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ABSTRACT

The rate capacity region of an uplink Gaussian channel is a gener-

alized symmetric polymatroid. Practical applications impose addi-

tional lower and upper bounds on the rate allocations, which are

represented by box constraints. A fundamental scheduling prob-

lem over an uplink Gaussian channel is to seek a rate allocation

maximizing the weighted sum-rate (MWSR) subject to the box

constraints. The best-known algorithm for this problem has time

complexity O
(
n5 lnO(1) n

)
. In this paper, we take a polymatroidal

approach to developing a quadratic-time greedy algorithm and a

linearithmic-time divide-and-conquer algorithm. A key ingredient

of these two algorithms is a linear-time algorithm for minimizing

the difference between a generalized symmetric rank function and

a modular function after a linearithmic-time ordering.
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1 INTRODUCTION

Non-orthogonal multiple access (NOMA) [17] enhances band-

width efficiency significantly by accommodating multiple users

within the same orthogonal resource block, and is a promising tech-

nology of meeting the dramatically increasing demand for wire-

less capacity in the fifth generation (5G) networks. A basic tech-

nique of NOMA is the successive interference cancellation (SIC)

[1, 2, 19, 30] at the receiver. Rather than decoding every user treat-

ing the interference from other users as noise, the receiver with SIC

receiver decodes all users sequentially. After one user is decoded,

its signal is stripped away from the aggregate received signal be-

fore the next user is decoded.

For an uplink Gaussian channel between a base station and a

set E of n users, the rate-capacity region is well characterized (e.g.

[29]). For each user e ∈ E, let p (e) be the signal to noise ratio (SNR)

of the signal from user e perceived by the base station. With SIC

by the base station, the rate-capacity region of these users consists

of all vectors x ∈ RE
+
(the set of non-negative vectors indexed by

E) satisfying that

∑

e ∈S

x (e) ≤ log

(
1 +

∑

e ∈S

p (e)

)

for each S ⊆ E. For practical applications, additional upper and/or

lower bounds have to be imposed on the rate allocations or require-

ments by the users. In many scenarios, serving a user at a rate

below its minimum requirement is futile, while serving a user at a

rate above its maximum requirement is wasteful. Furthermore, the

maximum rate limits can be used to cap the rates of any set of users

such as those that have subscribed to a lower tier of service. In gen-

eral, the lower bound on rate allocation is specified by a vector a

in the rate-capacity region, and the upper bound on rate allocation

is specified by a vector b ∈ RE
+
with b ≥ a. A vector x is said to

be a feasible rate allocation if x lies in the rate capacity region and

a ≤ x ≤ b . Suppose that each user e ∈ E has a positive reward

w (e) per rate unit. The total reward accrued by a rate allocation x

is
∑
e ∈E w (e)x (e). The problem MWSR over an uplink Gaussian

channel with box constraints seeks a feasible rate allocationx with

maximum total reward.

The problem MWSR over an uplink Gaussian channel with

box constraints is a special case of linear optimization over a bi-

truncated generalized symmetric polymatroid. A set-function r on
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2E (the collection of subsets of E) is said to be a (polymatroidal)

rank [3] if it satisfies the following three properties:

• submodularity: for any A,B ⊆ E,

r (A) + r (B) ≥ r (A ∪ B) + r (A ∩ B);

• monotonicity: for any A ⊂ B ⊆ E, r (A) ≤ r (B);

• normalization: r (∅) = 0.

A special type of rank is the generalized symmetric rank [5]: r is

said to be a generalized symmetric rank [5] if there exist an increas-

ing and strictly concave function ϕ on R+ with ϕ (0) = 0 and a

positive vector p ∈ RE
+
such that

r (S) = ϕ

(∑

e ∈S

p (e)

)
(1)

for each S ⊆ E. Moreover, if p (e) = 1 for each e ∈ E, then r is

known as a symmetric rank [15]. For the problemMWSR over an

uplink Gaussian channel with box constraints, the function ϕ is

defined by ϕ (t) = log (1 + t) for each t ∈ R+. The polymatroid [3]

of a rank r is the polytope

Ω :=

{
x ∈ RE

+
:
∑

e ∈S

x (e) ≤ r (S) ,∀S ⊆ E

}
.

Given a vector a ∈ Ω and a vector b ∈ RE
+
with b ≥ a, the bi-

truncated polymatroid of r by a from below and b from above is

the polytope

Ω
′ := Ω ∩

{
x ∈ RE

+
: a ≤ x ≤ b

}
.

If r is a generalized symmetric (resp., symmetric) rank, then Ω is

referred to as a generalized symmetric (resp., symmetric) polyma-

troid, and Ω
′ is referred to as a bi-truncated generalized symmetric

(resp., symmetric) polymatroid. Suppose that each user e ∈ E has a

positive weight w (e). The problem

max
x ∈Ω

∑

e ∈E

w (e)x (e)

is referred to as the linear optimization problem over the polyma-

troid Ω; and the problem

max
x ∈Ω′

∑

e ∈E

w (e)x (e)

is referred to as the linear optimization problem over the bi-

truncated polymatroid Ω
′. Thus, the problem MWSR over an up-

link Gaussian channel with box constraints is a linear optimization

over a bi-truncated generalized symmetric polymatroid.

The linear optimization over a polymatroid can be solved by

a simple polymatroid greedy method [3]. This method requires n

rank evaluations, and an ordering of the users in the decreasing

order of weight, and thus takes at least linearithmic time. A bi-

truncated polymatroid is not a polymatroid in general, and hence

the polymatroid greedymethod [3] cannot be directly applicable to

the linear optimization over a bi-truncated polymatroid. However,

the maximum total reward can only be achieved at maximal ele-

ments in the bi-truncated polymatroid, which also form the set of

maximal elements of the polymatroid of a “bi-truncated” rank func-

tion [8, 9, 22]. Thus, the polymatroid greedy method [3] can be ap-

plied to this polymatroid. But the evaluation of the “bi-truncated”

rank becomes quite extensive in general as it involves minimizing

a submodular function. A number of polynomial-time but very ex-

pensive algorithms [7, 11, 13, 14, 16, 18, 20] have been proposed

for minimizing a general submodular function. Among them, the

fastest one is that of [16] that requires O
(
n4 lnO(1) n

)
running

time. The overall running time is thenO
(
n5 lnO(1) n

)
. On the other

hand, for linear optimization over some special bi-truncated sym-

metric polymatroids, efficient algorithms have been developed re-

cently in [24–26]. A natural question is whether linear optimiza-

tion over the broader class of bi-truncated generalized symmetric

polymatroids can also be solved efficiently.

