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Abstract—Minimum-Latency Aggregation Scheduling (MLAS)
has been well studied when all the networking nodes are always
active. However, it is well-known that the nodes often switch
between the active state and the sleep state to save energy. A
node in duty-cycled scenarios with active/sleep cycles may require
transmitting multiple times to send the message to all of its
neighbors due to their different active times. MLAS in multihop
wireless networks with Duty-Cycled scenarios (MLASDC) has
also been well-studied under graph-based interference models
such as the protocol interference model. To the best of our
knowledge, no approximation algorithms have been proposed for
MLASDC subject to physical interference. This is the first paper
to develop efficient approximation algorithms for MLASDC
subject to physical interference. The data aggregation schedule
produced by our algorithm proposed in this paper achieves an
approximation ratio at most a constant time of the length of a
scheduling period if the maximum degree Δ of the network is
bounded.

Index Terms—Data aggregation schedule, duty-cycled scenar-
ios, multihop wireless networks, physical interference model.

I. INTRODUCTION

Data aggregation is a primitive and essential communication

task in which a distinguished sink node collects the data

aggregated from all the packets at the nodes other than the sink

node according to some aggregation functions such as logical

and/or, maximum, or minimum. Data aggregation is a vital

technique and widely used in various applications of multihop

wireless ad hoc and sensor networks (WAHSNs). An aggrega-

tion schedule not only specifies a spanning in-arborescence of

the network topology for routing, but also is a link schedule of

all the links in such a spanning in-arborescence [12]. Assume

that all the communications proceed in synchronous time-

slots and each node can transmit at most one packet of a

fixed size in each time-slot. The problem of computing a
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data aggregation schedule with minimum latency in multihop

WAHSNs is referred to as Minimum-Latency Aggregation

Schedule (MLAS) which has been well-studied when the

nodes are always active [1][2][6][12][13].

However, it is well-known that the nodes often switch

between the active state and the sleep state to save en-

ergy. The duty-cycled scenarios have been emerging as a

prevalent energy-saving method in multihop WAHSNs and

actually implemented in many important applications such

as the GreenOrbs WSN projects [4]. A node in duty-cycled

scenarios with active/sleep cycles may require transmitting

multiple times to send the packet to all of its neighbors

due to their different active time. Therefore, all the previous

known scheduling algorithms for MLAS without duty-cycled

scenarios are no longer suitable for duty-cycled multihop

WAHSNs.

With duty-cycled scenarios, we assume that the networking

nodes determine the active/sleep time without coordination

in advance. In this paper, we adopt the following popular

and realistic duty cycle model (as most research papers in

this area do): the whole scheduling time is divided into

multiple scheduling periods of the same length. A scheduling

period T is further divided into fixed |T | time slots, i.e.,

T = {0, 1, · · · , |T | − 1}. Furthermore, every node v ∈ V

randomly and independently chooses exactly one time slot
in T to be active, and wakes up at this time slot in every
scheduling period to receive the message. If a node v needs to
send a message as required, it can wake up at any time slot to
transmit the message as long as the receiver node is awake and
there is no collision for this transmission. MLAS in multihop

Duty-Cycled WAHSNs (referred to as MLASDC) has been

well-studied under the graph-based interference models such

as the protocol interference model [3][7][8][9][10].

The physical interference model offers a more realistic

representation of wireless communication. Under the physical

interference model, a transmission is successful if and only

if the SINR (Signal-to-Interference-plus-Noise-Ratio) at the
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intended receiver exceeds a threshold so that the transmitted

signal can be decoded with an acceptable bit error probability.

Since the SINR ratio depends on which transmissions are

being scheduled concurrently in each time slot, it is impossible

to build a conflict graph under the SINR model. This makes the

analysis of scheduling algorithms under the SINR model much

more challenging than in graph-based interference models. We

assume all the nodes transmit at a fixed uniform power P .

The path loss is then determined by a positive reference loss

parameter η, and the path-loss exponent κ, which is a constant

greater than 2 but less than 6 typically. Specifically, when

a node u transmits a signal at power P , the power of this

signal captured by another node v is ηP ‖uv‖−κ
, where ‖uv‖

denotes the scaled Euclidean distance between u and v so that

the beaconing radius is normalized to one. Let ξ denote the

background noise, σ the threshold of the SINR in order to

correctly interpret the wanted signal.

