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Abstract—Many applications of wireless sensor networks
(WSNs) are time-critical as well as requiring secure operations,
and have serious consequences if the network is compromised.
WSNs are often deployed in hostile environments where com-
munication is monitored and the sensor nodes are subject to be
compromised or manipulated by adversaries. For such WSNs,
it is very important to have secure communications among the
sensors. The m-composite key pre-distribution schemes proposed
in [3] is one of the most popular mechanisms for communication
security of WSNs. With such a security scheme, two nodes within
each other’s transmission range have a secure link between them
if their key rings have at least m keys in common. In this paper,
we develop an efficient scheduling algorithm for data gathering
on secure WSNs. The link between two nearby sensors may not
be secure and cannot be used for communication. Such a nature
of secure WSNs makes the analysis of any scheduling algorithm
for gathering much more challenging than on WSNs that can be
modeled as disk graphs. To the best of our knowledge, this is the
first paper that develops fast gathering schedules for multihop
WSNs where the network topology cannot be modeled as a disk
graph.

I. INTRODUCTION

Wireless sensor networks (WSNs) have a wide range of ap-

plications for various tasks such as environmental monitoring,

real-time traffic monitoring, building safety monitoring, real-

time pollution monitoring, and military surveillance, sensing

and tracking as well as for emergency disaster relief and

distributed measurement of seismic activities. Many such

applications of WSNs are time-critical as well as dependent on

secure operations of the network. There will be serious con-

sequences if some wireless links are compromised, unreliable,

or disrupted due to harsh environments, barriers or shadowing

effects among the sensor nodes.
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Usually, WSNs are deployed in hostile environments where

data communications are cautiously monitored. The wireless

sensor nodes or communication links are subject to be com-

promised or manipulated by adversaries. On such WSNs, it is

very important to secure the data communications among the

sensor nodes. Since the sensor nodes have limited resources in

terms of computation power, capacity and memory, traditional

key management algorithms and security schemes are too

complex and very hard to be implemented on WSNs. Many

security mechanisms have been proposed to provide secure

communications for WSNs [3][4][5][8]. By far, the most

popular security mechanism for WSNs is the m-composite
key pre-distribution mechanism that was proposed in [3]. In

the m-composite key pre-distribution scheme, K distinct keys

are chosen from a key space at random to form a key pool.

A key ring is defined to be a subset of the key pool with t

elements. Prior to being deployed, every sensor node uploads

a key ring into its memory at random. Two sensor nodes have

a secure link between them if and only if they are within each

other’s transmission range and there are at least m common

keys in their key rings. Only secure links can be used for data

communication on WSNs with sensitive data. Such WSNs is

referred to as secure WSNs. Assume that all the sensor nodes

have uniform transmission range r. A secure WSN can be

modeled as a subgraph of the r-disk graph over all the sensor

nodes.

Data gathering is a primitive communication task in which

all nodes send their individual messages to a distinguished

sink node without data aggregation or combination. Since

some essential data of each sensor node often need be sent

separately to the sink node on a WSN for security purposes.

For example, the data contains sensitive information that can

only be known by the sink, or the network traffic are encrypted

and the intermediate sensor nodes are unable to decrypt the

packets, etc. Therefore, data gathering is a very important and

essential operation and widely used on various applications of

WSNs for the sink node to collect data separately from all
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other sensor nodes in the network.

The problem of computing a data gathering schedule

with minimum latency in multihop WSNs is referred to

as Minimum-Latency Gathering Schedule (MLGS). Under

the assumption that all the communication links are secure,

MLGS in multihop WSNs has been well studied under both

the protocol interference model and the physical interference

model (see [1][2][13][14][17] and all the references therein).

The main purpose of this paper is to conduct analytic and

algorithmic studies for minimizing communication latency of

data gathering in secure WSNs by utilizing multiple channels

under the protocol interference model described below: Each

sensor node has a uniform transmission radius (normalized to

one), and a uniform interference radius ρ = 1. Thus, if both

the secure and insecure links are used for communication, the

network topology is a unit-disk graph (UDG). The network

topology of the secure WSN is a subgraph of this UDG. We

further assume all the communications proceed in synchronous

time-slots and each sensor can transmit at most one packet of

a fixed size in each time-slot.