This paper takes a polymatroidal approach to the algorithmic

study of the problem MWSR over an uplink Gaussian channel

with box constraints. For the broader problem of linear optimiza-

tion over a bi-truncated generalized symmetric polymatroid, we

develop two efficient algorithms:

• A quadratic-time greedy algorithm: This algorithm is an ap-

plication of the classic polymatroid greedy method [3].

• A linearithmic-time divide-and-conquer algorithm: This al-

gorithm is an implementation of a refined decomposing

method with proper data structures.

A key ingredient of these algorithms is the linear-time procedure

for minimizing the difference between a generalized symmetric

rank function and a modular function after a linearithmic-time

ordering. The second algorithm above has a running time match-

ing the best-known (polymatroid greedy) algorithm for linear op-

timization over a generalized symmetric polymatroid. In addition

to the problemMWSR over an uplink Gaussian channel with box

constraints, the above algorithms can also be directly applied to

other networking scheduling problems such as those in [6, 23].

The following standard notations are used in this paper. A vec-

tor x ∈ RE (the set of real vectors indexed by E) is often treated

as a modular set function on 2E defined by x (S) =
∑
e ∈S x (e) for

each S ⊆ E. For two vectors x,y ∈ RE , we write x ≤ y to denote

that x (e) ≤ y (e) for each e ∈ E, and x < y to denote that x ≤ y

and x , y. For a subset Φ of RE , a vector x ∈ RE is calledmaximal

in Φ if x ∈ Φ and there is no y ∈ Φ such that x < y. Suppose that

A and B are disjoint subsets of E. For any y ∈ RA and z ∈ RB , the

direct sum ofy and z, denoted byy⊕z, is the vector x ∈ RA∪B with

x (e) = y (e) for each e ∈ A and x (e) = z (e) for each e ∈ B. For any

x ∈ RE and any S ⊆ E, let xS ∈ RS be the restriction of x on S . For

each e ∈ E, we denote by χe the characteristic vector of e .

The rest of paper is organized as follows. In Section 2, some fun-

damental properties of polymatroids are introduced. In Section 3,

we provide a full characterization of minimizers of rank-modulus

difference. In Section 4 and Section 5we present the quadratic-time

greedy algorithm and the linearithmic-time divide-and-conquer al-

gorithm respectively. Finally, we conclude this paper in Section 6.

2 FUNDAMENTALS OF POLYMATROID

In this section, we introduce some fundamental properties of poly-

matroids that are relevant to this paper. We further refer the in-

terested reader to [9] for background on submodular set functions,
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[21] for background on polymatroid and submodular functionmin-

imization.

Consider a finite ground set E, and a rank function r on 2E . A

vector x ∈ RE is a subbase of r if x ∈ RE
+
and x(S) ≤ r (S) for

each S ⊆ E. The set of all subbases of r is called the polymatroid

of r . Let x be a subbase of r . A subset T ⊆ E is said to be x-tight

w.r.t. r if x (T ) = r (T ). The collection of all x-tight subsets w.r.t. r

is closed under taking union and intersection [9, 21]. In particular,

the union of all x-tight sets w.r.t. r is also x-tight w.r.t. r , and hence

it is the unique maximal x-tight set w.r.t. r . Clearly, for any e ∈ E,

e is not in the maximal x-tight set w.r.t. r if and only if x + ε χe is

also a subbase of r for some ε > 0 [9].

A maximal subbase of r is called is a base of r . Equivalently, a

subbase x of r is a base of r if and only if x (E) = r (E) [9, 21].

The set of all bases of r is also a polytope, which is called the base

polytope of r . Its vertices can be characterized as follows [3]. For

each ordering 〈e1, e2, · · · , en〉 of E wheren = |E |, letv be the vector

defined by v (e1) = r ({e1}) and for each 1 < j ≤ n,

v
(
ej

)
= r

({
e1, e2, · · · , ej

})
− r

({
e1, e2, · · · , ej−1

})
.

Then, v is a vertex of the base polytope of r . For this reason, v

is referred to as the extreme base of r induced by the ordering

〈e1, e2, · · · , en 〉. The vertices of the base polytope of r are exactly

the extreme bases of r induced by all possible orderings of E. A

vector x ∈ Rn is a superbase of r if there exists a base y of r such

that y ≤ x .

Suppose that each e ∈ E has a positive weight w (e). The total

weight of a subbase x of r is
∑
e ∈E w (e)x (e). Then a subbase of r

withmaximumweight must be a base of r . So, the problemMWSR

over the polymatroid of r is equivalent to finding a maximum-

weighed base of r . By the polymatroid greedy method [3], the ex-

treme base of r induced by the ordering ofE in the decreasing order

of weight is an optimal solution.

2.1 Restriction And Contraction

Let A be a subset of E. The restriction of r on A, denoted by rA, is

the set function on 2A defined by rA (S) = r (S) for any S ⊆ A. The

contraction of r on A, denoted by rA, is the set function on 2E\A

defined by rA (S) = r (S ∪ A) − r (A) for any S ⊆ E \ A. Clearly,

rA and rA are both polymatroidal rank functions. In addition, the

following “composition” property [9] holds.

Lemma 2.1. Suppose y is a subbase of rA and z is a subbase of rA.

Then x := y ⊕ z is a subbase of r . Moreover, x is a base of r if and

only if both y is a base of rA and z is a base of rA .

Conversely, the following “decomposition” property [9] holds.

Lemma 2.2. Let x be a subbase of r , and y and z be the restrictions

of x to A and E \ A respectively. Then, y is also a subbase of rA.

Furthermore, if y is a base of rA, then z is a also subbase of rA.

In general, for any two disjoint subsetsA and B of E, rB
A
denotes

the set function on 2B defined by rA
B
(S) = r (S ∪A) − r (A) for any

S ⊆ B. Then, rA
B
can be regarded as the restriction of rB on A.

Finally, we remark that the generalized symmetry is preserved

by restriction and contraction.

2.2 Truncations of Polymatroid

Consider a vector b ∈ RE
+
. The upper truncation of r by b [9], de-

noted by rb , is the rank function on 2E defined by for any S ⊆ E,

rb (S) = min
T ⊆S
{r (T ) + b (S \T )} .

