝑎/𝑝
2 of 𝐴2. Note that 𝐿𝑏/𝑝

1 consists of the
first 𝑘1 elements in 𝐿𝑢/𝑝, and 𝐿

𝑎/𝑝
2 consists of the last ∣𝐴∣−𝑘2

elements in 𝐿𝑢/𝑝. Thus, by a single scanning of 𝐿𝑢𝑝, the two

296



lists 𝐿𝑏𝑝
1 and 𝐿𝑎𝑝

2 , the three arrays 𝑐𝑙𝑎𝑠𝑠, 𝑎 and 𝑏, and the
scalar variable 𝑞2 can be computed and updated.

Step 3 of the Division part creates the four
lists 𝐿

𝑎/𝑝
1 , 𝐿

𝑠/𝑝
1 , 𝐿

𝑎/𝑠
1 , 𝐿

𝑏/𝑠
1 of 𝐴1 and the four lists

𝐿
𝑏/𝑝
2 , 𝐿

𝑠/𝑝
2 , 𝐿

𝑎/𝑠
2 , 𝐿

𝑏/𝑠
2 of 𝐴2. At the assistance of the

array 𝑐𝑙𝑎𝑠𝑠,

∙ the list 𝐿𝑎/𝑝
1 (respectively, 𝐿𝑏/𝑝

2 ) is extracted from 𝐿𝑎/𝑝

(respectively, 𝐿𝑏/𝑝),
∙ the two lists 𝐿

𝑠/𝑝
1 and 𝐿

𝑠/𝑝
2 are extracted from 𝐿𝑠/𝑝,

∙ the two lists 𝐿
𝑏/𝑠
1 and 𝐿

𝑎/𝑠
2 are extracted from 𝐿𝑢/𝑠,

∙ the list 𝐿𝑎/𝑠
1 (respectively, 𝐿𝑏/𝑠

2 ) is extracted from 𝐿𝑎/𝑠

(respectively, 𝐿𝑏/𝑠
2 ).

Clearly, this step also takes linear time.
Conquer: This part is trivial. It simply makes a call

to DC
(
𝐿
𝑎/𝑝
1 , 𝐿

𝑏/𝑝
1 , 𝐿

𝑠/𝑝
1 , 𝐿

𝑎/𝑠
1 , 𝐿

𝑏/𝑠
1 , 𝑞0

)
and a call to

DC
(
𝐿
𝑎/𝑝
2 , 𝐿

𝑏/𝑝
2 , 𝐿

𝑠/𝑝
2 , 𝐿

𝑎/𝑠
2 , 𝐿

𝑏/𝑠
2 , 𝑞0 + 𝑞2

)
, and then returns.

All the problems generated in the recursive computation can
be organized as a rooted binary tree according to the parent-
child relations, known as the recurrence tree. The depth of the
recurrence tree is known as the recurrence depth. Since the
number of users in a child problem is strictly less than that
of its parent problem, the recurrence depth is 𝑂 (𝑛). As the
Direct computation part and Division part takes linear time,
all the problems at the same level (or depth) have 𝑂 (𝑛) time
complexity since they have disjoint ground sets. So, the overall
running time of the algorithm DC-Main is also quadratic. In
summary, we have the following result.

Theorem 5.3: The algorithm DC-Main produces an optimal
solution in quadratic time.

VI. CONCLUSION

For a large class of communication systems [5], [22], [23],
[24], [27], their capacity regions can be represented by a
generalized symmetric polymatroid with box constraints. The
best-known algorithm for fair rate allocation over a generalized
symmetric polymatroid with box constraints has time com-
plexity 𝒪

(
𝑛5 ln𝒪(1) 𝑛

)
. In this paper, we develop a divide-

and-conquer algorithm for this problem with quadratic running
time. The underlying refined decomposing method applies for
the more general separate concave maximization problem over
a polymatroid with box constraints. A key ingredient of the
algorithm is a linear-time algorithm for a generalized knapsack
problem, which is of independent interest.

ACKNOWLEDGEMENTS: This work was supported in
part by the National Natural Science Foundation of P. R. China
under grants 61502505, 61529202, 61572131, and 61872081,
by the National Science Foundation of USA under grant CNS-
1526638, and by SUNY Oneonta Faculty Development Funds.

REFERENCES

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programing:
Theory and Algorithms. Third Edition, Wiley-Interscience, John Wiley
& Sons Inc., 2006.

