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Motion-Fi +: Recognizing and Counting
Repetitive Motions with Wireless Backscattering

Ning Xiao, Panlong Yang, Yubo Yan, Hao Zhou, Xiang-Yang Li, Haohua Du

Abstract—Driven by a wide range of real-world applications, several ground-breaking RF-based motion-recognition systems were
proposed to detect and/or recognize macro/micro human movements. These systems often suffer from various interferences caused by
multiple-users moving simultaneously, resulting in extremely low recognition accuracy. Even if the repetitive motions are fairly well
detectable through the wireless signals in theory, in reality they get blended into various other system noises during the motion.
Moreover, irregular motion patterns among users will lead to expensive computation cost for motion recognition. To tackle these
challenges, we propose a novel wireless sensing system, called Motion-Fi +, which marries battery-free wireless backscattering and
device-free sensing in one clean sheet. Motion-Fi + is an accurate, interference tolerable motion-recognition system, which counts
repetitive motions without using scenario-dependent templates or profiles and enables multi-user performing certain motions
simultaneously because of the relatively short transmission range of backscattered signals and dedicated signal separation method.
We implement a backscattering wireless platform to validate our design in various scenarios for over 6 months when different persons,
distances and orientations are incorporated. In our experiments, the periodicity in motions could be recognized without any learning or
training process, and the accuracy of counting such motions can be achieved within 5 % count error. With little efforts in learning the
patterns, our method could achieve 95.2 % motion-recognition accuracy for a variety of 7 typical motions. Moreover, by leveraging the
periodicity of motions, the recognition accuracy could be further improved to nearly 100 % with only 3 repetitions. Our experiments also
show that the motions of multiple persons separating by around 2 meters cause little accuracy reduction in the counting process.

Index Terms—Wireless Sensing, Wireless Backscattering
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Fig. 1: Working Scenario of Motion-Fi +. TX node serves as an
infrastructure, each Tag-RX pair corresponding to one person.

1 INTRODUCTION

1.1 Backgrounds and Motivation

Human Activity Recognition (HAR) plays an important
role in a wide range of real-world applications, such as
smart home, health care and fitness tracking. Traditionally,
smart mobile devices, including phones, watches, and other
wearables, are widely used to recognize human activities.
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However, device-based approaches have many limitations
due to the extra burden and discomfort brought to those
who wear devices. To address this challenge, significant
efforts are recently made to explore device-free human
activity recognition techniques that utilize the information
collected by various wireless infrastructures without the
need for the monitored subject to carry a dedicated de-
vice. Another inspiring technology advances is battery-free
networking, which is built upon wireless backscattering
system. In that, the backscattering signals can be leveraged
for communication without any active transmitter equipped
with radio frequency front-end [1].

In summary, device-free interaction techniques utilize
the signals collected from the infrastructures and battery-
free networking could effectively use the surrounding RF
energy and signals from infrastructures as well. In the fol-
lowing paragraphs, we will introduce this two technologies
before present our motivation.

Device-free Interaction: Emerging technologies in the
wireless network have brought device-free interactions into
reality. Due to the plausible features such as non-invasive
installment [1]–[4], and ubiquitous deployment [5], [6], wire-
less signals are applied as sensors for human-computer
interactions (HCI), behavior identification and movement
measurements et al.. Although these applications and sys-
tems have achieved considerably high success, there are still
some intrinsical limitations and deficiencies to conquer. On
one hand, most of the existing systems are based on WiFi or
RFID signals. These signals would be interfered by nearby
wireless devices working in a similar spectrum, and suffer
from the multi-path and fading effects as a consequence
of surrounding layouts [7]–[9], which could be categorized
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TABLE 1: 7 Motion Types.

No. Motion Abbr.
1 Squats SQ
2 Push-ups PU
3 Sit-ups SU
4 Leg-raise LR
5 Step ST
6 Stoop-down SD
7 Dumbbell DB

1 2 3 4 5 76

Fig. 2: Seven Regular Motions.
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Fig. 3: Frequency Shift.
as inter-system interference. On the other hand, with the
increased number of Internet of Things (IoT) devices, dense
deployment would result in severe interference among wire-
less devices, which could be categorized as intra-system
interference [10]. Reducing the negative effect of inter-system
and intra-system interferences is one of the grand challenges
in these RF-based motion sensing/detection/recognition
systems.

Battery-free Networking: Fortunately, battery-free net-
working has recently become prevalent under the persua-
sive need for large-scale and long-term IoT applications.
With the advances of wireless technology, energy harvesting
and backscatter communication have become two prevalent
and major schemes for battery-free networking system. For
energy harvesting, it relies on the transmission power and
decaying law of propagation, which would be subjected
to the limited charging distance and low energy transfer
efficiency. Inspiringly, Passive-WiFi [1] is proposed, serving
as an infrastructure-based powering system, which provides
carrier with WiFi-like infrastructure and a high-frequency
circuit to backscatter the modulated messages. This innova-
tive design brings two foremost merits. First, the wireless
APs can serve as a charging infrastructure to provide perva-
sive energy sources for devices. This vision is inspiring since
the AP deployment is pervasive and available in everyday
life. Second, the modulated signal at the backscatter device
could be transmitted at a rate up to 20 Mbps due to the
high-frequency circuit design. This is impressive, since RF
transmission is the major source of energy consumption in
such battery-free systems1.

Motivation - Marrying Device-free Interaction with
Battery-free Networking: Our motivation is to design a
device-free interaction system with batter-free networking
devices, because if this vision could be brought into reality,
it would bring in the following irresistible advantages:

• In Spatio Domain, the working range of backscattering
signals is relatively short, which reduces the intra-
system interference significantly. This enables our
system to support parallel motion recognition for
multiple persons.

• In Spectrum Domain, our system design introduces
a controllable frequency shift (i.e., two mirror shifts
in our current design) in the backscattered signal.
By carefully selecting the frequency-shift, our system

1. Maintaining frequency oscillator accuracy and ADC installation
will cost most of the energy budget. High-speed backscattering scheme
borrows the RF carrier from the infrastructure and achieve WiFi
standard transmission by changing the resistance in circuit at nearly
20MHz.

can avoid the inter-system spectrum occupancy, thus
reducing the interferences.

• In Deployment Domain, our tags can be widely de-
ployed just based on few signal sources. Moreover,
the tags are cheap and small enough while consume
little energy.

In realizing this vision, we propose Motion-Fi +, a repet-
itive motion recognition system leveraging passive wireless
backscattering paradigm. Here, we focus on two features
of repetitive motions: periodicity (counting) and type (clas-
sification). As depicted in Fig. 1, it uses passive wireless
backscattering devices and leverages wireless AP as their
powering infrastructure [1]. We define 7 regular motions
with abbreviations shown in Table 1 and the sketch of each
motion is shown in Fig. 2. Compared with other battery-
free systems such as RFID [11], it could be more pervasive
due to the prevalent deployment of wireless APs. Moreover,
backscatter signals could be emitted by utilizing ambient
wireless signals, which differs from previous radar-like sys-
tem [2], [3]. Compared with our previous work Motion-
Fi [12], we have carried out more detailed processing on
the feature extraction, added signal separation algorithm to
facilitate the multi-user scenes and designed a much smaller
backscatter tag to facilitate wider deployment.

1.2 Challenges and Contributions
Challenges: Two challenges need to be formally addressed
before realizing the aforementioned inspiring design vision
with those favorable merits.

• There exist irregular and user/environment-
dependent motion patterns, which naturally lead
to incorrect motion recognition among different
users/environments. The effect of motion on the
received signal varies in environment (i.e., interior
furnishings), gender (differences on repetitive
motion frequency and amplitude) and body
characteristics (differences on height and weight).
Even when a person performs the same motion at
different time, the motion’s speed, direction, and
angle may vary a lot. Previous motion recognition
solutions base on building profiles as template are
invalid due to this ambiguity and diversity.