To the best of our knowledge, this is the first paper that

develops efficient approximation algorithms for MLASDC un-

der the SINR model. The data aggregation schedule produced

by the scheduling algorithm proposed in this paper achieves

approximation ratio at most a constant multiple of |T | if the

maximum degree Δ of the network is bounded.

The remaining of this paper is organized as follows. In Sec-

tion II, we give a literature review for known data aggregation

scheduling algorithms. In Section III, we present sufficient

conditions for a set of transmissions to succeed when they

occur simultaneously under the SINR model. A spanning tree

rooted at the sink node s is constructed in Section IV. A

short data aggregation schedule for MLASDC is developed

in V. Finally, we conclude our paper and discuss some future

research directions in Section VI.

II. RELATED WORKS

MLAS in multihop WAHSNs has been extensively studied

in the literature and most of the known algorithms implicitly

assumed that all the networking nodes are always active

[1][2][6][12][13]. For a multihop wireless network with all

planar nodes having uniform transmission radii equal to one,

its communication topology is a unit-disk graph (UDG). Let

s denote the sink node of the data aggregation, n the number

of nodes, and R the graph radius of the communication

topology with respect to s. Both R and log n are two lower

bounds for any optimal aggregation schedule for MLAS even

when ρ is arbitrary. For ρ = 1, [1] and [6] proposed

respectively two data aggregation schedules of total latency

at most (Δ − 1)R and 23R + Δ − 18, where Δ is the

maximum degree. [2] first studied the single-level aggrega-

tion and proposed an energy-efficient protocol for aggregator

selection (EPAS) protocol. Then, this paper generalized it to

an aggregation hierarchy and extend EPAS to hierarchical

EPAS. The optimal number of aggregators with generalized

compression and power–consumption models was derived, and

distributed algorithms for aggregator selection were proposed

in [2]. For ρ = 1, Wan et al. [12] developed three approxi-

mation algorithms which produced aggregations schedules of

total latency at most 15R + Δ − 4, 2R + Δ + O(logR)

and
(
1 +O

(
logR/ 3

√
R
))

R +Δ, respectively. All of these

known algorithms for MLAS were developed under the proto-

col interference model with the assumptions that all the nodes

are always active.

Under the SINR model with the assumptions that all the

nodes are always active, the best known scheduling algorithms

for MLAS was proposed by Wan et al. in [13]. This paper

developed an approximation algorithm to produce a short data

aggregation schedule for MLAS on multihop WAHSNs.

However, none of the known works described above has

taken the duty-cycled scenarios into consideration. With the

duty-cycled scenarios, MLASDC has been well-studied under

graph-based interference models [3][7][8][9][10]. [10] pro-

posed a data aggregation routing and duty cycle scheduling

heuristics for energy efficiency and communication latency

for MLASDC. [11] developed a mixed integer nonlinear

mathematical formulation of duty cycle scheduling with data-

aggregation routing for MLASDC with adjustable radii of the

nodes. [3] proposed a load-balanced and latency-efficient data

aggregation scheduling for MLASDC. [9] proposed a lifetime

balanced data aggregation scheme (LBA) for duty-cycle sensor

networks. [7] investigated the minimum-lentancy data aggrega-

tion scheduling in multi-channel duty-cycled WSNs. The paper

proposed an efficient data aggregation scheduling algorithm

which exploits the fewest-children-first rule to choose the

forwarding nodes to benefit the link scheduling. [8] proposed

a distributed delay-efficient scheme to solve the MLASDC

problem in duty-cycled WSNs, but all performance analysis of

the data aggregation scheduling algorithm proposed in [8] was

only based on simulation studies. All these known algorithms

for MLASDC were proposed under the protocol interference

model.

III. INDEPENDENT SETS OF NODES AND LINKS UNDER

THE PHYSICAL INTERFERENCE MODEL

In this section, we introduce the independent sets of nodes

and links presented in [13], and the lemmas for the sufficient

conditions of a set of transmissions to succeed when they occur

simultaneously subject to physical interference. These lemmas
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have been proved in [13] and will be used in this paper. Let

R =

(
ηP

σξ

)1/κ

.

Then in the absence of interference, for any pair of distinct

nodes u and v, they can directly communicate with each other

if and only if ‖uv‖ ≤ R. Therefore, R is referred to as the

maximum transmission radius of the network.

