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Abstract. Given a vertex-weighted graph G and a positive integer A,
a subset F' of the vertices is said to be A-colorable if F' can be par-
titioned into at most A independent subsets. This problem of seeking
a A-colorable F' with maximum total weight is known as Maximum-
Weighted M-Colorable Subgraph (A-MWCS). This problem is a
generalization of the classical problem Maximum-Weighted Inde-
pendent Set (MWIS) and has broader applications in wireless net-
works. All existing approximation algorithms for A-MWCS have ap-
proximation bound strictly increasing with A. It remains open whether
the problem can be approximated with the same factor as the prob-
lem MWIS. In this paper, we present new approximation algorithms
for A-MWCS. For certain range of \, the approximation bounds of our
algorithms are the same as those for MWIS, and for a larger range
of A, the approximation bounds of our algorithms are strictly smaller
than the best-known ones in the literature. In addition, we give an exact
polynomial-time algorithm for A-MWCS in co-comparability graphs.
We also present a number of applications of our algorithms in wireless
networking.

Keywords: Coloring, channel assignment, approximation algo-
rithm.

1 Introduction

Consider an undirected graph G = (V, E) and a positive integer A. A subset
I of V is said to be independent if any pair of vertices in I are non-adjacent.
A subset F' of the vertices is said to be A-colorable if F can be partitioned
into at most A\ independent subsets (or equivalently, the subgraph of G induced
by F is A-colorable). Suppose that each vertex v has a positive weight w (v).
The weight of each subset F' C V is defined to be w (F') := > .pw (v). The
problem of seeking a A-colorable subset F' of V' with maximum weight is known as
Maximum-Weighted A-Colorable Subgraph (\-MWCS) [3,12,13]. The
special case of this problem with A = 1 is the classical problem Maximum-
Weighted Independent Set (MWIS). In general, the problem A-MWCS



may be strictly harder than MWIS. Indeed, when restricted the class of split
graphs, Yannakakis and Gavril [12] showed that this problem is NP-hard, but the
problem MWIS can be solved in polynomial time. On the other hand, by a result
in [3], the existence of a p-approximation algorithm for MWIS always implies

a greedy 1/ [1 -(1-1/ (u/\)))‘} -approximation algorithm for A-MWCS, which
repeatedly takes an p-approximate weighted independent set in the remaining
graph for A times. Note that the approximation bound 1/ [1— (1 — 1/ (Au))*

strictly increases with .

Various approximation algorithms for MWIS have been developed in [1,
9,13]. For each v € V, N (v) denotes the set of neighbors of v in G. Let < be
an ordering of V. For any uw,v € V, both v < w and u > v represent that v
appears before u in the ordering <. For any v € V and any U C V, we use U,
(respectively, Us.,) to denote the set of u € U satisfying that u < v (respectively,
u > v); in addition, Uz, denotes {v} UUx,, and Uy, denotes {v} UU.,. The
backward local independence number (BLIN) of G in < is defined to be the
maximum number of non-adjacent vertices in N (v) N V<, for all v € V. An
orientation of G is a digraph obtained from G by imposing an orientation on
each edge of G. Suppose that D is an orientation of G. For each v € V., N&' (v)
(resp., N (v)) denotes the set of in-neighbors (resp., out-neighbors) of v in D.
The inward local independence number (ILIN) of D is defined to be the maximum
number of non-adjacent vertices in N#* (v) for all v € V. Then, the following
algorithmic results have be established:

— Given an ordering of V' with BLIN j, there is a S-approximation algorithm
for MWIS [1, 13].

— Given an orientation of G with ILIN ~, there is a 2y-approximation algorithm
for MWIS [9].

By plugging the above approximation algorithms for MWIS into the greedy
approximation framework for A-MWCS proposed in [3], the following algorith-
mic results can be obtained:

— Given an ordering of V with BLIN 8, there is an 1/ [1 —(1-1/ (m))A}-
approximation algorithm for A-MWCS.

— Given an orientation of G with ILIN ~, there is an 1/ [1 -(1-1/ (27/\))’\]—
approximation algorithm for A-MWCS.

Moreover, given an ordering with BLIN 53, Ye and Borodin [13] extends (-
approximation algorithm for MWIS directly to a(ﬁ +1- %)—approximation
algorithm for A-MWCS. While the approximation bound is relatively larger,
the algorithm is simpler and more efficient in implementation. All those ap-
proximation bounds are greater than the respective approximation bounds for
MWIS. A natural open question is whether and when the same approximation
bound for MWIS can be achieved for A-MWCS. A more general open question
is whether and when a better approximation bound may be achieved than those
best-known approximation bounds.



Motivated by the above two open questions, this paper develops two new
approximation algorithms for A-MWCS.

— Given an ordering of V' with BLIN g, the algorithm developed in Section 3
is not only simpler than that proposed in [13], but also achieves a strictly
better approximation bound

w5, (1= 1)1},

In particular, if A < B, the approximation bound is 3, which is also the
best-known approximation bound for the problem MWIS. If A < 23, this
approximation bound is strictly smaller than the best-known approximation

bound 1/ [1— (1 -1/ (m))ﬂ.
— Given an orientation with ILIN ~, the algorithm developed in Section 4
achieve an approximation bound

1
maX{Q%Q'y <1 - /\) + 1}.