• Backscattering signals are weak but highly dynamic,
especially when motions are incorporated. In multi-
user scenes, there are still weakly mutual interfer-
ences between/among different user’s motion sig-
nals, which will weaken the motion signal character-
istics of each other, thus increasing the difficulty of
recognition.
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To tackle aforementioned challenges, we demonstrate a
prototype system, Motion-Fi +, recognizing repetitive hu-
man motion frequency with passive wireless backscattering
devices. Motion-Fi + supports multi-user motion counting
in various scenes and single-user motion recognition in a
given environment. Compared with traditional WiFi-based
gesture recognition systems, it supports motion recogni-
tion/counting in typical indoor scenarios without suffering
from surrounding interference. Furthermore, we design a
passive backscatter platform to validate our design.

In summary, our contribution is three-folds:

• In our design, we first filter out the noise and observe
the motion information through the base-band car-
rier. Intrinsic properties of human motions are fully
explored and we propose a self-adaptive matching
scheme, where optimal patterns could be recognized
automaticly for motion counting. Different from pre-
vious studies, our system works well even when
motion patterns are not known in priori (tackling the
first challenge).

• Through in-depth observation of the received sig-
nals, we found the mixing law of motion signals in
multi-user scenes. We formalize the model of mix-
ing signal and use Independent Component Anal-
ysis (ICA) based technique to separate the original
motion signal, which enables our system to sup-
port parallel motion recognition for multiple persons
(tackling the second challenge).

• Our extensive long-term experimental evaluation
shows that our platform can effectively count the
repetitive motions with an error rate less than 5%,
across 26 different users, 7 motions, 4 orientations,
and 5 distances for more than 6 months. Moreover,
with just a little training effort via customized cubic-
SVM, our system can accurately recognize different
motion types with 95.2% recognition rate for 7 reg-
ular motions. Specifically, for periodical motions, the
recognition rate could be further improved to nearly
100% after only 3 repetitions of the same motion.

The rest of this paper is organized as follows. Sec. 2
provides preliminary knowledge and presents the intrinsic
principle on backscattering signal. Then, we introduce our
system design and approaches in Sec. 3, and present the
implementation details in Sec. 4. In Sec. 4, we also evaluate
and validate our system with extensive experiments and
analysis. Finally, we review the related work in Sec. 5 and
conclude the paper in Sec. 6.

2 PRELIMINARIES AND SYSTEM MODEL

2.1 Preliminaries on Backscattering Signal

In our backscattering system, we have one transmitter (TX),
one backscatter Tag, and multiple receivers (RX).

Transmitter Side: It provides a single-frequency tone
as the plug-in device in passive WiFi design, and serves
as a charging infrastructure. This vision is inspiring and
impressive since passive WiFi deployment is considered to
be pervasive in IoT industry. The tone signal can be simply
represented as sin(2πfct).

Backscatter Tag: The backscatter tag is composed of an
antenna and a micro-controller, which controls the SPDT RF
switch network to generate backscatter signals. By changing
the impedance of the antenna, the tag can switch its states
between reflecting and non-reflecting. The scattered power
of a passive tag is

Ptag =
PtxGtx∆Γ

4πd2
,

where Ptx and Gtx is the transmission power and antenna
gain of transmitter respectively, d is the distance between
WiFi AP and the tag, and ∆Γ is the differential Radar Cross
Section (RCS) [2], [3] given by

∆Γ =
λ2

4π
G2
tag |Γ1 − Γ2| ,

where λ is the wavelength of carrier, Gtag is the antenna
gain of tag and Γ1,2 are the complex power wave reflec-
tion coefficients according to two different load impedances
Zc1,2 [13]:

Γ1,2 =
Zc1,2 − Z∗a
Zc1,2 + Za

,

where Za = Ra + jXa is the complex antenna impedance,
and Zc1,2 = Rc1,2 + jXc1,2 is the complex tag circuit
impedance.

Frequency Shift (Modulation in the Air): Sideband-
backscatter modulation [1], [14] could shift the carrier by
a certain frequency. By modulating the RCS of an antenna
effectively multiplies the incoming signal by the modulated
signal. Thus, modulating the antenna at a frequency ∆f

would create a frequency shift in the incoming signal.
Let a square wave at a frequency of ∆f , which is

generated by the micro-controller and used to control the
impedance of the antenna. According to Fourier analysis,
the first harmonic of a square wave is a sinusoid signal.
Thus, we can simplify the process of square wave switch-
ing to sinusoid sin(2π∆f t). Consequently, the process of
backscattering can be represented by the product of the
aforementioned two sinusoidal signals (we named it modu-
lation in the air), which is given by

2 sin(2πfct) sin(2π∆f t) =

cos(2π(fc −∆f )t)− cos(2π(fc + ∆f )t).

The frequency shifts of generated narrow band signals are
fc −∆f (with a negative shift) and fc + ∆f (with a positive
shift). Fig. 3 illustrates the frequency shift. The power con-
sumption of our backscatter tag is near zero (several µW )
[1].

Receiver Side: A receiver node tunes its center frequency
to one of the shifted signal, which is fc − ∆f in our
configuration. As described above, the received signal is
generated by modulating the tone signal of transmitter and
the sinusoid signal of backscatter tag in the air.

2.2 Signal Reflection Path

To study the signal path of our proposed system, we
show the basic reflection model of motion recognition with
backscatter signal in Fig. 4a. The TX node serves as a
powering infrastructure, which sends a sinusoidal tone at a
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Fig. 4: Principle on Backscattering based Motion Recognition. (a) depicts the signal reflection path of our backscattering based
system. (b) and (c) show the motion model of single point and person respectively. (d) is the sketch of periodical motions.

frequency of fc [1]. The Tag node is a backscattering device,
which switches the impedance of its antenna to reflect or
absorb the tone signal. Noted that, in addition to reflect
the tone signal transmitted by TX, there are two generated
signals with frequency fc−∆f and fc+∆f . A person noted
as P performs movements next to Tag. A receiver noted as
RX tunes its center frequency to fc − ∆f to capture the
generated signal. The sinusoid tone transmitted by TX can
directly traverse to RX, P and Tag, with path h1, h2 and
h3 respectively. Then, P reflects the signal to RX and Tag
with path h7 and h4 respectively. Tag reflects the sinusoidal
signal at frequency fc to RX with path h9.

Meanwhile, the generated signals traverse from Tag to
P and RX with path h5 and h8. Then, P reflects it to RX
with path h6. As depicted in Fig. 4a, the traverse of original
signal at the frequency fc is plotted in solid black lines, and
the traverse of the shifted signal at the frequency fc − ∆f

is plotted in dashed red lines. Since ‘RX’ receives signals at
the frequency fc −∆f , we mainly study the signals plotted
in dashed red lines.

2.3 Periodicity in Backscattering Signals

Since the channel is stable over a short period of time [15]–
[17], it is believed that the changes of signal are mainly
caused by human motion. As shown in Fig. 4a, we classify
a path as a dynamic one if the generated signal is affected
by the person’s motion when traversing across the path, i.e.,
h5 and h6. Similarly, if the generated signal is not affected
by the person’s motion including both line-of-sight paths as
well as the paths reflected from static objects, the path it
traverses across is classified as a static one, i.e., h8. Here we
believe that the signals after the human body (i.e., h2 & h4.)
is very weak compared to the signal that does not pass the
human body (i.e., h3.) .

Let the received energy by RX is Prx. Then, we can treat
Prx as the sum of Pstatic and Pdynamic [4], that is:

Prx(f, t) = Pstatic(f) + Pdynamic(f, t), (1)

where Pstatic is the energy of signals received from static
paths, and Pdynamic denotes the reflected signal from hu-
man motion. According to the previous descriptions, we
regard signals from path h8 as static and signal from path
h5, h6 as dynamic.

We can find that the dynamic signals is entirely gen-
erated by the movement of the human body. Further, we

analyze the impact of human motion on the dynamic part
of recieved signal.