Given a real number r > 0. Let R′ be the maximum edge

length of a Euclidean minimum spanning tree of V. That is, R′

is the smallest value of r such that the r-disk graph on V is

connected. In order to ensure the connectivity of the network,

it is required that R′ ≤ R for the SINR model. In this paper,

we assume R′ ≤ (1−ε)R for some very small constant ε > 0.

Let Γ denote the set of all mutual distances of the nodes in

V at least R′ but less than R, i.e.,

Γ = {‖uv‖ : u, v ∈ V and R′ ≤ ‖uv‖ < R} .

Then it is easy to see that

1 ≤ |Γ| ≤ n(n− 1)/2, where n = |V | .

A set I of nodes in V is said to be r-independent under the

physical interference model if

(1) the mutual distances of the nodes in I are greater than

r, and (2) when all the nodes in I transmit simultaneously, the

transmission by each node u ∈ I can be successfully received

by all the nodes within a distance of r from u.

Next we present sufficient conditions for a set of transmis-

sions to succeed when they occur simultaneously. Let

ζ(x) =
∞∑
j=1

1

jx
.

For each r ∈ [R′, R), define

ρ = 1 +

(
σ (16ζ(κ− 1) + 8ζ(κ)− 6)

1− (r/R)κ

)1/κ

. (1)

The following lemma, proved in [13], gives a sufficient

condition for a set of nodes to be r-independent.

Lemma 1: Given an r ∈ [R′, R). A set I of nodes is r-

independent under the physical interference model if their

mutual distances are all greater than ρr, where ρ is defined by

EQ(1).

A set B of links is said to be independent under the physical

interference model if

(1) all the links in B are disjoint, and (2) when all the

transmitting ends of the links in B transmit simultaneously,

the receiving end of each link a ∈ B can successfully receive

the message from the transmitting end of the link a.

The following lemma, also proved in [13], provides a

sufficient condition for a set of links to be independent under

the physical interference model.

Lemma 2: Given an r ∈ [R′, R). Suppose that B is a

set of disjoint links whose lengths are at most r. If all the

receiving ends of the links in B have mutual distances greater

than ρr, the set B of links is independent under the physical

interference model.

IV. A SPANNING TREE FOR ROUTING

Given a real number r > 0. Let Gr be a connected r-disk

graph on V . In this section, we construct a spanning tree Tspan

rooted at the node s ∈ V that will be used for the routing

of data aggregation. Given any node v ∈ V, let A(v) ∈ T

represent its active time slot. For every edge (u, v) of Gr, we

define its latency as follows:

Latency(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(v) + 1, if u = s;

A(v)−A(u),
if u �= s and

A(v)−A(u) > 0;

A(v)−A(u) + |T |, otherwise.
(2)

We consider the latency of each edge as the edge weight

and apply the Dijkstra’s algorithm on Gr to compute the

shortest path tree TSPT rooted at s. Note that total latency

of the shortest paths in TSPT from the node s to the other

nodes is the minimum latency the other nodes can receive the

message from s without collision. Let M denote the maximum

latency of all these shortest paths in TSPT from the node s.The

shortest path tree TSPT cannot be directly used for routing of

data aggregation because of the possible collision among the

transmissions.

Next, we construct the spanning tree Tspan rooted at s that

will be used for routing of data aggregation. We divide the

nodes of V into different layers L0, L1, L2, · · ·, LM based

on the latency of the shortest paths from s to all other nodes.

That is,

• L0 = {s} , and

• for each 0 < i ≤ M, Li is the subset of the nodes in V

such that the latency of the shortest path in TSPT from

s to these nodes is equal to i.

Note that every node v ∈ V can only receive a message at

its active time-slot A(v). Based on EQ(2), the latency of the

shortest path from node s to node v is of the form

k(v) |T |+A(v) + 1,

where k(v) is a non-negative integer depending on v. It is

easy to see that for any integer i ≥ 1, the nodes in the layer
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Li are active at the time-slot j ≡ i− 1 mod |T | .
For each time slot 0 ≤ j ≤ |T | − 1, let Uj denote the set

of all nodes in V that are active in the time-slot j. Let

Uj =
⋃K

k=0
Lk|T |+j+1,

where K is some non-negative integer satisfying K |T |+ j +

1 ≤M.

Clearly, all possible collisions only occur at the nodes that

are active at the current time-slot. For each time slot j ∈ T,

we first construct a maximal independent set (MIS) Ij for the

nodes in Uj to be used in the construction of Tspan. The MIS

Ij is constructed layer by layer in the top-down manner as

follows:

• Initially, Ij = ∅.