For a vector x ∈ RE
+
, the following properties holds [9]:

• x is a subbase of rb iff x ≤ b and x is a subbase of r ;

• x is a base of rb iff x is a maximal subbase of r satisfying

that x ≤ b;

In particular, when b is a subbase of r , b is unique base of rb .

Consider a subbase a of r . The lower truncation of r by a [9],

denoted by ra , is a rank function on E defined by for any S ⊆ E,

ra (S) = min
S⊆T ⊆E

{r (T ) − a (T \ S)} .

For a vector x ∈ RE
+
, x is a base of ra if and only if x ≥ a and x is

a base of r .

Consider a subbase a of r and a vector b ∈ RE
+
with b ≥ a.

The bi-truncation of r by a from below and b from above [8, 9, 22],

denoted by rba , is the rank function on 2
E defined by for any S ⊆ E,

rba (S) = min
T ⊆E
{r (T ) + b (S \T ) − a (T \ S)} .

rba is also the upper truncation of ra by b , and the lower truncation

of rb bya (observing that a is also a subbase of rb ). A vector x ∈ RE
+

is a base of rba if and only if x is a maximal subbase of r satisfying

that a ≤ x ≤ b . In particular, when b is a subbase of r , b is unique

base of rba . The maximal elements in the bi-truncated polymatroid
{
x ∈ RE

+
: x (S) ≤ r (S) ,∀S ⊆ E; a ≤ x ≤ b

}
.

is exactly the base polytope of rba . Then the problem MWSR over

the bi-truncated polymatroid is equivalent to finding a maximum-

weighed base of rba , which can be solved by the polymatroid greedy

method [3]. However, the evaluation of the bi-truncated rank is

generally expensive as remarked at the beginning of this paper.

3 MINIMIZERS OF RANK-MODULUS

DIFFERENCE

Consider a finite ground set E, and a polymatroid function r on 2E ,

and a vector u ∈ RE
+
. By treating u as a modular function on 2E ,

the difference r −u is referred to as a rank-modulus difference. The

collection ofminimizers of r−u is closed under taking intersections

and unions [21]. In particular, the union of all minimizers of r − u

is also a minimizer of r − u , and hence it is the unique maximal

minimizer of r −u . When r is strictly submodular, i.e., for any two

subsets A and B of E neither of which is a subset of each other,

r (A) + r (B) > r (A ∪ B) + r (A ∩ B),

then the collection of minimizers of r −u is a chain [27, 28], i.e., for

any two minimizers T1 and T2 of r − u , either T1 ⊆ T2 orT2 ⊆ T1.
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Rank-modulus difference and its minimizers play essential roles

in algorithmic applications includingmembership test of a polyma-

troid, computing the tight sets of a subbase, and evaluation of the

truncated ranks. In Subsection 3.1, we present fundamental prop-

erties of minimizers of the difference between an arbitrary rank

and a modulus. In Subsection 3.2, we develop efficient algorithms

for computing minimizers of the difference between a generalized

symmetric rank and a modulus.

3.1 Arbitrary Rank

In this subsection, we first provide the full characterization of min-

imizers of the difference between an arbitrary rank r and a non-

negative modulus u .

Lemma 3.1. Let T be a subset of E. The following statements are

equivalent:

(1) T is a minimizer of r − u .

(2) For each base v of ru , v (T ) = r (T ) and v (e) = u (e) for any

e ∈ E \T .

(3) For some base v of ru , v (T ) = r (T ) and v (e) = u (e) for any

e ∈ E \T .

Proof. (1)⇒ (2). Suppose that T is a minimizer of r − u , and v

is a base of ru . Then, v (E) = ru (E) = r (T ) + u (E \T ) and v (T ) ≤

ru (T ) = r (T ). So,

v (E) = v (T ) +v (E \T ) ≤ r (T ) + u (E \T )

= ru (E) = v (E) .

Hence, we must havev (T ) = r (T ) andv (E \T ) = u (E \T ), which

implies v (e) = u (e) for any e ∈ E \T .

(2)⇒ (3): Trivial.

(3)⇒ (1): Suppose that for some base v of ru , v (T ) = r (T ) and

v (e) = u (e) for any e ∈ E \T . For any S ⊆ T ,

r (S) + u (T ) − u (S) = r (S) + u (T \ S)

≥ v (S) + v (T \ S) = v (T ) = r (T ) ,

and hence r (S) − u (S) ≥ r (T ) − u (T ).

For any S ⊇ T ,

r (S) ≥ v (S) = v (T ) + v (S \T )

= r (T ) + u (S \T )

= r (T ) + u (S) − u (T )

So, r (S) − u (S) ≥ r (T ) − u (T ).

Finally, for any S ⊆ E,

[r (S) − u (S)] + [r (T ) − u (T )]

≥ [r (S ∩T ) − u (S ∩T )] + [r (S ∪T ) − u (S ∪T )]

≥ [r (T ) − u (T )] + [r (T ) − u (T )]

which implies r (S) − u (S) ≥ r (T ) − u (T ). Thus, T is a minimizer

of r − u . �

Corollary 3.2. The following statements hold:

• u is a subbase of r iff ∅ is a minimizer of r − u .

• u is a superbase of r iff E is a minimizer of r − u .

• u is a base of r iff both ∅ and E are minimizers of r − u .

Next, we give the full characterization of themaximal minimizer

of r − u .

Lemma 3.3. Let T be a subset of E. The following statements are

equivalent:

(1) T is the maximal minimizer of r − u .

(2) For each base v of ru , T is the maximal v-tight set w.r.t. r .

(3) For some base v of ru , T is the maximal v-tight set w.r.t. r .

Proof. (1)⇒ (2). By Lemma 3.1, T is a v-tight set, and v (e) =

u (e) for any e ∈ E \T . For any proper superset S ofT , by the maxi-

mality ofT , r (S) − u (S) > r (T ) − u (T ). So,

r (S) > r (T ) + u (S \T )

= v (T ) +v (S \T )

= r (T ) +v (S) −v (T )

= v (S) .

Thus, S is not a v-tight set w.r.t. r .

(2)⇒ (3): Trivial.

(3) ⇒ (1): We first claim that v (e) = u (e) for any e ∈ E \ T .

Assume to the contrary that v (e) < u (e) for some e ∈ E \T . Since

T is the maximal v-tight set w.r.t. r , for some ε > 0, v + ε χe is still

a subbase of r and v + ε χe ≤ u . Thus, v + ε χe is also a subbase of

ru . This contradicts to that v is a base of ru . So, the claim holds.