Let λ denote the number of available channels, V the set

of all the nodes in the WSN. Denoted by Gu the UDG over

V . Two nodes u and v have a secure link between them if

and only if (u, v) ∈ E(Gu) and they have at least m common

keys in their key rings, where E(Gu) denotes the edge set

of Gu. Denoted by Gsec the secure WSN over V . Note that

two nodes in V may not have a secure link between them

even if they are very close to each other, and thus they cannot

have direct communication on Gsec. As a result, a node in

Gsec may have many neighbors that are independent with one

another. It is well-known that any node of Gu has at most five

independent neighbors in Gu. Moreover, most of the geometric

properties that hold on UDGs do not hold on Gsec any more.

Therefore, these geometric properties of UDGs cannot be used

in the analysis for any data gathering scheduling algorithms

proposed for Gsec. Such natures of Gsec make the analysis of

any scheduling algorithms much more challenging than on the

WSNs that can be modeled as a disk graph. As a matter of

fact, all the existing scheduling algorithms for MLGS based

on UDGs are no longer suitable for Gsec.

In this paper, we address this challenge and develop an effi-

cient approx. algorithm for MLGS in secure WSNs, referred

to as MLGS-Sec. To the best of our knowledge, this is the first

work that develops fast data gathering schedules for multihop

WSNs where the network topology cannot be modeled as a

disk graph.

The remaining of this paper is organized as follows. In

Section II, we give a literature review for some related work.

In Section III, we introduce some preliminaries needed to

present the scheduling algorithm for data gathering. In Section

IV, we develop an efficient approx. algorithm for MLGS-Sec

that produces a fast gathering schedule. Finally, we conclude

this paper, discuss some future research directions and present

several open problems in this area in Section V.

II. RELATED WORK

When all the links are assumed to be secure, MLGS of

multihop WSNs has been well studied under both the proto-

col interference model and the physical interference model

[1][2][13][14][17]. Under the protocol interference model,

Bermond et al. [1] proved the NP-hardness of MLGS and

proposed an algorithm for MLGS that achieves 4-approx.

when the network topology can be modelled as a UDG.

Bonifaci et al. [2] developed a greedy algorithm for MLGS

and proved it to be 4-approx. in general and 3-approx. when

the network topology can be modelled as a UDG. When the

interference radius equals the transmission radius, Zhu et al.

[17] proposed a heuristic algorithm for MLGS that achieves

(1 + 1/(k + 1))-approx., where k is a constant integer. By far,

the best known approx. algorithm for MLGS was proposed

by Wan et al. [14] that focused on how to utilize the multiple

channels to speed up four group communications including

broadcast, aggregation, gathering, and gossiping. For MLGS,

when the sensor nodes have uniform interference radius ρ that

is at least the transmission radius, [14] proposed an efficient

scheduling algorithm with approx. ratio at most 2 �βρ/λ� ,
where λ is the number of available channels and βρ denote

the maximum number of points in a half-disk of radius ρ+ 1

whose mutual distances are greater than one.

Under the physical interference model, the best known

algorithm for MLGS is proposed in Wan et al. [13]. This

paper developed short communication schedules for broadcast,

data aggregation, data gathering, and gossiping subject to

physical interference. Under mild assumptions, all of the com-

munication schedules for those four group communications

have constant approx. bounds. For MLGS, [13] proposed an

efficient scheduling algorithm with approx. ratio at most a

constant 2βρ.

III. PRELIMINARIES

In this section, we introduce some preliminaries needed

for presenting the data gathering scheduling algorithm to be

proposed.

For each 0 ≤ i ≤ m− 1, let bi be the probability that two

sensor nodes have exactly i common keys in their key rings.