[2] L. Bodin, Optimization procedures for the analysis of coherent struc-
tures, IEEE Transactions on Reliability R-18(3): 118-126, 1969.

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[4] J. Edmonds, Submodular functions, matroids and certain polyhedra. In
Combinatorial structures and their applications, eds. R. Guy, H. Hanani,
N. Sauer and J. Schonheim, Pages 69-87, 1970.

[5] A. Federgruen and H. Groenevelt, Characterization and optimization
of achievable performance in general queueing systems, Operations
Research 36(5): 733 - 741, 1988.

[6] L. Fleischer and S. Iwata, A push-relabel framework for submodular
function minimization and applications to parametric optimization. Dis-
crete Applied Mathematics 131(2): 311–322, 2003.

[7] A. Frank and E. Tardos, Generalized polymatroids and submodular
flows, Mathematical Programming 42: 489–563, 1988.

[8] S. Fujishige, Submodular Functions and Optimization, 2nd ed. Annals
of Discrete Mathematics vol. 58, Elsevier, Amsterdam, 2005.

[9] H. Groenevelt, Two algorithms for maximizing a separable concave
function over a polymatroid feasible region. European Journal of
Operational Research 54(2): 227–236, 1991.

[10] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1: 169–197,
1981.

[11] S. Iwata, Submodular function minimization. Mathematical Program-
ming 112(1): 45–64, 2008.

[12] S. Iwata and L. Fleischer and S. Fujishige. A combinatorial strongly
polynomial algorithm for minimizing submodular functions. Proc. of
32nd Symposium on Theory of Computing (STOC’00), pp. 97-106, 2000.

[13] S. Iwata and J. B. Orlin, A simple combinatorial algorithm for submodu-
lar function minimization. In Proceedings of the twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’09), pages 1230–1237,
2009.

[14] Y. T. Lee, A. Sidford, and S. C. Wong, A faster cutting plane method
and its implications for combinatorial and convex optimization. In
Proceedings of the 56th Annual Symposium on Foundations of Computer
Science (FOCS’15), pages 1049–1065, 2015.

[15] H. Luss and S. Gupta, Allocation of effort resources among competing
activities. Operations Research 23(2): 360-366, 1975.

[16] J. Mo and J. Walrand, Fair end-to-end window-based congestion control.
IEEE/ACM Trans. Networking 8(5): 556–567, 2000.

[17] K. Murota and A. Shioura, Extension of M-Convexity and L-Convexity
to Polyhedral Convex Functions. Advances in Applied Mathematics
25(4): 352-427, 2000.

[18] J. B. Orlin, A faster strongly polynomial time algorithm for submodular
function minimization. Mathematical Programming 118(2): 237–251,
2009.

[19] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1996.
[20] A. Schrijver, A combinatorial algorithm minimizing submodular func-

tions in strongly polynomial time. Journal of Combinatorial Theory,
Series B, 80(2): 346–355, 2000.

[21] A. Schrijver, Combinatorial optimization: polyhedra and efficiency,
Springer, 2003.

[22] N. V. Shakhlevich, A. Shioura, and V. A. Strusevich, Single machine
scheduling with controllable processing times by submodular optimiza-
tion. Int. J. Found. Comput. Sci. 20: 247–269, 2009.

[23] J. G. Shanthikumar and D. D. Yao, Multiclass queueing systems: poly-
matroidal structure and optimal scheduling control, Operations Research
40(S2): 293-299, 1992.

[24] A. Shioura, N. V. Shakhlevich, and V. A. Strusevic, Decomposition
algorithms for submodular optimization with applications to parallel
machine scheduling with controllable processing times. Math. Program.,
Ser. A 153: 495–534, 2015.

[25] D. M. Topkis. Minimizing a submodular function on a lattice. Operations
Research 26(2): 305– 321, 1978.

[26] D. M. Topkis. Supermodularity and complementarity, Princeton Univer-
sity Press, 2011.

[27] D. Tse and S. V. Hanly. Multiaccess fading channels - part I: polymatroid
structure, optimal resource allocation and throughput capacities. IEEE
Transactions on Information Theory 44(7): 2796–2994, 1998.

[28] P. H. Zipkin, Simple Ranking Methods for Allocation of One Resource.
Management Science 26(1): 34-43, 1980.

[29] P.-J. Wan, et al., MWSR over an Uplink Gaussian Channel with Box
Constraints: A Polymatroidal Approach, under review.

297