By Lemma 3.1,T is a minimizer of r −u . For any proper superset

S ofT , by the maximality ofT ,

r (S) > v (S) = v (T ) +v (S \T )

= r (T ) + u (S \T )

= r (T ) + u (S) − u (T ) .

So, r (S)−u (S) > r (T )−u (T ). Thus, S is not a minimizer of r−u . �

Next, we consider a special modulus arising from the definition

of bi-truncated rank. Consider a subbase a of r and a vector b ∈ RE
+

withb ≥ a. For any subset S of E, letuS ∈ R
E
+
be the vector defined

by

uS (e) =

{
b (e) , if e ∈ S ;

a (e) , if e ∈ E \ S .
(2)

Then, for any T ⊆ E,

uS (T ) = uS (T ∩ S) + uS (T \ S) = b (T ∩ S) + a (T \ S) .

So,

rba (S) = b (S) + min
T ⊆E
{r (T ) − uS (T )} .

If T is a minimizer of r − uS over all subsets of E, then

rba (S) = b (S) + r (T ) − uS (T )

= r (T ) + b (S \T ) − a (T \ S) .

Each minimizer of r − uS has the following property.

Lemma 3.4. Suppose that S is a non-empty subset of E, andT is a

minimizer of r −uS . Then for each basev of rba s.t. v (S) = rba (S), we

have v (T ) = r (T ) and v (e) = uS (e) for each e ∈ (T \ S) ∪ (S \T ).
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Proof. Since v is a base of rba , we have a ≤ v ≤ b and v (T ) ≤

rba (T ) ≤ r (T ). As

v (S) +v (T \ S) = v (S ∪T ) = v (T ) +v (S \T ) ,

we have

v (S) = v (T ) +v (S \T ) −v (T \ S)

≤ r (T ) + b (S \T ) − a (T \ S) .

On the other hand, since S is v-tight w.r.t. rba and T is a minimizer

of r − uS , we have

v (S) = rba (S) = r (T ) + b (S \T ) − a (T \ S) .

Thus, v (T ) = r (T ), v (S \T ) = b (S \T ), and v (T \ S) = a (T \ S).

So, for any e ∈ S \ T , v (e) = b (e) = uS (e); for any e ∈ T \ S ,

v (e) = a (e) = uS (e). �

Finally, a pair of minimizers of r − uS have the following prop-

erty.

Lemma 3.5. Suppose that S is a non-empty subset of E, andT1 and

T2 are two minimizers of r − uS over all subsets of E with T1 ⊆ T2.

Then for each base v of rba s.t. v (S) = rba (S),

• the restriction of v on T1 is a base of rT1 , and a (e) ≤ v (e) ≤

uS (e) for each e ∈ T1;

• the restriction of v on T2 \T1 is a base of r
T2\T1
T1

, and v (e) =

uS (e) for each e ∈ T2 \T1;

• the restriction ofv on E\T2 is a subbase of r
E\T2
T2

, anduS (e) ≤

v (e) ≤ b (e) for each e ∈ E \T2.

Proof. Sincev is a base of rba , v is also a subbase of r . By Lemma

3.4, v (T2) = r (T2); hence the restriction of v on T2 is a base of r
T2 .

By Lemma 2.2, the restriction of v on E \T2 is a subbase of r
E\T2
T2

.

By Lemma 3.4, v (T1) = r (T1); hence the restriction of v on T1 is a

base of rT1 . Again, by Lemma 2.2, the restriction of v on T2 \T1 is

a base of r
T2\T1
T1

.

By Lemma 3.4, v (e) = uS (e) for each e ∈ (S \T1) ∪ (T2 \ S). As

T2 \T1 ⊆ (S \T1) ∪ (T2 \ S) ,

v (e) = uS (e) for each e ∈ T2 \T1.

Consider any e ∈ T1. Clearly, v (e) ≥ a (e). If e ∈ S , then v (e) ≤

b (e) = uS (e). If e < S , then v (e) = uS (e). Thus, v (e) ≤ uS (e) in

any case.

Consider any e ∈ E \ T2. Clearly, v (e) ≤ b (e). If e < S , then

v (e) ≥ a (e) = uS (e). If e ∈ S , then v (e) = uS (e). Thus, v (e) ≥

uS (e) in any case. �

The above lemma together with Corollary 3.2 implies the fol-

lowing corollary.

Corollary 3.6. Suppose that S is a non-empty subset of E, and

uS is a base of r . Then uS is the unique base of rba s.t. v (S) = rba (S).

3.2 Generalized Symmetric Rank

In this subsection, the rank r is assumed to be generalized symmet-

ric as defined in equation (1). We show that the maximal minimizer

of r − u can be computed by a linear search.

A crucial property of the generalized symmetric rank r is a sim-

ple test of whether a given vectoru ∈ RE
+
is a subbase of not. Specif-

ically, suppose that 〈e1, e2, · · · , en 〉 is an ordering of E in which

u
(
ej

)
/p

(
ej

)
decreases with j. For each 0 ≤ i ≤ n, let Ei be the

subset
{
ej : 0 ≤ j ≤ i

}
. Then, the following test of whether u is a

subbase of r was given in [10].

Lemma 3.7. u is a subbase of r if and only if u (Ei ) ≤ r (Ei ) for

each 1 ≤ i ≤ n.

Based upon the above test and the full characterization of the

maximal minimizer of r − u described in Lemma 3.3, we establish

the following linear search for the maximal minimizer of r − u .

Theorem 3.8. The maximal minimizer of r − u is Ek for some

0 ≤ k ≤ n.

Proof. By Lemma 3.3, it is sufficient to show that for some base

v of ru , themaximalv-tight set w.r.t. r is Ek for some 0 ≤ k ≤ n.We

consider the following v ∈ Rn
+
defined in [10]: For each 1 ≤ i ≤ n,

v (ei ) = min {u (ei ) , r (Ei ) −v (Ei−1)}

Then, v ≤ u and v (Ei ) ≤ r (Ei ) for each 1 ≤ i ≤ n. Let

k = max {0 ≤ i ≤ n : v (Ei ) = r (Ei )} ,

which is is well-defined as v (E0) = r (E0) = 0. We will show that

v is a base of ru and Ek is the maximal v-tight set w.r.t. r .