Since the key ring of the second sensor contains i keys that
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are also contained in the key ring of the first sensor, and t− i

keys from the remaining K − t keys that are not in the key

ring of the first sensor, we have

bi =

(
t

i

)(
K − t

t− i

)
�

(
K

t

)
.

Let E denote the event that two nodes have at most m− 1

common keys in their key rings, E′ the event that two nodes

have at least m common keys in their key rings. Let q, p be

the probability of the events E, E′, respectively. Clearly,

q =

i=m−1∑
i=0

bi, and

p = 1− q.

Appropriate values for the parameters K and t can be

chosen so that we can have a desired probability p for two

sensor nodes having at least m common keys in their key

rings. In order for the secure WSN to be connected, the values

for both K and t should appropriately be chosen so that the

probability p is large enough. Therefore, it is natural to assume

that the values for both K and t can appropriately be chosen

so that the percentage of the insecure links among all the

links incident to any sensor node is at most γ, where γ is a

parameter to be used in this paper.

Given an undirected graph G = (V,E) with |V | = n. Let s

be a fixed node in V. The subgraph of G induced by a subset

U ⊆ V is denoted by G[U ]. δ(G) and Δ(G) respectively

represent the minimum and maximum degrees of G. α(G)

and χ(G) respectively represent the independent number and

chromatic number of G. The inductivity of the graph G is

defined as follows:

δ∗(G) = max
U⊆V

δ(G[U ]).

The square of a graph G, denoted by G2, is the graph over

V on which for any u, v ∈ V, (u, v) is an edge on G2 if and

only if u and v are at most two hop away on G. The depth of

a node v on G with respect to s is the graph hop distance from

s to v. The radius of a graph G with respect to s, denoted

by R(G), is the maximum graph hop distance from s to all

other nodes in V. For each 0 ≤ i ≤ R(G), let Li denote the

set of all the nodes of depth i and is referred to as the i-th

layer w.r.t. the graph radius.

A subset U of V is an independent set of G if there is no

edge between any two nodes in U . If U is an independent

set of G but U ∪ {x} is no longer an independent set for

any x ∈ V�U , then U is called a maximal independent set
(MIS) of G. Any vertex ordering v1, v2,···, vn of V induces

an MIS U in the first-fit manner [14]. A subset U ⊆ V is

a dominating set of G if every node in V�U is a neighbor

of some node in U . If U is a dominating set of G and the

induced subgraph G[U ] by U is connected, then U is called

a connected dominating set (CDS) of G. A vertex coloring
of G is an assignment of colors to the nodes in V such that

adjacent nodes receive different colors. Clearly, computing a

vertex coloring of G is equivalent to partitioning the nodes

in V into different independent sets of G. Consider a vertex

ordering v1, v2,···, vn of V . For each 1 ≤ i ≤ n, denote by

N≺(vi) the set of all preceding neighbors of vi in this ordering

of the nodes in V. That is,

N≺(vi) = {vj : 1 ≤ j < i, vj ∈ N(vi)} ,

where N(vi) denotes the set of all neighbors of the node vi.

The first-fit coloring algorithm in the ordering v1, v2,···, vn
use colors represented by natural numbers 1, 2, 3, · · · [14].

Clearly, this vertex coloring uses at most 1 + max1<i≤n

|N≺(vi)| colors. The value of max1<i≤n |N≺(vi)| is referred

to as the inductivity of the vertex ordering v1, v2,···, vn [14].

Given a positive integer d > 0. A subset U of V is said

to be a distance-d independent set if and only if the pairwise

Euclidean distances of the nodes in U are larger than d. It is

easy to see that U is a (maximal) distance-d independent set
of G if and only if U is a (maximal) independent set of Gd.

For any d > 0, a distance-d coloring of the nodes in U is

an assignment of colors to the nodes in U such that any pair

of nodes with distance at most d are assigned with different

colors [14].

Next, we introduce a simple lemma from [6] that partitions

a half disk of radius two into 14 small subregions, each of

which is of diameter at most one. This lemma is proved in

[6].