2.3.1 Model of single point

The simplest reflection model is one point, because there
exists only one reflected path. If we consider the influence
of both amplitude and phase, we can represent the dynamic
singal reflected by the point use a(f, t)e

−j2πd(t)
λ , where

a(f, t) is the complex representation of amplitude and initial
phase offset of the dynamic path (Tag→ object), d(t) denote
the distance between the object and receiver at time t, and
e
−j2πd(t)

λ is the phase shift along the dynamic path (object
→ RX) length d(t). As shown in Fig. 4b, the points named
P1, P2, P3, ..., Pn are the positions of the observation point
at different sampling times, i.e., t1, t2, t3, ..., tn. The signal
from Tag to point Pi and then reflected to RX is what we
concerned as dynamic path.

As previously mentioned, we can get

Pdynamic(f, ti) = a(f, ti)e
−j2πd(ti)

λ , i = 1, 2, 3, ..., n. (2)

When we consider the periodic movement, the point will
move from P1 to Pn and then back to P1, as the forward
path and reverse path depicted in Fig. 4b. Although the
round-trip path can not be perfectly coincident, we can see
the approximate symmetrical signal changes, which will be
validated in our experimental validation.

Moreover, if we denote

P kdynamic(f, t
k
i) = ak(f, tki)e

−j2πdk(tki)

λ (3)

as the dynamic signal of k − th round-trip for a point
periodic movement, we can further see cyclical changes in
the signal due to the periodicity. Since the experience time
of each cycle may be different, which will be shown on
the received signal by stretching or compressing the signal
pattern along the time axis, and we will describe how to
solve this problem in the algorithm section.

2.3.2 Model of a person’s motion

As shown in Fig. 4c, for a person’s movement, we can divide
a person’s body into massive infinitesimal segments, each of
these segments can be treat as a point as described above.
That is, we can get the dynamic signal by
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(a) Three persons perform the same action. (b) One person perform three motions. (c) Signal strength under different distances.

Fig. 5: Basic experimental observation. (a) shows the diversities in persons, (b) depicts the differences in motions and (c) shows
the received signal strength under different distances.

Pdynamic(f, ti) =
∑

segmentj∈Body

aj(f, ti)e
−j2πdj(ti)

λ ,

i= 1, 2, 3, ..., n.

(4)

Since the motion of each segment can be considered to be
periodic, the sum function of the periodic function also has
a periodic signal that can be used to obtain periodic motion
of the human body.

We demonstrate this principle in Fig. 4d. So, if we
perform periodical motions, the signal of Pdynamic(f, t)
also changes periodically, thus the energy of Prx(f, t) is
periodical.

2.3.3 Experimental Validation

To examine the effect of person’s motion in received signal,
we first observe the received signal when one person per-
forms different motions, different persons perform the same
motions and one person perform the same action at different
distances, the result of which are shown in Fig. 5.

Form Fig. 5a, we can see the basic periodicity in the time
series and for each fragment we can also see the symmetry
when different persons perform the same motion (SQ),
which is consistent with what we described in Sec. 2.3.1
& 2.3.2. Besides, we can find the difference (i.e., different
waveforms, different cycle times and different amplitude
changes) among these signals, because there exist different
habits when different people perform the same action, such
as the speed of motion, the degree of leg bending and body
differences (i.e., height and weight).

Fig. 5b shows the result when one person performs 3
kinds of motions (SQ, PU and SU), from which we can also
see the periodicity and symmetry. However, the waveforms
of them vary a lot since different motions have distinctly
different patterns, which can be used to distinguish different
motions.

Fig. 5c depicts the distance2 effect when one person
perform squats (SQ) at 3 distances (20cm, 60cm and 100cm).
Since the signal is attenuated square inversely with the
increase in distance, we can see the dynamic part of received
signal decay quickly. Therefore, the motion signals of multi-
ple people have little influence on each other as long as they

2. As shown in Fig. 1, ’distance’ here indicates the distance from the
person to the Tag-RX pair.

are separated by a certain distance. This enables our system
to support multiple persons perform simultaneously.

3 SYSTEM DESIGN

3.1 Design Overview
Our Motion-Fi + design can recognize/count repetitive mo-
tions regardless of the motion, even when multiple users
are performing movements at the same time. The system
overview of Motion-Fi + is illustrated in Fig. 6. There are
mainly four modules in Motion-Fi +, which are Smoothing
Filter, Adaptive Counter, SVM Classifiers and Signal Separation
Module. When the frequency shifted backscattering signal
is received, the energy of signal is computed according
to Sec. 3.2. Then, an LPF filter is applied to the received
signal to smooth the amplitude. The adaptive counting
module is used to count the repetitive motions without
using scenario-dependent templates or profiles. After that,
an enhanced SVM classifier is used to recognize the motions.
Finally, Motion-Fi + outputs the counting number and type
of motions. For multi-user scenes, we use signal separation
method to separate the mixed signals.

3.2 Preprocessing of the Signal
As is known, I(t) and Q(t) are orthogonal signals in wire-
less communications. They can be represented as

I(t) = A(t)A0cos(2πft) +NI(t),

Q(t) = A(t)A0sin(2πft) +NQ(t),
(5)

where A0 and f are the amplitude and frequency of the
sinusoidal signal. N(t) is the white noise. A(t) denotes the
influence coefficient3 of motions, which is equal to 1 when
there are no motions.

Then the energy of received signal is E(t) =√
(I(t)2 +Q(t)2), and replace I(t) and Q(t) with

Eq. (5). After that, E(t) could be represented as
E(t) = A(t)A0 +N ′(t), where N ′(t) is a term relevant to
the white noise. Compared with human movements, N ′(t)
can be treated as high frequency noise, which could be
filtered out with LPF (Low Pass Filter). After applying LPF
to E(t), we have:

E′(t) = A(t)A0. (6)

3. In our system, the effect of human motions on signals is reflected
in the change of signal amplitude, which is equivalent to multiplying a
coefficient in the original amplitude.
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Fig. 6: System Overview. The received signal is first processed in a smooth filtering module, then it will be sent to our adaptive
counting module and SVM classifiers module, finally output the motion type and counting result.

Finally, the filtered signal could reflect human move-
ments approximately, since A0 is constant in this scenario.

3.3 Adaptive Counting

3.3.1 Motion Segmentation

We formulate an optimization problem that jointly recovers
the morphology of the motions and the segmentation [5]. We
adjust the algorithm to fit different motions, whose cyclical
features are weaker than those of heart beats. The intuition
underlying this optimization is that successive human mo-
tions should have similar morphology. Since each motion
lasts different time duration, we can define the similarity of
the two motions by stretching or compressing the motion
signal to an equal length. So the goal of the algorithm
is to find an optimized segmentation which makes the
difference between each segmentation as small as possible,
while accounting for the fact that we do not know a priori
the shape of a motion.

Let ~x = (x1, x2, ..., xn) denote a sequence of length n.
A segmentation S = {~s1, ~s2, ...} of ~x is a partition that
divides ~x into non-overlapping continuous subsequences
(segments), where each segment ~si consists of |~si| points
and |~x| =

∑
~si∈S |~si|.

In order to identify each motion cycle, our idea is to
find a segmentation with segments most similar to each
other, i.e., to minimize the variation across segments. Since
statistical distance is only defined for scalars or vectors with
the same dimension, we extend the definition of distance for
vectors with different lengths as follows:

Definition 1. The distance between vectors ~a1 and ~a2 is:

Dist( ~a1, ~a2) = dtw( ~a1, ~a2),

where dtw( ~a1, ~a2) is dynamic time warping function to
measure the similarity between two temporal sequences. It
stretches two vectors, ~a1 and ~a2, onto a common length
L (max(| ~a1|, | ~a2|) ≤ L ≤ | ~a1|+ | ~a2|), making the sum of
the Euclidean distances between corresponding points the
smallest. To stretch the inputs, dtw will repeat each element
of ~a1 and ~a2 as many times as necessary.