The property that v is a base of ru was shown in [10]. For the

sake of completeness, we include the detailed proof here. We first

show thatv is a subbase of r . By Lemma 3.7, it is sufficient to show

that v (ei ) /p (ei ) decreases with i . We prove that for each 1 ≤ i ≤

n − 1, v (ei ) /p (ei ) ≥ v (ei+1) /p (ei+1) in two cases.

Case 1: v (ei ) = u (ei ). Then,

v (ei )

p (ei )
=

u (ei )

p (ei )
≥

u (ei+1)

p (ei+1)
≥

v (ei+1)

p (ei+1)
.

Case 2:v (ei ) < u (ei ). Then, v (ei ) = r (Ei ) −v (Ei−1) and hence

v (Ei ) = r (Ei ). So,

v (ei )

p (ei )
=

r (Ei ) −v (Ei−1)

p (ei )

≥
r (Ei ) − r (Ei−1)

p (ei )

≥
r (Ei+1) − r (Ei )

p (ei+1)

=

r (Ei+1) −v (Ei )

p (ei+1)

=

v (ei+1)

p (ei+1)
.

where the second inequality follows from that r is a generalized

symmetric rank.

Since v ≤ u ,v is also subbase of ru . By the choice of k ,v (Ek ) =

r (Ek ) and v
(
ej

)
= u

(
ej

)
for each j > k . Thus, for any ε > 0 and

any 1 ≤ j ≤ n,v + ε χej is not a subbase of ru . So, v is a base of ru .
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Next, we show that Ek is the maximal v-tight set w.r.t. r .

This holds trivially if k = n; so we assume that k < n. Then

v (ek ) /p (ek ) > v (ek+1) /p (ek+1) as

v (ek )

p (ek )
=

v (Ek ) −v (Ek−1)

p (ek )

=

r (Ek ) −v (Ek−1)

p (ek )

≥
r (Ek ) − r (Ek−1)

p (ek )

≥
r (Ek+1) − r (Ek )

p (ek+1)

=

r (Ek+1) −v (Ek )

p (ek+1)

>
v (Ek+1) −v (Ek )

p (ek+1)

=

v (ek+1)

p (ek+1)
,

where the strict inequality follows from that v (Ek+1) < r (Ek+1).

Let

ε = min

{
v (ek )

p (ek )
−
v (ek+1)

p (ek+1)
, min
k+1≤j≤n

r
(
Ej

)
−v

(
Ej

)

p
(
Ej

)
− p (Ek )

}
.

Then ε > 0. Let v be such that v
(
ej

)
= v

(
ej

)
if 1 ≤ j ≤ k and

v
(
ej

)
= v

(
ej

)
+ εp

(
ej

)
for each k + 1 ≤ j ≤ n. We claim that v is

a subbase of r . Such claim implies that any strict superset of Ek is

not v-tight w.r.t. r , and hence Ek is the maximal v-tight set w.r.t. r .

We prove the claim below using Lemma 3.7.

First, we show that v
(
ej

)
/p

(
ej

)
≥ v

(
ej+1

)
/p

(
ej+1

)
for each

1 ≤ j < n in three cases; in other words, v
(
ej

)
/p

(
ej

)
decreases

with j.

Case 1: 1 ≤ j < k . Then,

v
(
ej

)

p
(
ej

) =
v

(
ej

)

p
(
ej

) ≥
v

(
ej+1

)

p
(
ej+1

) =
v

(
ej+1

)

p
(
ej+1

) .

Case 2: j = k . Then,

v (ek )

p (ek )
=

v (ek )

p (ek )
≥

v (ek+1)

p (ek+1)
+ ε =

v (ek+1)

p (ek+1)
.

Case 3: k + 1 ≤ j < n,

v
(
ej

)

p
(
ej

) =
v

(
ej

)

p
(
ej

) + ε ≥
v

(
ej+1

)

p
(
ej+1

) + ε =
v

(
ej+1

)

p
(
ej+1

) .

Secondly, we show that v
(
Ej

)
≤ r

(
Ej

)
for each 1 ≤ j ≤ n in

two cases.

Case 1: 1 ≤ j ≤ k . Then,

v
(
Ej

)
= v

(
Ej

)
≤ r

(
Ej

)
;

Case 2: k + 1 ≤ j ≤ n,

v
(
Ej

)
= v

(
Ej

)
+ ε

(
p

(
Ej

)
− p (Ek )

)

≤ v
(
Ej

)
+

(
r
(
Ej

)
−v

(
Ej

) )

= r
(
Ej

)
.

By Lemma 3.7, v is a subbase of r . This completes the proof of the

theorem. �

Suppose that the ordering 〈e1, e2, · · · , en 〉 is represented by a

list L. Among all the prefix sublists of L, the shortest (respectively,

longest) one which is a minimizer of r − u is referred to as the

shortest (respectively, longest) prefix minimizer of r − u in L. The

above theorem says that the longest prefixminimizer of r−u in L is

also the maximal minimizer of r −u . We describe a linear-time pro-

cedure MinDiff, which takes L as input and produces minimum

value δ of r − u , and the length k1 (respectively, k2) shortest (re-

spectively, longest) prefix minimizer of r − u in L. The vectors p

and u are represented by arrays globally accessible by the proce-

dureMinDiff. During the process of linear search along the list L,

three working variables i , q, and σ are used to store |T |, p (T ), and

u (T ) of the present prefix sublistT of L respectively, and maintain

the following invariant property: among all the prefix sublists of

length at most i , the prefix sublist of length k1 (respectively, k2)

is the shortest (respectively, longest) one achieving the minimum

value δ of r − u .

The main body of the procedure is outlined in Table 1. Initially,

all the three output variables and the three working variables are

initialized to 0. Then, the procedure scans the list L from the be-

ginning to the end. When an element e ∈ L is scanned, the three

working variables are updated accordingly, and subsequently the

three output variables are updated as follows. Note that ϕ (q) − σ

is the value of r − u at the present prefix list of length i , and δ is

the minimum value of r − u at all all shorter prefix sublists. Thus,

if ϕ (q) − σ < δ , then δ is replaced by ϕ (q) − σ and both k1 and k2
are replaced by i ; if ϕ (q) − σ = δ , only k2 is replaced by i ; if ϕ (q) −

σ > δ , then all the three output variables remain unchanged. After

completing the scanning of the entire list L, the values of the three

output variables are returned. As each scanning step (i.e., each iter-

ation in the for-loop) takes constant time, the procedureMinDiff

has linear running time.