Lemma 1. Any half disk with radius equal to two can
be partitioned into 14 small subregions, each of which has
diameter at most one (see Fig. 1 in [6]).

The next lemma gives an upper bound on the number of

independent nodes in Gsec that can be contained in any of the

14 small subregions shown in Fig. ??.

Lemma 2. Let S denote any of the 14 small subregions
described in Lemma 1 with diameter at most one. For any
independent set I of the secure WSN Gsec, we have |S ∩ I| ≤
γΔ(Gu) + 1, where Gu is the unit-dsik graph over V.

Proof: If S ∩ I = ∅, the lemma is clearly true. Next we

assume that |S ∩ I| ≥ 1. Pick a node u ∈ S ∩ I. For any

v ∈ S ∩ (I� {u}) , we have ‖uv‖ ≤ 1 since both u and v
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belong to S and the diameter of S is at most S. Thus, there

is an edge between u and v in the unit disk graph Gu. Since

u, v ∈ I, they are independent in the secure network Gse.

Thus, the link (u, v) on the unit disk graph Gu is not secure.

Based on our assumption described above, the total number

of insecure links incident to u is at most γΔ(Gu), where γ

is an upper bound on the percentage of the insecure links

among all the links incident to any sensor node in V. Thus,

S∩(I� {u}) contains at most γΔ(Gu) nodes in I. Therefore,

|S ∩ I| ≤ γΔ(Gu) + 1.

This completes the proof of the lemma.

For any independent set I of a secure network Gsec, the

following lemma gives an upper bound for the inductivity of

the induced subgraph G2
sec[I] of the square graph G2

sec induced

by I .

Lemma 3. For any independent set I of a secure network
Gsec, we have

δ∗(G2
sec[I]) ≤ 14γΔ(Gu) + 11.

Proof: First we prove that δ(G2
sec[I]) ≤ 14γΔ(Gu)+11.

Let v ∈ I be the bottom-most node in the deployment

region of the network. It is sufficient to prove that the degree

of v in the square graph G2
sec[I] induced by I is at most

14γΔ(Gu) + 11. Since v ∈ I is the bottom-most node, all

neighbors of v in G2
sec[I] is contained in the top half-disk

centered at v with radius two. By Lemma 1, the top half-disk

centered at v with radius two can be partitioned into 14 small

subregions as shown in Fig. ??. Let S denote any of these 14

small subregions. We have two cases:

Case 1. S is one of the three 60o-sectors in the inner disk

of radius one with labels 1, 2 or 3. In this case, S ∩ (I� {v})
contains at most γΔ(Gu) nodes in I since v ∈ S ∩ I.

Case 2. S is one of the small subregions in the two annuli

with labels 4, 5, ···, or 14. In this case, we |S ∩ I| ≤ γΔ(Gu)+

1 by Lemma 2. Thus, the independent set I contains at most

11(γΔ(Gu) + 1) + 3γΔ(Gu) = 14γΔ(Gu) + 11

nodes in the top half-disk centered at v with radius two.

Therefore, the degree of v in G2
sec[I] is at most 14γΔ(Gu)+

11. Hence, δ(G2
sec[I]) ≤ 14γΔ(Gu) + 11.

Next, we prove that δ∗(G2
sec[I]) ≤ 14γΔ(Gu) + 11.

Note that I is an independent set of the secure network Gsec.

For any subset U of I, U itself is an independent set of Gsec.

The subgraph of G2
sec[I] induced by U is G2

sec[U ]. Therefore,

δ(G2
sec[U ]) ≤ 14γΔ(Gu)+ 11. Since U is an arbitrary subset

of I, we have δ∗(G2
sec[I]) ≤ 14γΔ(Gu) + 11.

This completes the proof of the lemma.

The following corollary can be easily verified by using

Lemma 3 above:

Corollary 4. Any independent set I of a secure network Gsec

can be partitioned into at most (14γΔ(Gu) + 12) distance-2

independent sets of Gsec. That is, a distance-2 coloring of the
nodes in I uses at most (14γΔ(Gu) + 12) colors.