• Sort all the nodes in the layer Lj+1 in the increasing

order of their IDs if it is not empty, say Lj+1 =〈
v1, v2, · · ·, v|Lj+1|

〉
, and add the first node v1 to Ij .

• Then add node v2 to Ij if Ij∪{v2} is still an independent

set. Otherwise, skip v2 and then consider v3.

• Repeat the same process for v3 until the last node in Lj+1

is either added to Ij or skipped.

• Then repeat the process for all the nodes in Lk|T |+j+1

with k = 1, 2, · · ·,K until the last node in LK|T |+j+1 is

processed.

Clearly, Ij ⊂ Uj is an independent subset. Note that for

every layer Li with 0 < i ≤M , all nodes in Li are active at

the time-slot j ≡ i−1 mod |T | . Let Iji = Ij∩Li. Based on the

construction of the MIS Ij of Uj , for each layer 0 < i ≤ M

with j ≡ i− 1 mod |T | , every node v ∈ Li�Iji has at least

one neighbor in Ij1 ∪ Ij2 ∪ · · · ∪ Iji.

Now, we construct Tspan by specifying the parent of each

v ∈ V other than the root s. Tspan is also constructed layer

by layer in the top-down manner. In each layer Li with 0 <

i ≤M and j ≡ i− 1 mod |T | , for any v ∈ Li,

• if v ∈ Iji = Ij ∩ Li, its parent in Tspan is the same as

its parent in TSPT .

• if v ∈ Li�Iji, its parent node in Tspan is chosen to be

one of its neighbors in Ij1∪Ij2∪· · ·∪ Iji. If v has more

than one such neighbors, the one in the smallest layer in

TSPT will be chosen to be v′s parent in Tspan.

Clearly, Tspan is a spanning tree over V. It will be used

for routing of data aggregation. Next we introduce the first-fit

distance-d coloring of a finite planar set of nodes in V in the

lexicographic order that was presented in [13].

Let U be a finite subset of V . In the lexicographic order of

U, all nodes in U are sorted from the left to the right with ties

broken by the ordering from the bottom to the top. Suppose

that the sequence < u1, u2, ···, uk > is the lexicographic order

of the nodes in U. The first-fit distance-d coloring of U in this

ordering uses colors represented by positive integers and runs

as follows:

• Assign the color 1 to u1 in the sequence;

• For i = 2 up to k, assign to ui the smallest possible color

not used by any node uj with j < i and ‖uiuj‖ ≤ d.

The following lemma, proved in [13], gives an upper bound

on the number of colors used by the first-fit distance-ρr

coloring of any independent set of Gr in the lexicographic

ordering.

Lemma 3: Let U be any independent set of Gr. Then, the

first-fit distance-ρr coloring of U in the lexicographic ordering

uses at most βρ colors, where

βρ =

⌊
πρ2√
3
+
(π
2
+ 1

)
ρ

⌋
+ 1. (3)

Note that βρ is actually an upper bound of the total number

of points contained in a half-disk of radius ρ with mutual

distances at least one (see [13]).

V. DATA AGGREGATION SCHEDULE WITH DUTY-CYCLED

SCENARIOS

Let s be the sink node of the data aggregation. Given a fixed

r ∈ [R′, R), compute the value of ρ defined in EQ(1). We first

construct the spanning tree Tspan rooted at s on the graph

Gr. The routing of data aggregation is the inward spanning

s-aborescence oriented from Tspan. The transmissions are

scheduled from the children nodes to their parents in Tspan

layer by layer based on the receiving nodes because a node

can only receive the aggregated message when it is active.

Any node in a layer cannot be scheduled to transmit until

it has received all the messages from its children. At each

layer Li with 0 < i ≤ M, the nodes not in Ij will have

the priority to receive the aggregated message because some

nodes in Iji may be the parents of the nodes at the same layer.

Thus, the nodes in layers LM−1, LM−2, · · ·, L0 will receive

the aggregated message sequentially in the decreasing order

of the layer index. Note that only the children nodes of the

nodes in Uj in Tspan will be scheduled to transmit during the

time-slot j.