MinDiff(L):

δ ← 0, q ← 0, σ ← 0;

k1 ← 0,k2 ← 0, i ← 0;

for each e ∈ L sequentially do

i ← i + 1;

q ← q + p (e);

σ ← σ + u (e);

if ϕ (q) − σ < δ then

δ ← ϕ (q) − σ , k1 ← i,k2 ← i ;

if ϕ (q) − σ = δ then k2 ← i ;

return δ , k1, and k2

Table 1: Outline of the procedure MinDiff.

Finally, we introduce a slight extension to the procedure Min-

Diff, which will be utilized in the latter part of this paper. Let q0
be a positive parameter andA is a non-empty subset of E. Then the

function r̃ defined by

r̃ (S) = ϕ (q0 + p (S)) − ϕ (q0)

for each S ⊆ A is also a generalized symmetric rank function on the

subsets ofA. Denote the restriction ofu onA byuA. The procedure

MinDiff-2 includes q0 in the input in addition to L, and produces
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the minimum value δ of r̃ −uA and the length k1 (respectively, k2)

shortest (respectively, longest) prefix minimizer of r̃ − u in L. It

makes the following two simple modifications from MinDiff,

• In the initialization, the two statements δ ← 0,q ← 0 are

replaced with δ ← ϕ (q0) ,q ← q0
• A statement δ ← δ −ϕ (q0) is added right before the return

statement.

Thus, its running time is also linear.

4 A GREEDY ALGORITHM

In this section, we present a greedy algorithm for linear optimiza-

tion over a bi-truncated generalized symmetric polymatroid.

Let

E= = {e ∈ E : a (e) = b (e)} ,

E< = {e ∈ E : a (e) < b (e)} .

Then, for any base v of rba and any e ∈ E= , v (e) = a (e) = b (e).

This means that the users in E= are always allocated fixed rates

in any base of rba , regardless of their weights (rewards). Therefore,

we can change their weights to an arbitrary positive value which

is strictly smaller than mine ∈E< w (e). Such change is optimality-

preserving. Thus, we assume mine ∈E< w (e) > maxe ∈E= w (e).

Suppose that e1, e2, · · · , ek is an ordering of E< in whichw
(
ej

)

decreases with j. Let E0 = ∅, and Ei = {e1, e2, · · · , ei } for 1 ≤ i ≤ k .

Let x ∈ RE
+
be the vector defined by x

(
ej

)
= rba

(
Ej

)
− rba

(
Ej−1

)

for 1 ≤ j ≤ k , and x (e) = a (e) for each e ∈ E=. By the polymatroid

greedy method [3], x is an optimal solution.We derive an alternate

expression of x
(
ej

)
for 1 ≤ j ≤ k below. Let uEj be as defined in

equation (2), and denote

δ j = min
T ⊆E

[
r (T ) − uEj (T )

]
.

In addition, denote δ0 = 0. Then, rba
(
Ej

)
= b

(
Ej

)
+ δ j . So,

x
(
ej

)
=

[
b

(
Ej

)
+ δ j

]
−

[
b

(
Ej−1

)
+ δ j−1

]

= b
(
ej

)
+ δ j − δ j−1 .

Next, we describe an efficient implementation of the above de-

sign when r is a generalized symmetric rank as defined in equation

(1). The input vectors a,b,p,w are represented by arrays of size n,

so is the output vector x . We also use an array u to represent uEj ,

which is initialized to a, and be updated iteratively. The ordering

of E< in the decreasing order of weight is represented by a list Lw .

The ordering of E in the decreasing order of u (e) /p (e) is repre-

sented by another list Lup . In addition, we use two scalar variables

δ and δ ′ to represent δ j and δ j−1 respectively.

Initialization: For each e ∈ E= , x (e) is set of a (e).u is set to a; δ ′

is set to 0. Then, Lup and Lw are computed by the merge-sorting

algorithm. The total running time is O (n logn).

Greedy computation of x (e) for each e ∈ E< : The algorithm

scans the list Lw sequentially. In the iteration in which e ∈ Lw is

scanned, x (e) is computed as follows.

• u (e) is reset to b (e), and the list Lup is updated accordingly

in linear time.

• The minimum δ of r − u over all prefix sublists of Lup is

computed by applying the algorithmMinDiff.

• x (e) is set to b (e) + δ − δ ′, and δ ′ is reset to δ .

Thus, each iteration takes O (n) time. As there are
��E<

�� = O (n)

iterations, the total running time is O
(
n2

)
.

In summary, we have the following theorem.

Theorem 4.1. The algorithm Greedy-GS produces an optimal so-

lution in quadratic time.

5 A DIVIDE-AND-CONQUER ALGORITHM

In this section, we develop a divide-and-conquer algorithm for lin-

ear optimization over a bi-truncated generalized symmetric poly-

matroid with linearithmic time complexity. Underlying this algo-

rithm is a refined decomposing method for linear optimization

over a bi-truncated polymatroid, which is presented in Subsection

5.1. A divide-and-conquer implementation of this method for lin-

ear optimization over a bi-truncated generalized symmetric poly-

matroid is presented in Subsection 5.2.

5.1 A Refined Decomposing Method

Suppose that r is a polymatroidal rank on 2E , and each user

e ∈ E has a positive weight w (e). We define an extended problem

MWSR(A,A0,a,b) where

• A is a subset of E, and is referred as the ground set,

• A0 is a subset of E disjoint from A,

• a is a subbase of rA
A0

representing the lower bound, and

• b is a vector in RA
+
satisfying that b ≥ a, representing upper

bound.

For simplicity of treatment, the definition allows for the degener-

ate instance thatA = ∅, for which null is the only feasible solution

with 0 total weight. For the non-degenerate instance, a feasible so-

lution to this extended problem is a subbases x of rA
A0

satisfying

that a ≤ x ≤ b , and the objective of this extended problem is to

compute a feasible solution x maximizing
∑
e ∈Aw (e)x (e). Then,

the original problem can be represented byMWSR(E, ∅, a,b).

Consider a non-degenerate problemMWSR(A,A0, a,b). Define

A= := {e ∈ A : a (e) = b (e)} ,

A< := {e ∈ A : a (e) < b (e)} .