Proof: By Lemma 3, we have

χ(G2
sec[I]) ≤ 1 + δ∗(G2

sec[I]) ≤ 14γΔ(Gu) + 12. (1)

Thus, the square graph G2
sec[I] induced by I is

(14γΔ(Gu) + 12)-colorable.

Given a proper distance-2 coloring of the graph G2
sec[I]

that uses at most 14γΔ(Gu) + 12 colors. For each 1 ≤ i ≤
14γΔ(Gu)+12, let Ui be the subset of nodes in I that receive

the i-th color in this distance-2 coloring of G2
sec[I]. Since Ui

is an independent set of the square graph G2
sec[I] induced

by I, the graph hop-distance on the secure network Gsec

between any pair of nodes in Ui is greater than 2. Therefore, I

can be partitioned into at most (14γΔ(Gu) + 12) distance-2
independent sets of Gsec.

This completes the proof of the corollary.

IV. A FAST GATHERING SCHEDULING FOR SECURE WSNS

In this section, we adopt the data gathering scheduling

algorithm we developed in our prior work [14]. Let s denote

the sink node of data gathering.

We first we introduce a spanning tree T of Gsec rooted at

s constructed from the CDS presented in our prior work [14].

This rooted spanning tree is referred to as a dominating tree

in [14] and will be used for routing in data gathering.

The data gathering scheduling algorithm presented in [14]

employed a multi-labelling algorithm to assign multiple labels

to each edge in T . This multi-labelling algorithm works as

follows:

Consider a vertex ordering v1, v2,···, vn−1 of V�{s} in the

descending order of their depths in T (ties can be broken

arbitrarily) with n = |V |. Thus, v1 belongs to the bottom-

most layer of T (see Fig. 3 in [14]). For convenience, let s =

vn. For 1 ≤ i ≤ n − 1, we assign the j-th edge in the tree

path from the root node s to the sensor node vi with the label

2(i − 1) + j, where 1 ≤ j ≤ M with M being the length

of the tree path from s to vi. Therefore, when i = 1, the

edges of the path from s to v1 in T are labelled respectively

as 1, 2, 3, · · ·. An example of multi-labels that are assigned to

each edge of the tree T is given in [14] (see Fig. 3 in [14]).

From the figure, we can see that the number of descendents

of the sensor node vi in T (including vi itself) is the same as
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the number of the integer labels assigned to an edge between

the node vi and its parent node equals. Furthermore, if vi is a

dominator (black node) in T , all labels assigned to the edge

between vi and its parent node are even numbers. But if vi is

connector (white node) in T , all labels assigned to the edge

between vi and its parent node are odd numbers. Also, for

any two adjacent layers in the dominating tree T , all edges

across these two adjacent layers are assigned with different

label values, one layer having odd labels and the other layer

having even labels. The number 2n − 3 is the largest label

assigned to the edges in T . An argument of this claim was

given in [14] (see Section 6 of [14] for details).

Let
−→
T denote the inward arborescence with respect to s

generated from T. For each 1 ≤ k ≤ 2n− 3, let

Ek = {the set of the edges in the tree T that received

a label k}, and

Ak = {the set of the links in the inward s-arborescence
−→
T that received a label k}.

We claim that for every 1 ≤ k ≤ 2n − 3, all the links

in Ak are disjoint. This claim is verified as follows: If the

label k is an odd number, all the receiving endpoints of links

in Ak are dominators. If the label k is an even number,

all the transmitting endpoints of links in Ak are dominators.

Furthermore, for each 1 ≤ k ≤ 2n−3, every dominator (black

node) is incident to at most one link in Ak. Therefore, all the

links in Ak are disjoint for every 1 ≤ k ≤ 2n− 3.

Next, we present the data gathering scheduling algorithm

for the secure WSN Gsec. The data gathering schedule are

respectively partitioned in 2n − 3 rounds. For each 1 ≤ k ≤
2n − 3, the k-th round is dedicated to schedule the links in

the set Ak. The data gathering scheduling starts with the link

set A2n−3, and then followed by the link set A2n−2. Finally,

the links in the set A1 will be scheduled. The link sets are

sequentially scheduled in the following order:

A2n−3, A2n−2, · · ·, A2, A1.