Following that, we define the distance between segmen-
tation S and motion template ξ4:

4. ξ is a vector represents the central tendency of all the segments,
i.e., a template for the motion shape (or morphology). We denote m=|ξ|
in the following content.

Definition 2. The distance between segments S = {~s1, ~s2, ...}
and a template ξ is:

Dist(S, ξ) =
∑
~si∈S

Dist(~si, ξ) =
∑
~si∈S

dtw(~si, ξ).

The goal of our algorithm is to find the optimal segmen-
tation S∗ and template ξ∗ that minimizes Dist(S, ξ). Since
both segmentation S and template ξ are unknown for us, we
can rewrite it as the following joint optimization problem:

(S∗, ξ∗) = arg min
S,ξ

Dist(S, ξ)

= arg min
S,ξ

∑
~si∈S

dtw(~si, ξ),

s.t. : tmin ≤
|~si|
C
≤ tmax, ~si ∈ S,

where tmin and tmax are constraints on the length of each
motion cycle5, and C denotes the sample rate. It tries to find
the optimal segmentation S and template (i.e., morphology)
ξ that minimize the sum of the distance between segments
and template. This optimization problem is difficult as it in-
volves both combinatorial optimization over S and numer-
ical optimization over ξ. Exhaustive search of all possible
segmentations will lead to exponential complexity.

3.3.2 Iterative Segmentation

Instead of estimating the segmentation S and the template
ξ simultaneously, our algorithm alternates between updat-
ing the segmentation and template. During each iteration,
our algorithm updates the segmentation given the current
template, then updates the template given the new segmen-
tation. For each of these two sub-problems, our algorithm
can obtain the global optimal with linear time complexity.

Update Segmentation: In the i-th iteration, segmenta-
tion Si+1 is updated given template ξi as

Si+1 = arg min
S
Dist(S, ξi). (7)

Though the number of possible segmentations grows
exponentially with the length of x, the above optimiza-
tion problem can be solved efficiently using dynamic pro-
gramming [18]. The recursive relationship for the dynamic
program is as follows: if Dl denotes the minimal cost6 of

5. tmin and tmax capture the fact that human motion cannot be too
short or too long.

6. The minimal cost of sequence ~x1:l is the minimum of Dist(S, ξ) in
this sequence.
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algorithm 1 Motion Segmentation

Input: sequence ~x, time constraint %= {tmin,tmax}
Output: segments S, template ξ

1: initialize ξ0 as zero vector ;
2: m← 1

2 ∗ (tmax + tmin) ∗ C ;
3: i← 0 ; //number of iterations
4: Similarity ← Inf ;
5: while (Similarity ≥ Threshold) do
6: Si+1 ← UpdateSegmentation(~x, ξi) ;
7: ξi+1 ← UpdateTemplate(~x,Si) ;
8: i← i+ 1 ;
9: Similarity ← Dist(ξi+1, ξi) ;

10: end while
11: return Si and ξi

12:
13: function UPDATESEGMENTATION(~x, ξ)
14: S0 ← ∅ ;
15: D0 ← 0 ;
16: for t = 1→ length(~x) do
17: τ∗ ← argminτ∈τt,%{Dτ +Dist(xτ+1:t, ξ)} ;
18: Dt ← Dτ∗ +Dist(~xτ+1:t, ξ) ;
19: St ← Sτ∗ ∪ {~xτ∗+1:t} ;
20: end for
21: return Sn
22: end function
23:
24: function UPDATETEMPLATE(~x,S)
25: n← length(~x) ;
26: ξ ← 1

n

∑
~si∈S |~si|ω(~si,m) ;

27: end function

segmenting sequence ~x1:l, then we have

Dl = min
τ∈τl,%

{Dτ +Dist(~xτ+1:l, ξ)}, (8)

where % = {tmin, tmax} and l−C ∗ tmax ≤ τl,% ≤ l−C ∗ tmin
specifies possible choices of τ considering the segment
length. According to Eq. (8), the time complexity of the
dynamic programing is O(C(tmax − tmin)n) and the global
optimum could be guaranteed.

Update template: In the i-th iteration, template ξi+1 is
updated given segmentation Si as

ξi+1 = arg min
ξ

∑
~sj∈Si

Dist(~sj , ξ). (9)

Obviously, the above optimization is a weighted least
squares problem and it is impossible to meet the above
optimization goals ξi+1 by using brute-force search. Here
we present an analogy method to get a feasible solution.

Consider another similar problem: given an array ~a, find
a number x such that the sum of the distance between x
and each element in array ~a is minimized. If y denotes
the sum of distance, we can get the expression as follows
easily: y =

∑|~a|
i=1(a[i]− x)2 = |~a|x2 − 2C1x+ C2, whereC1

and C2 are two constants, C1 =
∑|~a|
i=1 a[i], C2 =

∑|~a|
i=1 a[i]2.

Obviously, this is a quadratic function optimization prob-
lem, and it is easy to get the solution that makes y minimal:
x∗ = (−2∗C1)

−2∗n = 1
|~a|
∑|~a|
i=1 a[i] = mean(~a).

From the above equation we can see that the optimal
solution x∗ is the average of the array ~a. Similarly, we
map the problem to Eq. (9), the array element a[i] be-

comes the subsequence ~si, x becomes the template vector
ξ, the distance between two values becomes the distance
of two vectors, in the end, the solution x∗ is mapped to
the weighted average of the subsequences, and a feasible
solution is given as follows:

ξi+1 =

∑
~sj∈Si |~sj |ω(~sj ,m)∑

~sj∈Si |~sj |
=

1

|~x|
∑
~sj∈Si

|~sj |ω(~sj ,m), (10)

where the weight of each subsequence is the proportion of
the length of the sequence to the entire sequence, ω(~sj ,m) is
linear warping of ~sj into lengthm, which is realized through
a cubic spline interpolation [19].

The algorithm pseudo-code is shown in Algorithm 1.
The stopping condition represents the convergence state.
The difference between two conjunctive iterations are in-
spected as the criterion of convergence. For practical consid-
eration, we set a feasible threshold, where system efficiency
and accuracy can be achieved.

3.4 Motion Signal Separation (Multi-User Scenes)

In this part, we discuss how we count the repetitive motions
for the target person when multi-user performing certain
motions simultaneously. Due to the nature of the relatively
short transmission range and frequency shift, backscat-
ter signal can significantly reduce inter-signal interference.
Even though earlier work MotionFi [20] has shown that
backscatter signal are suitable to monitor motion rate when
multiple persons involved, the counting error is a bit high
(up to 15%). So, we attempt to find new approach for
improving the accuracy.

Through in-depth observation of the received signal, we
find that the periodic pattern of a multi-user scene is less
noticeable than that of a single person on account of the
interaction of multiple motions. Hence, in order to improve
the counting accuracy, we must separate each motion signal
from these mixed signals. In this study, we aim to extract
every motion signal from the received backscatter signals,
as shown in Fig. 7. That way we can count the motions
when multi-user move together.

3.4.1 Modeling Mixture Signals

We first formulate the signal separation problem by for-
mally defining the mixed signal. Suppose we have N signal
sources, where the nth signal, i.e., snt is corresponding to
the motion of the nth user. In our deployment scenario, we
also have N receivers, where xn(t) denotes the mixed signal
at the nth receiver, such that

xn(t) =
N∑
k=1

ak,nsk(t),∀1 ≤ n ≤ N. (11)

where ak,n represents the mixing coefficients associated
with the path from sk to xn. Here we ignore the negli-
gible signal delay due to the high speed of wireless sig-
nals (∼ 3 ∗ 108m/s) and relative short distances among
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Fig. 7: Signal Separation Overview. In multi-user scenes, the received signals will interact with each other, we separate each
motion signal based on Blind Source Separation (BSS) technique.

users. If we denote X(t) = [x1(t), x2(t), ..., xn(t)]T , S(t) =
[s1(t), s2(t), ..., sn(t)]T , then we can rewrite Eq. (11) as

X(t) = AS(t),

A =

a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n


n×n

,
(12)

where A is the mixing coefficients matrix, hence we can
represent S(t) = A−1X(t). Therefore, our objective is to
find a matrix W = A−1 that satisfies the constraint to
separate the original signal S(t).