Clearly, for each feasible solution x , we must have x (e) = b (e) for

any e ∈ A=. Thus, users in A= are said to be fixed, and users in A<

is said to be free. In the trivial instance that A<
= ∅, b = a is the

unique optimal solution. So, we assume that A<
, ∅. In general,��A<

�� is a key measure of the effort required to solve the problem

MWSR(A,A0,a,b). There are two simple cases of the instance in

which the optimal solution is unique and directly computable:

• Case 1: b is a subbase of rA
A0
. In this case, b is also the unique

optimal solution.

• Case 2: A< is a singleton {e}. In this case, the unique op-

timal solution x is identical to b except the value of x (e),

which is equal to

b (e) + min
T ⊆A

(
rA0
(T ) − b (T )

)
.
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Both cases can tested or solved by computing the minimum value

of rA0
− b . For the instance which is of neither of the above cases

(i.e.,
��A<

�� ≥ 2 and b is not a subbase), we derive a recursive relation

subsequently.

Let S be a subset of A< satisfying that

|S | =
⌈��A<

�� /2
⌉

and

min
e ∈S

w (e) ≥ max
e ∈A<\S

w (e) .

Then, neither S nor A< \ S is empty. Let u ∈ RA
+
be the vector

u (e) =

{
b (e) , if e ∈ S ;

a (e) , if e ∈ A \ S .
(3)

The following lemma is an immediate consequence of the Corol-

lary 3.6 and the polymatroid greedy method.

Lemma 5.1. If u is a base of rA
A0
, then u is an optimal solution to

the problemMWSR(A,A0,a,b).

In general, suppose thatA1 and A2 be two minimizers of rA
A0
−u

withA1 ⊆ A2. Denote A2 = A \A2. Let u1 (respectively, u2, u3) be

the restriction ofu onA1 (respectively,A2,A2\A1),a1 be the restric-

tion of a onA1. Then, a1 ≤ u1 and a1 is a subbase of r
A1

A0
; hence the

problem MWSR(A1,A0,a1,u1) is well-defined. Similarly, u2 ≤ b2

and u2 is a subbase of rA2

A0∪A2
by Lemma 3.5; hence the problem

MWSR
(
A2,A0 ∪A2,u2,b2

)
is also well-defined. These two prob-

lems are referred as the “child” problems of the “parent” prob-

lem MWSR(A,A0,a,b). They have the following composition re-

lations.

Theorem 5.2. Consider any optimal solution x1 to the problem

MWSR(A1,A0, a1,u1) and any optimal solution x2 to the problem

MWSR

(
A2,A0 ∪ A2,u2,b2

)
. Let x = x1 ⊕ x2 ⊕ u3. Then, x is an

optimal solution to the problemMWSR(A,A0,a,b).

Proof. Since a ≤ u ≤ b , it holds that a ≤ x ≤ b . Note that x1 is

a subbase of rA1

A0
, u3 is a subbase of r

A2\A1

A0∪A1
by Lemma 3.5, and x2

is a subbase of rA2

A0∪A2
. By Lemma 2.1, x is a subbase of rA

A0
. Thus,

the feasibility of x follows. Let v be the optimal solution to the

problem MWSR(A,A0,a,b) produced by the polymatroid greedy

method, as described in previous section, in a weight-decreasing

order of E in which S is a prefix. Then, S is v-tight w.r.t. the bi-

truncated rank. Let v1 (respectively, v2, v3) be the restriction of

v on A1 (respectively, A2, A2 \ A1). By Lemma 3.5, v3 = u3, v1 is

an optimal solution to the problem MWSR(A1,A0, a1,u1), and v2

is an optimal solution to the problemMWSR
(
A2,A0 ∪ A2,u2,b2

)
.

By the optimalities of x1 and x2, we have
∑

e ∈A1

w (e)x1 (e) ≥
∑

e ∈A1

w (e)v1 (e) ,

∑

e ∈A2

w (e)x2 (e) ≥
∑

e ∈A2

w (e)v2 (e) .

Since ∑

e ∈A2\A1

w (e)u3 (e) =
∑

e ∈A2\A1

w (e)v3 (e) .

The above three inequalities imply that
∑

e ∈A

w (e)x (e) ≥
∑

e ∈A

w (e)v (e) .

So, the optimality of x follows. �

The above theorem implies that the users inA2 \A1 can be fixed

to a rate allocationu3. Now, we identify the set of free users in each

of the two new problems. Let

A<

1 := {e ∈ A1 : a1 (e) < u1 (e)} ,

A2
<

:=
{
e ∈ A2 : u2 (e) < b1 (e)

}
.

Then,

A<

1 = {e ∈ A1 : a (e) < u (e)} = A1 ∩ S,

A2
<

=

{
e ∈ A2 : u (e) < b (e)

}
= A< \ (A2 ∪ S) .

So,
��A<

1

�� ≤ |S | =
⌈��A<

�� /2
⌉
,

��A<

1

�� ≤
��A<

�� − |S | ≤
⌊��A<

�� /2
⌋
.

Thus, the number of free users in each of the two new prob-

lems is at most halved. In the trivial case that A<

1 is empty,

the problem MWSR(A1,A0,a1,u1) has a unique feasible solu-

tion u1. Similarly, in trivial case that A2
<

is empty, the problem

MWSR
(
A2,A0 ∪ A2,u2,b2

)
has a unique feasible solutionb2 = u2.

We remark that the decomposition method [24–26] is a special

case of the above decomposition method in which A1 = A2. The

advantage of employing dual minimizers is obvious: more users

may become fixed. In particular, the entire subsetA2 \A1 becomes

fixed. The child problems may have smaller size. For certain rank

r such as the generalized symmetric rank, the dual minimizers can

be computed at no additional cost.

5.2 A Linearithmic Implementation

In this subsection, we assume that the rank r is a generalized sym-

metric as defined in equation (1), and present an implementation

of the generalized decomposition method with linearithmic time

complexity.

We begin with the introduction of the data structures to be used.

First, there are seven arrays indexed by E which are globally acces-

sible to all the procedure calls. Among them, two static arrays p

and w are used for storing the vector p in the definition of r and

the weight vector w respectively. Two arrays a and b are used for

storing and updating the lower bound a and upper bound b re-

spectively. At the end of the algorithm, b is returned as the final

solution. With such trick, many duplication operations, parameter

passing, as well as certain degeneracy can be avoided. The array u

is to store the vector u defined in equation (3). The array col is to
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indicate the membership of S , A< \ S , and A= in a problem with

ground set A by

col (e) =




0, if e ∈ A=;

1, if e ∈ S ;

2, if e ∈ A< \ S .