Now we are ready to describe the first-fit algorithm to

compute a short data aggregation schedule for MLASDC

under the SINR model as follows:

The transmissions are scheduled in the bottom-up manner

and the nodes in layer LM transmit first. At layer LM , the

nodes not in IM transmit first, and then the nodes in IM

transmit. The data aggregation completes when the sink node
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s receives the aggregated message from all other nodes. For

each i =M down to 1, perform the following two operations

at layer Li:

(1) If Li�Iji �= ∅, let Pi = Parent(Li�Iji). Then all

the nodes in Pi are independent based on the construction of

Tspan. We partition Pi into φ subsets P ′i , P
′′
i , · · ·, P (φ)

i such

that for each 1 ≤ t ≤ φ, every node in P
(t)
i has at most one

child. For each 1 ≤ t ≤ φ, compute a first-fit distance-ρr

coloring of P
(t)
i in the lexicographic order. Assume P

(t)
i is

partitioned into m r-independent sets I ′1, I
′
2, · · ·, I ′m under the

SINR model for some m > 0. For each of the r-independent

sets I ′c with 1 ≤ c ≤ m, the child node of a node in I ′c is

scheduled to transmit at the j-th time-slot if such a child node

exists. Since each node in Tspan except for s has at least one

parent node, we have φ ≤ Δ − 1, where Δ is the maximum

degree of Gr.

(2) If Iji = Ij ∩ Li �= ∅, since Iji is independent, we

partition the set Iji into φ subsets I ′ji, I
′′
ji, · · ·, I(φ)ji such that

for each 1 ≤ t ≤ φ, the parent nodes of the nodes in I
(t)
ji are

pairwise distinct. Then for each 1 ≤ t ≤ φ, compute a first-fit

distance-ρr coloring of I
(t)
ji in the lexicographic order. Assume

I
(t)
ji is partitioned into x r-independent sets I ′′1 , I

′′
2 , · · ·, I ′′x

under the SINR model for some x > 0. For each of the r-

independent sets I ′′c with 1 ≤ c ≤ x, the nodes in I ′′c are

scheduled to transmit at the j-th time-slot. Similarly, we have

φ ≤ Δ− 1.

Finally, for each r ∈ Γ, we compute a data aggregation

schedule using the algorithm above. We choose the one with

minimum latency among all these data aggregation schedules

as Γ is a finite set with |Γ| ≤ n(n− 1)/2.

The next theorem asserts the correctness of the above

algorithm and establishes an upper bound on the latency of

the data aggregation schedule produced by this algorithm.

Theorem 4: The scheduling algorithm described above is

correct and outputs a collision-free data aggregation schedule.

The total latency of the data aggregation schedule output by

this algorithm is at most 2βρ |T | (Δ − 1)M. The scheduling

algorithm achieves approximation ratio at most 2βρ |T | (Δ −
1).

Proof: First we prove the correctness of the algorithm. It

is sufficient to prove that for each layer i from M down to

1, all the nodes in the layer Li have successfully completed

their transmissions.

(1) At the bottom-most layer LM , let jM ≡ M − 1 mod

|T | . Note that all the node in LM are active in the time-

slot jM . Based on the above scheduling algorithm for data

aggregation, we consider the following two steps for the nodes

in the bottom layer LM :

(a) If LM�IjM ,M �= ∅, let PM = Parent(LM�IjM ,M ).

Then all the parent nodes in PM are independent based on the

construction of the tree Tspan. We partition the set PM into

φ subsets P ′M , P ′′M , · · ·, P (φ)
M such that for each 1 ≤ t ≤ φ,

every parent node in P
(t)
M has at most one child. For each

1 ≤ t ≤ φ, compute a first-fit distance-ρr coloring of P
(t)
M in

the lexicographic order. Assume P
(t)
M is partitioned into m r-

independent sets I ′1, I
′
2, · · ·, I ′m under the physical interference

model for some integer m > 0. For each of the r-independent

sets I ′c with 1 ≤ c ≤ m, the child node of every node in I ′c is

scheduled to transmit at the j-th time-slot of a scheduling

period if such a child node exists. By Lemma 2, all the

scheduled transmissions are successful. By Lemma 3, m ≤ βρ.