3.4.2 Background on Blind Source Separation (BSS)
Our signal separation problem is similar to the cocktail
party problem [21] where an arbitrary number of people
are talking simultaneously at a cocktail party and a listener
is trying to identify and follow one particular discussion. In
many cases, the measurements are given as a set of parallel
signals or time series. Typical examples are mixtures of si-
multaneous sounds or human voices that have been picked
up by several microphones, brain signal measurements from
multiple EEG sensors, several radio signals arriving at a
portable phone, or multiple parallel time series obtained
from some industrial process. The Blind Source Separation
(BSS) is used to characterize this problem. In our scenario,
we have no control of, nor a priori knowledge of, the
frequencies of motions, but we can assume that the motion
signal from each user is independent because the physical
processes of each user’s movements are not related to each
other. Naturally, we treat our problem as a BSS problem.

To tackle BSS problem, many population solutions have
been proposed, such as Independent Component Analysis
(ICA) [22], Principal Component Analysis (PCA) [22] and
Degenerate Unmixing Estimation Technique (DUET) [23].
Among these solutions, ICA is a much richer technique,
which can be seen as an extension to PCA and Factor
Analysis, capable of finding the sources when these classical
methods fail completely. Thus we choose ICA, which is well-
suited to address our needs and easy to implement.

3.4.3 Signal Separation Based on ICA
Next, we present our algorithm that separates individual
motion signals. Independent Component Analysis (ICA)
is a computational technique for revealing hidden factors
that underlie sets of measurements or signals. In our de-
ployment, there are 3 signal sources and 3 signal receivers
(|X| = |S| = N = 3). After preprocess the 3 signals
as described in Sec. 3.2, we apply the following signal
processing steps on each signal within the same window.

1) Remove the Direct Current (DC) Component. ICA re-
quires that the source signals be real random vari-
ables of zero mean, so we first approximate a zero-
mean signal by subtracting the average of the sig-
nals at each receiver7. This process can be expressed
as:

x′n(t) = xn(t)− E{xn}, n = 1, 2, 3, (13)

where E{xn} denotes the mean value of received
signal xn.

2) Signal Whiting. ICA assumes that the individual
source signals are independent of each other. We
say a zero-mean random vector v is a white signal,
meaning that each component of v has a unit vari-
ance and is uncorrelated with each other, that is, the
covariance matrix of v is an identity matrix. Thereby,
the process of applying a linear transformation to
a multi-dimensional signal to turn it into a white
signal is called whitening. Denote Q as the whiting
matrix, we can represent the process as follow:

Z = QX ′, s.t. Cov(Z) = I,

where X ′ = [x′1(t), x′2(t), ..., x′N (t)]T denotes the
signal after removing the DC component in step 1),
Cov(*) represents the calculation of the covariance
matrix and I is the identity matrix. The covariance
matrix of X ′ is CX′ = Cov(X ′). CX′ can be re-
placed by PDPT using singular value decompo-
sition (SVD), where P is the unit eigenvector of
Cx′ , and D is a diagonal matrix composed of the
eigenvalues of Cx′ . We can finally get the solution
of Q 8 as Q = D−

1
2PT .

3) Iterative Update Based on FastICA. By now, our goal is
to recover the original signal S by using the whiting
signal Z , that is, find a transformation W so that
Y = WZ(Y ≈ S). Technically, ICA separates the
original signals based on the independence between
signals. The Central Limit Theorem [24], a classical
result in probability theory, tells that the distribution
of a sum of independent random variables tends
toward a gaussian distribution, under certain con-
ditions. Thus, a sum of N(N ≥ 2) independent
random variables usually has a distribution that is
closer to gaussian than any of the original random

7. It is worth noting that ICA will change the amplitude of the
original signals, but this has no effect on our counting, since we only
care about the periodicity of signals

8. The whitening transformation is always possible. It can be proved
by the method of linear algebra and we have omitted the proof process
due to space limitation.
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algorithm 2 Signal Separation Based on FastICA

Input: whiting matrix Z = [z1, z2, z3]
Output: separated original signal Y = [y1, y2, y3]

1: initialize a normalized transformation matrix W (0) ran-
domly;

2: η ← 0;
3: while not converged do
4: for i = 1→ 3 do
5: wi(η + 1)← E{ZG(wi(η)Z)} −

E{G′(wi(η)Z)}wi(η);
6: for j = 1→ i− 1 do
7: wi(η + 1)← wi(η + 1)−

wi(η+1)wTj (η+1)wj(η+1);
8: end for
9: wi(η + 1)← wi(η+1)√

wi(η+1)wTi (η+1)
;

10: end for
11: η ← η + 1;
12: end while
13: return Y

variables. Intuitively speaking, the key to estimating
the ICA model is nongaussianity. In our practice, we
use negentropy to estimate the nongaussianity of
signals, which is based on the information-theoretic
quantity of entropy [25]. Our optimization objective
function is as follows:

max J(y), s.t. J(y) ∝ [E{G(y)} − E{G(v)}]2,
(14)

where y denote a recovered signal, v denote a zero-
mean Gaussian random variable, G(∗) is a non-
quadratic function. It should be noted that by choos-
ing G wisely, we can obtain more robust estimators.
In our scenario, the motion signal has symmetry and
periodicity, and we assume it is a super Gaussian
distribution, thus we choose

G(u) = tanh(u) =
eu − e−u

eu + e−u
, G′(u) = 1−G(u)2

for our FastICA Algorithm [25]. Therefore, for
weight vector wi (the i-th row vector in transforma-
tion matrix W ), the update of wi can be represented
as

w+
i = E{ZG(wiZ)} − E{G′(wiZ)}wi, i = 1, 2, 3,

(15)
where we calculate the expectation by treating Z
as 3 random variables. It is obvious that we should
execute Eq. (15) 3 times (for w1, w2, w3 respectively)
during each iteration. To prevent different vectors
from converging to the same maxima, we must
decorrelate the output after every iteration. A sim-
ple way of achieving decorrelation is a deflation
scheme based on a Gram-Schmidt-like decorrela-
tion [26]. This means that we estimate the inde-
pendent components one by one. When we have
estimated p vectors w1, ..., wp, we run the algorithm
for wp+1, and after every iteration step subtract
from wp+1 the ”projections” wp+1w

T
j wj , j = 1, ..., p

of the previously estimated p vectors, and finally
we normalize wp+1 as wp+1 =

wp+1√
wp+1wTp+1

. In the

end, we repeat the previous iterative process until
it converges, which means the change of W is less

TABLE 2: Recogntion Accuracy for Candidate Methods.

Classification Method Accuracy
MLP 87.8%

Ensemble 92.9%
Decision Tree 89.4%

Discriminant Analysis 77.3%
Nearest Neighbor Classifier 84.8%

Cubic Kernel SVM 95.2%
Linear Kernel SVM 88.7%

Gaussian Kernel SVM 91.2%
Quadratic Kernel SVM 93.1%

than a given threshold between two successive iter-
ations. A schematic process is depicted in Fig. 7. The
algorithm pseudo-code is shown in Algorithm 2.

3.5 Motion Classification
Now we briefly introduce our classification method, which
mainly consists of three parts, signal normalization, feature
selection and classifier algorithm.