The array class is to indicate the membership of A1, A2 \ A1, and

A2 in a problem with ground set A by

class (e) =




0, if e ∈ A2 \A1;

1, if e ∈ A1;

2, if e ∈ A2.

Second, there are three lists used locally by each problem with

ground set A: a list La/p (respectively, Lb/p ) of A in the decreas-

ing order of a (e) /p (e) (respectively, b (e) /p (e)), and a list Lw of

A< in the decreasing order ofw (e).

With the above data structures, we describe a proper representa-

tion of a problemMWSR(A,A0,a,b). First, a and b can be skipped

as they are globally accessible and updated throughout the execu-

tion of algorithm. Second,A0 can be replaced by a single parameter

q0 = p (A0) as

rAA0
(S) = ϕ (q0 + p (S)) − ϕ (q0)

for each S ⊆ A. Third, for the achieving linear-time com-

putation, A is represented by the three lists La/p , Lb/p , and

Lw for A. Thus, the problem MWSR(A,A0,a,b) is represented

by the tuple
(
La/p, Lb/p, Lw ,q0

)
. Accordingly, we name the re-

cursive procedure to solve the problem MWSR(A,A0, a,b) by

DC
(
La/p, Lb/p, Lw ,q0

)
.

The main algorithm for the problemMWSR(E, ∅, a,b) is named

DC-Main. It simply prepares the seven arrays p, w , a, b , u , col,

class and the three lists La/p , Lb/p , Lw of E, calls the procedure

DC
(
La/p, Lb/p, Lw , 0

)
, and finally returnsb . The preparation takes

linearithmic time. In the remaining of this subsection, we elabo-

rate on the design of the procedureDC
(
La/p, Lb/p, Lw ,q0

)
for the

problem MWSR(A,A0,a,b). Note that the Combination part is

not needed.

Direct computation: First, the minimum δ of rA
A0
−bA, where

bA denotes the restriction of b on A, is computed along the list

Lb/p with parameter q0 by applying the procedure MinDiff-2. If

δ = 0, then b is a subbase of rA
A0
, and the procedure stops and

returns. Then the length m of Lw , which is
��A<

��, is computed. If

m = 1, then for the unique e ∈ Lw , b (e) is reset to b (e)+δ , and the

procedure stops and returns. Clearly, this part takes linear time.

Division: This part is logically split into two steps. Step 1 es-

sentially computes S , u , and the two minimizers A1 and A2. First,

the two arrays col and u are updated as follows:

• Along the list Lb/p , col (e) is initialized to 0 and u (e) is ini-

tialized to a (e) for each e ∈ A.

• Along the first half of the list Lw (which is chosen as S),

col (e) is reset to 0 and u (e) is set to b (e) for each e ∈ S .

• Along the second half of the list Lw (which is chosen as

A< \ S), col (e) is reset to 2 for each e ∈ A< \ S .

Then, a list Lu/p of A in the decreasing order of u (e) /p (e) is cre-

ated as follows.

• The sublist L̃b/p of Lb/p consisting of the users in S is ex-

tracted from Lb/p . Note that a user e ∈ S if and only if

col (e) = 1.

• The sublist L̃a/p of La/p consisting of the users not in S is

extracted from La/p .

• The two lists L̃b/p and L̃a/p are then merged into the list

Lu/p , as in the classic Merge-Sorting algorithm, in linear

time.

Finally, the length k1 (respectively, k2) of the shortest (respectively,

longest) prefix minimizer A1 (respectively, A2) in Lu/p of rA
A0
−uA

is computed by applying the procedure MinDiff-2
(
Lu/p,q0

)
. If

k1 = 0 and k2 = |A|, then bA is reset to uA, and and the procedure

stops and returns. Clearly, this step takes linear time.

Step 2 of the Division part resets a and b and builds the in-

puts to the two recursive procedure calls:
(
L
a/p
1 , L

b/p
1 , L

w
1 ,q0

)
as-

sociated withA1, and
(
L
a/p
2 ,L

b/p
2 , L

w
2 ,q0 + q2

)
associated withA2

where q2 = p (A2). Note that L
b/p
1 consists of the first k1 elements

in Lu/p , and L
a/p
2 consists of the last |A| − k2 elements in Lu/p .

Thus, by a single scanning of Lu/p , the two lists L
b/p
1 and L

a/p
2 , the

three arrays class , a and b , and the scalar variable q2 can be com-

puted and updated. Then, assisted by the array class , the list L
a/p
1

(respectively, L
b/p
2 ) is extracted from La/p (respectively, Lb/p ), and

the two lists Lw1 and Lw2 are extracted from the list Lw . Clearly, this

step also takes linear time.

Conquer: This part is trivial. It simply makes a call to

DC

(
L
a/p
1 , L

b/p
1 ,L

w
1 ,q0

)

if Lw1 , ∅, a call to

DC

(
L
a/p
2 ,L

b/p
2 , L

w
2 ,q0 + q2

)
,

if Lw2 , ∅, and then returns.

All the problems generated in the recursive computation can be

organized as a rooted binary tree according the parent-child rela-

tions, known as the recurrence tree. The depth of the recurrence

tree is known as the recurrence depth. Since the number of free

users in a child problem is at most half of that of its parent prob-

lem, the recurrence depth isO (logn). As theDirect computation

part and Division part takes linear time, all the problems at the

same level (or depth) have O (n) time complexity since they have

disjoint ground sets. So, the overall running time of the algorithm

DC-Main isO (n logn). In summary, we have the following result.

Theorem 5.3. The algorithm DC-Main produces an optimal so-

lution in linearthmic time.

6 CONCLUSION

For the uplink Gaussian channel with box constraints as well as

some other communication systems, the feasible rate-capacity re-

gion can be represented by a bi-truncated generalized symmetric
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polymatroid. The best-known algorithm for maximizing weighted

sum rate over such rate-capacity region has time complexity

O
(
n5 lnO(1) n

)
. In this paper, we develop a quadratic-time greedy

algorithm and a linearithmic-time divide-and-conquer algorithm.

Underlying the divide-and-conquer algorithm is a refined decom-

posing method for linear optimization over a bi-truncated poly-

matroid. A key ingredient of both algorithms is a linear-time al-

gorithm for minimizing the difference between a generalized sym-

metric rank function and a modular function after a linearithmic-

time ordering.
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