For each 1 ≤ k ≤ 2n − 3, let Ik denote the set of the

dominator endpoints of the links in Ak. The round for the

links in Ak is scheduled as follows:

• First we compute a distance-2 coloring of the indepen-

dent set Ik of the dominator endpoints in the first-fit

manner as described in Section III;

• Then each link in Ak whose dominator endpoint assigned

with the i-th color by the above distance-2 coloring is

scheduled to transmit in the �i/λ�-th time-slot of the k-

th round at channel i if i ≤ λ, or i mod λ if i > λ.

The available channels are respectively represented by

positive integers 1, 2, · · ·, λ.
The following theorem gives the total latency and approx.

ratio of the data gathering schedule produced by the algorithm

described above.

Theorem 5. The total latency of the data gathering sched-
ule produced by above scheduling algorithm is at most
�(14γΔ(Gu) + 12) /λ� (2n − 3). The approx. ratio of the
data gathering schedule produced by this algorithm is at most
2 �(14γΔ(Gu) + 12) /λ� .

Proof: By Corollary 4, a distance-2 coloring of the nodes

in Ik uses at most (14γΔ(Gu) + 12) colors. Totally, there are

2n−3 rounds for the data gathering operation to be completed.

Therefore, the total latency of the data gathering schedule

produced by the scheduling algorithm described above is at

most �(14γΔ(Gu) + 12) /λ� (2n − 3), where λ is the total

number of channels available on the network.

Next, we prove that n−1 is a lower bound for the minimum

data gathering latency, i.e. the minimum number of time-slots

is required for a complete data gathering operation. For data

gathering, n− 1 nodes (other than the sink node s) must send

their packets separately to the sink node s. Thus, n−1 packets

must be transmitted/forwarded to the sink node separately.

Note that the sink node can only receive one packet in each

time-slot. Therefore, at least n− 1 time-slots are required for

the data gathering operation to be completed. Thus, n − 1 is

a lower bound for the minimum data gathering latency.

Hence, the approx. ratio of the data gathering sched-

ule produced by the algorithm described above is at most

2 �(14γΔ(Gu) + 12) /λ� .
Note that if the maximum degree Δ(Gu) is bounded, then

our data gathering scheduling algorithm proposed in this paper

achieves constant approx.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient approx. algorithm

for MLGS-Sec on secure WSNs. On such a secure WSN, two

sensor nodes that are very close to each other may not have a

secure link between them. As a result, they cannot have direct

communications on the secure WSN. Such a nature of secure

WSNs makes it much more challenging for the analysis of

data gathering scheduling algorithms than on WSNs that can

be modeled as disk graphs. To the best of our knowledge, this

is the first paper that develops fast data gathering schedules for

secure WSNs. This is also the first work that proposed efficient

scheduling algorithms for data gathering on multihop WSNs
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where the network topology cannot be modeled as a disk

graph. When the maximum degree of the unit-disk graph over

all the sensor nodes is bounded, the data gathering schedule

produced by the scheduling algorithm presented in this paper

for secure WSNs achieves constant approx.

For future research directions in this area, we present

the following open problems for data gathering scheduling

on WSNs: Under the protocol interference model, when the

sensor nodes have uniform interference radius ρ greater than

or equal to the transmission radius, [14] proposed an efficient

scheduling algorithm for data gathering, with approx. ratio at

most 2 �βρ/λ� , where λ is the number of available channels

for the network and βρ denote the maximum number of points

in a half-disk of radius ρ+1 whose mutual distances are greater

than one. We believe that the approx. ratio of this algorithm

can be improved. For secure WSNs discussed in this paper,

whether there exist constant-approx. algorithms to produce fast

data gathering schedules is still open on such networks when

the maximum degree of the unit-disk graph over all the sensor

nodes can be arbitrarily large.
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