3.5.1 Signal Normalization:
When performing a motion, the received signal strength
(RSS) fluctuates as the user’s body moves. However, the
baseline of RSS varies due to different body characteristics
(i.e., different height or weight) or environment. In order to
retrieve the relative fluctuation pattern, after segmenting the
signal, we carry out the signal normalization processing. For
a sequence ~x = (x1, x2, ..., xn), the processing method is:

x′i =
xi −min(~x)

max(~x)−min(~x)
, i = 1, 2, 3, ..., n, (16)

where max(~x) and min(~x) denote the maximum and mini-
mum of ~x.

3.5.2 Feature Selection:
From Fig.5 we can find that the user moves his body in
different patterns when performing different motions. As a
result, the fluctuations of the RSS also change in different
patterns. In order to differentiate these patterns, we need to
find features that accurately depict them. An intuitive idea
is to find some statistical features to distinguish them.

After normalization, we extract the following statistical
features [6] of new sequence ~x′. First of all, the mean
and standard deviation values are incorporated, which are

given by µ = 1

|~x′|

∑|~x′|
i=1 x

′
i, and σ =

√∑| ~x′|
i=1(x′i−µ)2

|~x′|
. Second,

the maximum and minimum values of ~x′ are considered.
Typically, the 3 quantiles (p = 0.25, 0.5, 0.75), skewness
(Skew(~x′) = E(x′−µ)3

σ3 ), kurtosis (Kurtosis(~x′) = E(x′−µ)4

σ4 )

and θ =

√∑|~x′|
n=1 x

′
i
2 are incorporated as features of our

classification model.
Although the above 10 features have been able to achieve

decent classification accuracy [20], we still want to further
improve it. In order to achieve higher accuracy, we need
to extract more effective features. A feasible approach is to
divide a signal sequence of a motion into slices, and calcu-
late each slice’s average RSS as the features [27]. In practice,
we divide a motion signal sequence into 20 slices [28]. Up
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to now, we have only used the features of the signal in
the time domain. Further, we perform Fourier transform
(FFT) on the signal to extract the features in the frequency
domain, such as spectral centroid, spectral entropy, spectral
spread, spectral skewness, spectral kurtosis and apectral
flatness [29].

Now, we can represent a motion’s overall signal se-
quence with the 36 features mentioned above. In addition,
it is worth noting that we have only used the RSS of our
received signals. To make full use of the signals, we calculate
their phase sequence and not surprisingly, we find that the
fluctuation patterns that exit in the RSS also exit in the
phase sequence. We assume that adding features from the
phase domain will elevate the recognition accuracy, which
is confirmed and validated in our experiments. Similarly,
we obtain another 36 features from the phase domain and
together we get a feature set of 72 features.

3.5.3 Classifier Algorithm
We collect more than 5000 samples and use the 10-fold cross
validation to test different classification methods such as
SVM (with various kernel functions), decision trees, dis-
criminant analysis and nearest neighbor classifiers (KNN).
Table 2 shows the average classification accuracy. We find
that SVM with cubic kernel is the most stable and effective
one for our task. Consequently, the kernel function we use
is

K(~νi, ~νj) = (1 + ~νi
T ~νj)

3
, (17)

where ~νi and ~νj represent the feature vectors. Besides,
we use a one-vs-one multi-classification approach for our
model.

Moreover, since our counting algorithm has segmented
the experimental data, given a series of k motions, we can
provide k segmentations to the classifier and will get k
results in return. Thus we can use voting method to get
a more accurate result. Owing to the judgment for each
segmentation is independent, we can denote the probability
of judging correctly once as p, and for three (here we denote
k = 3) consecutive segments (they are the same motion) the
correct probability is Pcorrect = p3+

(
3
2

)
·p2(1−p)+

(
3
1

)
·p(1−

p)2· 13 = p+ p2 − p3.
Fig. 8 shows the relationship between Pcorrect and p. As

depicted in Fig. 8, when p = 0.9, our accuracy can further be
improved to 98.10 %, when p increased to 0.95, the accuracy
will be raised to 99.51 % using three repetitions!

4 IMPLEMENTATION AND EVALUATION

4.1 Implementation
We implement a prototype of Motion-Fi + using COTS
components for signal backscatter and an USRP-RIO for

signal receiving and processing. The prototype of Motion-
Fi + is built with our customized design of passive tag,
which backscatters the signal of plug-in device to the re-
ceiver. Fig. 10a shows our prototype of a passive tag, whose
main components are SPDTs, antenna interfaces, pins and
resistances, the size of which is about 3.4×3.4 cm2. In order
to enable our tag adapt to high-frequency signal, we choose
the HMC190BMS8 SPDT. An additional FPGA is used to
control the backscatter state of the passive tag. The reflected
signal is received by a NI USRP-2953R, and then fed to our
proposed scheme to recognize repetitive motions. Another
USRP serves as a plug-in device to transmit signal in the
environment. Our equipments are shown in Fig. 10b. It is
worth noting that the power consumption of backscatter
process can be as low as several µW [1] in theory, but we
actually use FPGA to implement this process with no energy
harvesting module due to the cost and professionalism of
circuit design.

Besides, comparing with our previous work Mo-
tionFi [20], we continuously improve the reflection effect of
the tag and reduce the composition and area of the Printed
Circuit Board (PCB). In this work, we designed a brand
new backscatter tag (shown in Fig.10c), whose size is about
2.2×1.2 cm2 , smaller than a one US dollar coin (diameter
of 2.64 cm), ∼ 80 % reduction in area compared with the
previous one (shown in Fig.10a). Its main components are
reflective switch (ADG902), SMA (SubMiniature version A)
connector (where an extra antenna is connected), control
pins and capacitance. We believe that smaller size can fa-
cilitate wider deployment, and we use this new tag in our
multi-user experiments.

Our software platform is built upon LabVIEW, where
coding program could be put into our aforementioned hard-
ware platform. Our FPGA program built with LabView is
applied to produce a square wave at a frequency shift. It
is worth noting that, in practical design, a ‘perfect’ square
wave is not available9. Thus we use the sine wave to
approximate. From Fourier analysis, a square wave can be
written as:

Square(∆f ∗ t) =
4

π
∗

∞∑
n=1,3,5,...

1

n
sin(2πn∆f ∗ t) (18)

Here the first harmonic is a sinusoidal signal at the de-
sired frequency ∆f . Note that the power in each of these
harmonic scales as 1

n2 . So the third and the fifth harmonic
are around 9.5 dB and 14 dB lower than the first harmonic.
Thus, we can approximate a square wave as just the sinu-
soidal signal, 4

π sin(2π∆f ∗ t). In practice, we use a carrier
centering at 2 GHz, and denote ∆f equals 20 MHz.

4.2 Experiment Settings

Deployment and Layout: We analyze the performance of
our system in a typical office environment, which covers
a 6.3×5.7 m2 area, consisting of some bookcases and office
furniture, including desks, chairs and computers. One USRP
serves as a plug-in device for single-frequency tone signal
transmission and another one serves as a receiver. The

9. The transition between minimum to maximum is instantaneous for
an ideal square wave, but this is not realizable in physical systems.
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Fig. 10: Demonstration Equipments. (a) and (c) are our two versions of backscatter tag. (b) shows the USRP platform.

transmitter is placed in a desktop as shown in Fig. 1, and the
receiver and tag pair are placed in the front of the gym area.
When multiple persons performing motions, each person
does it in an area ∼ 2m2 in front of one tag (as shown in
Fig. 1).

Fig. 11 shows two typical deployment of Tag, TX and
RX. As depicted in Fig. 11a, the Tag is away from the
very near TX and RX pair. It works as if Tag is a client,
which is affected by the server side TX and RX pair. The
near deployment of TX and RX is similar to RFID reader.
While for Fig. 11b, the difference is TX and RX are deployed
seperately with each other. This mode could be utilized
when WiFi infrastructure and receiving devices are working
independently and distributedly.