(b) If IjM ,M �= ∅, we partition the set IjM ,M into φ subsets

I ′jM ,M , I ′′jM ,M , · · ·, I(φ)jM ,M such that for each 1 ≤ t ≤ φ, the

parent nodes of the nodes in I
(t)
jM ,M are pairwise distinct. Then

for each 1 ≤ t ≤ φ, compute a first-fit distance-ρr coloring of

I
(t)
jM ,M in the lexicographic order. Assume I

(t)
jM ,M is partitioned

into x r-independent sets I ′′1 , I
′′
2 , · · ·, I ′′x under the physical

interference model for some integer x > 0. For each of the

r-independent sets I ′′c with 1 ≤ c ≤ x, the nodes in I ′′c are

scheduled to transmit at the j-th time-slot. Similarly, all the

scheduled transmissions are successful and x ≤ βρ.

Therefore, at this point, all nodes in layer LM have com-

pleted their transmissions and all nodes in layer LM−1 are

ready to transmit.

(2) For each layer i = M − 1 down to 1, we perform the

following two steps for the nodes in the layer Li

(a) If Li�Iji �= ∅, let Pi = Parent(Li�Iji). We partition

the set Pi into φ subsets P ′i , P
′′
i , · · ·, P (φ)

i such that for each

1 ≤ t ≤ φ, every parent node in P
(t)
i has at most one child.

For each 1 ≤ t ≤ φ, compute a first-fit distance-ρr coloring

of P
(t)
i in the lexicographic order. Assume P

(t)
i is partitioned

into m r-independent sets I ′1, I
′
2, · · ·, I ′m under the physical

interference model for some integer m > 0. For each of the

r-independent sets I ′c with 1 ≤ c ≤ m, the child node of

every node in I ′c is scheduled to transmit at the j-th time-slot

if such a child node exists. By Lemma 2, all the scheduled

transmissions are successful. By Lemma 3, m ≤ βρ.

(b) If Iji �= ∅, we partition the set Iji into φ subsets

I ′ji, I
′′
ji, · · ·, I(φ)ji such that for each 1 ≤ t ≤ φ, the parent

nodes of the nodes in I
(t)
ji are pairwise distinct. Then for each

1 ≤ t ≤ φ, compute a first-fit distance-ρr coloring of I
(t)
ji in

the lexicographic order. Assume I
(t)
ji is partitioned into x r-

independent sets I ′′1 , I
′′
2 , · · ·, I ′′x under the physical interference

model for some integer x > 0. For each of the r-independent

sets I ′′c with 1 ≤ c ≤ x, the nodes in I ′′c are scheduled

to transmit at the j-th time-slot. Similarly, all the scheduled
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transmissions are successful and x ≤ βρ.

Therefore, at this point, all nodes in layer Li have completed

their transmissions and all nodes in layer Li−1 are ready to

transmit.

Upon completion of the step (2) for each layer i =M − 1

down to 1, all nodes in the layers LM , LM−1, · · ·, L1 have

completed their transmissions. Thus, the sink node s can

successfully receive the aggregated message from all other

nodes.

Next we establish an upper bound on the latency of the

data aggregation schedule output by this algorithm. For every

layer i from M down to 1, it takes at most 2(Δ − 1)βρ

scheduling periods for all nodes in the layer Li to complete

their transmissions. Therefore, the total latency of the entire

data aggregation is at most 2βρ |T | (Δ− 1)M.

Since M is a trivial lower bound for MLASDC, the approx-

imation ratio of the data aggregation schedule algorithm is at

most 2βρ(Δ− 1) |T | .
This completes the proof of the theorem.

Therefore, when the length |T | of the scheduling period T is

a constant and the maximum degree Δ is bounded, the above

data aggregation scheduling algorithm for MLASDC achieves

constant approximation ratio.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we developed an efficient approximation

solution for MLASDC subject to physical interference that

achieved approximation ratio at most a constant time of |T |
when the maximum degree Δ of the network is bounded.

This is the first work that developed efficient approximation

algorithm for MLASDC in multihop WAHSNs subject to

physical interference. Since the SINR ratio depends on which

transmissions are being scheduled concurrently in each time

slot, it is impossible to build a conflict graph under the physical

interference model. This makes the analysis of scheduling

algorithms under the SINR model much more challenging than

in graph-based interference models such as the protocol inter-

ference model. The data aggregation schedule we developed

in this paper are built upon a general technique which enables

a unified graph theoretic treatment of the communication

scheduling subject to the physical interference constraint.

As for future research directions in this area, the approach

we proposed in this paper may be used to develop efficient

approximation algorithms for minimum-latency data gathering

schedule, data gossiping schedule and other primitive commu-

nication tasks in duty-cycled multihop WAHSNs subject to the

physical inference constraint.
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