Moreover, we find that the strength of the received signal
is only related to the path Tx→ Tag→ Rx, and has nothing
to do with the path between Tx and RX. Consequently,
we fix the positions of Tx and Rx, observe the change of
received signal when Tag moved between them, as shown in
Fig. 11c. We can see that the strength of the received signal
increases when the tag get close to either Tx or Rx and it
achieves the minimum at the midpoint of the connection
between Tx and Rx. This is well understood since the signal
strength is proportional to 1

d1×d2 , and the experimental
result is consistent with this mathematical meaning. Finally,
we treat Tx as a infrastructure that can not moved randomly.
So, in order to obtain a stronger received signal and enable
Tx to cover further distance, we place the Tag and Rx
together as depicted in Fig. 1.

Fig. 12 depicts the orientations and distances of the
persons involved in evaluations. Basically, there are four
typical directions (Front, Rear, Left and Right) to evaluate
the impact of orientations. Each orientation denotes the
relative position between a person and tag. i.e., Front means
the tag is in front of the person. Meanwhile, we test five
distances from 0.6 m to 3 m. The maximum distance is set to
3 m, because the backscattering signal is too weak to be used
for recognition at this distance according to our evaluations
(Fig. 9).

Volunteers and Concurrent Motions: We recruited 26
volunteers, including 16 males and 10 females for testing
over 6 months. They vary in age (18 - 45 years old), stature
(155 - 188 cm) and weight (45 - 90 kg). During the exper-
iments, they wore their daily attire with different fabrics
and they performed motions at the specified location within

the scope of the 2 m2 square area. The variance in exper-
imental environment and the presence of other users had
a negligible impact on the results, because the backscatter
signal is relatively weak, where only nearby motions can
cause discernible volatility on the receiver signal strength.
In our scenario, up to 3 persons could perform motions
concurrently. We then show all experimental results in the
following benchmark tests.

4.3 Long-term Experimental Results
We set up a gym area to evaluate the performance of Motion-
Fi + for more than half a year. Volunteers perform daily
exercise in the gym, and our equipments record the data at
the same time. We record the meta-data for each exercise, in-
cluding name, time, motion, number, etc.. We totally record
thousands test data. Each test contains one of the 7 motions
as listed in Table 1. One motion is repeated from 20 to 80
times during each test. We evaluate our proposed scheme
on each test data, and examine the error ratio of counting
for motions. The error ratio of counting is defined as

error ratio =
Nest −Ntruth

Ntruth
× 100%,

whereNest is the number of estimated motion counting, and
Ntruth is the number of recorded motion counting. Note
error ratio in one test could be negative. The evaluation
results are averaged on the test records.

Performance of single person: We evaluate the error
ratio of motion counting for various motions, persons, ori-
entations and distances when only one person performs
motions. To do this, we place a transmitter, a receiver and a
tag in the room as shown in Fig. 12, the transmission power
is set to 10 dBm.

We firstly study the impact of distance on the strength
of received signal. The distance from tag to person varies
from 40 cm to 300 cm with step of 20 cm. Specifically, a
volunteer performs 100 motions at each location apart from
tag 20, 40, · · · , 300 cm respectively. Fig. 9 shows the changes
of A(t) with the increase in distance, where A(t) denotes
the coefficient on received signal with human motions, A0

denotes the amplitude without human motions (Eq. (6)),
A(t)max = max(E′(t))/A0 is the maximum value of A(t),
and A(t)min = min(E′(t))/A0 is the minimum value of
A(t). By showing the difference of A(t)max, A(t)min re-
spectively, we conclude that the effect of human motion on
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Fig. 11: Deployment of Tags, Transmitter and Receiver.
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Fig. 12: Configurations of Persons on Orientation and Distance.

received signal intensity is less than 2% when the distance
is beyond 2 meters. This is a favorable property for the
application such as exercising in a gym as this observation
enables motion counting when a lot of people doing exercise
simultaneously with a small seperation distance among
them.

We choose one volunteer to perform all the seven mo-
tions, and examine the error ratio of counting for each of
the motions. The results are shown in Fig. 13a. It can be
seen that the error ratio of counting are different among
motions, from 0 to 2 %. Noted that the error ratio of Push-
ups (PU), Stoop-down (SD) and Dumbbell (DB) are relative
small, while the error ratio of Squats (SQ), Sit-ups (SU), Leg-
raise (LR) and Step (ST) are larger. The reason is that when
a person performs these type of motions, part of the limb’s
range of activities is relative large, which lead to larger
variances of received signal.

To study the changes of error ratio when different per-
sons perform the same motion, we arrange for 6 volunteers
labeled with P1 to P6 to perform squats one by one. The
results are shown in Fig. 13b. In general, the average of
the error ratio is no more than 2 %. Though there do
exist difference among different people, i.e., gender, height,
weight and habit, there is no significant difference in the
counting accuracy of different people. Since our counting
algorithm is adaptive, independent of the template, focusing
only on the periodicity of the signal.

To study the impact of orientations when people do
motions, we let a volunteer do squats in 4 orientations
as shown in Fig. 12a. The evaluation results are shown in
Fig. 13c. It can be seen that the error ratio of Front and Rear
are lager than that of Left and Right. The reason is that when
people do motions with orientations of Front and Rear, the
cross section of their body is larger than that of Left and
Right. Thus, inconsistency of motions with orientations of
Front and Rear will cause large fluctuations in backscattered

signals.
Finally, we study the impact of distance between person

and tag on the counting error ratio. A volunteer performs
squats at 5 distances ranging from 60 cm to 300 cm as shown
in Fig. 12b. The error ratio at different distances are shown
in Fig. 13d. We can see that when the distance is ≥ 100 cm,
the error ratio increases because the strength of backscatter-
ing signal decreases with distance. Noted that, when the
distance is ≤ 100 cm, e.g. 60 cm in our tests, the error
ratio increases as distance decreases. Although the strength
of backscattering signal increases when distance decreases,
the interference caused by the irregular movement of limbs
also increases. Thus, the distance ∼ 1 m is ideal for our
applications.

Performance of multiple persons: We then evaluate the
performance of Motion-Fi + when multiple persons perform
motions simultaneously. We deploy three sets of equipments
in our laboratory as shown in Fig. 1. Specifically, we deploy
one transmitter to transmit the tone signal. For each person,
a pair of tag and receiver (all receivers are synchronous) is
used to recognize his/her motion. During our evaluation,
three persons perform motions in the test area simultane-
ously. Each person stands before the tag at a distance about
1 m. Three persons are labeled with ‘Left’, ‘Middle’ and
‘Right’ respectively. We examine the error ratio of motion
counting under various conditions.

We firstly study the impact of transmission power of the
tone signal. To do this, we configure the transmission power
to 0, 10 and 20 dBm respectively. Three persons perform
squats in front of the tag at a distance of 1 m simultaneously
and the separation between them is 2 m. Fig. 14a shows the
error ratio of motion counting. It can be seen that there is
a trade-off between transmission power and error ratio. In
our experiment configuration, a transmission power of 10
dBm can achieve the lowest error ratio. Noted that when
transmission power is too weak, for example 0 dBm in
our case, the backscattered signal becomes too weak to
discern. However, when transmission power is too strong,
the interference from adjacent person becomes more serious.
So, we configure the power to 10 dBm in the following tests.

We then examine the impact of separation distance be-
tween users. Again, three volunteers perform squats simul-
taneously. The distance between tag and person is about
1 m. We change the separation between persons from 150
cm to 250 cm at a interval of 50 cm. The results are shown
in Fig. 14b. When the separation is small, the interference
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Fig. 13: Impact on Different Motions, Persons, Orientations and Distances.
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Fig. 14: Impact of Multiple Persons.

from a neighbor person is serious, leading to large error
ratio of motion counting. However, there are no significant
difference between the results of 200 cm and 250 cm, which
indicates larger separation incurs less interference. It is rec-
ommended that a separation distance of 2 m is appropriate
for our configuration.

We study the impact of interference from other persons’
motions (even undefined motions). In the evaluation, one
volunteer performs squats in the front of a tag while another
volunteer perform some irregular movement as interference
at a distance of more than 2.5 m away. We compare the error
ratio of counting with and without interference. Fig. 14c
shows the results. We can see that even with interference
from other person’s irregular movement, the error ratio of
counting is still less than 6 %, which shows that our system
works acceptably well even with some interfering activities.

We then examine the error ratio of counting when mul-
tiple persons perform same motions simultaneously. In our
test, three volunteers perform the same motion. The sepa-
ration between them is 2 m. The experimental results are
shown in Fig. 14d. The error ratio of counting for different
motions are relatively small, about 7 % in our test results.
Noted that, the error ratio of ‘Middle’ persons are larger
than that of ‘Left’ and ‘Right’ person. The reason is that
the signal that monitor the middle person contains more
interference than that of the boundary ones.

At last, we evaluate the performance when multiple
persons perform different motions simultaneously. Three
volunteers perform different combination of motions. The
separation between them is also set as 2 m. As shown in
Fig. 15, the tick name of x-axis denotes the combination
of motions. For example, ‘LR/SD/DB’ denotes the ‘Left’
person performs leg-rise (LR), the ‘Middle’ person performs
stoop-down (SD) and the ‘Right’ person performs dumbbell
(DB). According to the result, it can be seen that the error
ratio is relatively small regardless of the combination of
motions. Noted that, the error ratio of Dumbbell (DB) is
about -4 %. The main reason for this is that when people do

-8

-6

-4

-2

 0

 2

 4

 6

 8

LR/SD/DB SU/ST/DB SQ/ST/SD

E
rr

o
r 

R
a

ti
o

 (
%

)

Combinations

Left
Middle

Right

Fig. 15: Impact of Different
Motions.

807 6 21 0 3 0 6

12 744 3 0 6 21 9

24 3 702 0 9 0 3

0 0 0 663 15 0 3

0 0 0 6 717 0 0

0 9 3 0 0 687 24

24 6 0 9 0 27 657

SQ SU PU LR ST SD DB

Predicted Class

SQ

SU

PU

LR

ST

SD

DB

T
r
u

e
 C

la
s

s
Fig. 16: Confusion Matrix.

TABLE 3: Accuracy of Unknown Subjects.

Motion SQ PU SU LR
Accuracy 143/150 133/150 144/150 136/150
Motion ST SD DB Total

Accuracy 139/150 140/150 137/150 972/1050

dumbbell, the cross section of moving upper limbs is small,
leading to small variation in received signal, thus making
it susceptible to interference from others. It’s recommended
that people can do motions with obvious limbs movement
to achieve better counting accuracy.

In general, thanks to the design of signal separation
algorithm (ICA), the counting results of multi-person scenes
have been improved compared to the previous work Mo-
tionFi [20]. By averaging all the testing items, we found that
the calculation error was reduced a lot and the overall error
has controlled within 7 % (originally 15 % without ICA).

Classification: We also examine the performance of
single-user motion recognition in a given environment. To
do this, we collect lots of environmental data and manually
divide more than 5000 samples of 7 motions. After that, we
extract 10 features from each sample compositing charac-
teristic matrix for cubic SVM model training. The training
process only takes a few minutes. We use the 10-fold cross
validation to test our model, which reaches 95.2 % recogni-
tion accuracy. The classification speed of our SVM model is
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TABLE 4: Distribution of Misjudgement Times.

Misjudgement Times 0 1 2 3 Total
Test Set 88 10 2 0 100

∼ 3000/s. The confusion matrix for classification is shown in
Fig. 16, which sums up the result of 10-CV. Besides, in order
to test the generalization of our classification model, we
recruit 5 additional volunteers, each volunteer performing
each motion 30 times and we obtain 1050 (5*7*30) samples in
total. Then, we used the trained model to classify them. The
classification accuracy is 92.6 % (shown in Table 3), which
shows that our model has good generalization ability.

Moreover, in order to further improve the prediction
accuracy, we choose k = 3 to make multiple judgments (as
described in Sec. 3.5). To verify this result, we select 100
sets of motion data, and only take the first three segments
of each group to judge. Our experimental results reach a
correct rate of 100 %, Table 4 shows the distribution of the
number of misjudgments among 100 sets of data. The results
show that for continuous repetitive motion, after three or
more motions, the classifier can achieve almost error-free
recognition.

5 RELATED WORK

This section will be divided into two parts, the first part
introduces the related work on the passive platform, and the
second part is about the relevant work about perception.

5.1 Battery-free Backscattering Network
Beginning in 2013, many sessions began to emerge articles
about the results of passive platforms. There are many
sources of energy in the environment, such as light energy,
wind energy, electromagnetic energy, radio (RF) energy [14],
[30]. Backscatter based communication received consider-
able research interests recently, including, ubiquitous energy
acquisition, passive protocol optimization and passive com-
ponent separation. Liu et al. [31] use the signal from TV
towers to obtain energy for the tag-to-tag communication.
Inspiringly, Kelloggvasisht2018body et al. [32] get the energy
from the WiFi APs for backscatter communication. Based
on this innovative design, Bharadia et al. [9] realize the
optimization on conventional WiFi protocol. Kellogg et al.
[1] propose a revolutionary design, which uses the backscat-
tering signals from the air and keep the ADC component
processing. Zhang et al. [33] present a low power backscatter
system, which allows a tag to embed its information on stan-
dard 802.11b codeword to another valid 802.11b codeword.
Many solutions have explored the passive projects, One
of the important theories they use is frequency shift [34].
Recently, backscatter-based systems are gradually proposed
for motion sensing [35], localization [36] and tracking [37]
In this work, we study how to use backscattering signals to
realize repetitive motion recognition and counting.

5.2 Device-free Sensing
In recent years, exponential explosive growth of mobile
devices once again ignited the people of the new form of
human-computer interaction exploration, the use of human-
computer interaction to control a wide range of applications

[12]. Gesture recognition system, as the basic solution of
human-computer interaction, has become more and more
popular. The current system allows users to use not only
dedicated equipment, but also natural body movements and
context-related information. In fact, implantation of gesture
recognition systems in electronic products and mobile de-
vices has become commonplace and is on the rise, such as
smartphones [38], laptop [39], navigation facility [40] and
some game control system [41]. These systems typically im-
plement gesture recognition by utilizing a variety of sensors
available on the device, such as computer vision (camera,
vidicon, etc.) [41], inertial sensors [42]–[44], vibration sen-
sor [45], acoustics [38], [46], light sensors [47]. However,
these technologies still encounter a lot of limitations when
they are implemented, such as being customized for specific
applications, sensitive to light, high installation costs or high
equipment costs, requiring handheld devices, or the need to
install additional sensors.

To address these challenges, researchers start to leverage
wireless signals (e.g., ultrasound [48], RFID [49], 60GHz
mmWave [50], etc.) to achieve device-free human activity
recognition. With the proliferation of ubiquitous wireless
devices and the establishment of wireless network infras-
tructure, WiFi-based recognition systems [7], [8], [51], [52]
gradually being put forward. WiFi signal can be used not
only in gesture recognition, but also localization [8], hu-
man identification [6], vibration detection [53] and so on.
These WiFi-based systems operate by analyzing the char-
acteristic changes of the wireless signal, such as analyzing
changes in CSI (channel state information) or RSSI (received
signal strength indication) caused by human motion [54].
Our work leverages the backscattering signals to recognize
motions, in order to overcome the limitations in directly
applying WiFi signals when multiple users and complicated
scenarios are incorporated.

6 CONCLUSION

We present an accurate wireless sensing system build-
ing upon a passive backscattering platform. In wireless
backscattering systems, human motions could be effec-
tively explored using our customized noise taming and
self-adaptive pattern matching algorithms. We evaluate our
design with extensive experiments, which shows a satis-
fying recognition accuracy. Different from previous studies
leveraging backscattering technology, our system leverages
pervasive wireless APs as RF source instead of customized
readers in RFID systems, and enables multiple users peform
simultaneously.
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