Again if A < 2+, the approximation bound is 2, which is also the best-known
approximation bound for the problem MWIS. If A < 4, this approxima-
tion bound is strictly smaller than the best-known approximation bound

1[1—a-1 (2"/)\)))‘]

The above two algorithms are not only of theoretical interest, but have significant
implications for the practical applications where A is not too large compared to
the BLIN or ILIN.

An ordering < of V' is said to be cocomparable if the following transitivity
of independence is satisfied: for any triple of vertices v < v/ < v"” with vv' ¢ E
and v'v"” ¢ E, we have vv” ¢ E. If there is a cocomparable ordering of V', then
G is called a cocomparability graph. When restricted to comparability graphs,
the problem MWIS is solvable in polynomial time (e.g., [9]), and consequently
the greedy approximation framework for A-MWCS proposed in [3] can achieve

an approximation bound 1/ {1 -(1-1/ ()\)))‘] In Section 5, we give an exact

polynomial-time algorithm for A-MWCS in cocomparability graphs. This algo-
rithm generalizes the classic result by Frank [6] on the unweighted variant of
A-MWCS in cocomparability graphs.

The remainder of this paper is organized as follows. In Section 2 we introduce
two basic algorithmic ingredients to be used in the two subsequent sections. In
Section 3, we develop an ordering-based selection algorithm. In Section 4, we
present an orientation-based selection algorithm. In Section 5, we give an exact
polynomial-time algorithm when the graph G is a co-comparability graphs. In
Section 5, we apply these algorithms to the problem of seeking a maximum-
weighted wireless communication requests which can transmit at the same time
over multiple channels.



2 Preliminaries

Motivated by the NP-completeness of the feasibility test, we introduce a tractable
and strong type of feasibility. Let < be an ordering of V.. A set F' C V is said to
be inductively feasible in < if for each v € F', [N (v) N F<,| < A. An inductively
feasible set F' is always A-colorable; indeed, a coloring of F' can be greedily
produced as follows:

— The first vertex v in F' receives the first color.

— For each subsequent vertex v € F' in the ordering <, it receives the first
color which is not used by any vertex in N (v) N Fx,. This is always possible
because the number of colors that have been assigned to N (v) N Fx, is at
most |N (v) N Fxy| < A.

Such coloring is referred to as the greedy coloring of F' in <.
For any subset S C V, an inductively feasible subset F' of S can be computed
as follows:

— Initially, F' is empty.
— For each v € S in the ordering <, v is added to F if and only if
|N(’U)QF<U‘<>\

The set F' computed in this greedy manner is referred to as the mazimal induc-
tively feasible subset of S in <. It is maximal in the sense that for each v € S\ F,
|N (v) N F4,| > A. However, how to select the “candidate” subset S is very es-
sential. In fact, when S = V or S = (} at the two opposite extremes, the maximal
inductively feasible subset of S in < is almost surely to have poor performance
in general. This motivates us to utilize variants of the local-ratio scheme [1-3, 5,
9, 13], which is equivalent to the primal-dual scheme [4], for selecting candidate
set S properly.

Given an ordering < of V, the local-ratio scheme computes a candidate set
S in the following greedy manner:

— S is initially empty.
— For each v € V in the reverse order of <, a discounted weight w (v) of v is
computed by

1
w(v) =w(v) — XE(N(U) ns);
and if w(v) > 0, v is added to S.

The final set S computed in this greedy manner is referred to as the greedy
candidate subset of V in <. For each v € V, its original weight and its discounted
weight have the following relation:

w (v) = (v) + %w(N (v) N Syy) -

In addition, the maximal inductively compatible subset F' of S in < has the
following property



Lemma 1. The mazimal inductively feasible subset F' of S in < satisfies that
w(F)>w(9).

Proof. By the greedy selection of F, for each v € S\ F, |N (v) N F,| > A. Thus,

w(F)=Y wv)= Zw(v)—l—%Zﬁ(N(v)ﬁSH,)

=Y wWEL Y Y W =)+ Ym0 IN ()0 Fal
veF vEF ueEN (v)NSy, vES
>w(E) 1 Y BE)INE AWl 2w (F)+ Y w) =w(S).
vES\F vES\F

So, the lemma holds.

Next, we proceed to compute an ordering < such that the discounted weight
of the greedy candidate subset S in < is close to the original weight of an optimal
solution.

3 Ordering-Based Selection

Suppose that < is an ordering of V' with BLIN 5. Denote

O ::max{6,6<1—i> +1}.

Then, the discounted weight of the greedy candidate subset S in < and the
weight of a maximum-weight feasible subset O are related as follows.

Lemma 2. The greedy candidate subset S of V in < satisfies that w (S) >
w (0) /Bx.

Proof. Consider any v € V. We show that
1
0N {u}l+ 3 IN ()N Ol < B

We consider two cases.
Case 1: v ¢ O. Then

1 1 1
|O N {v}] + X IN (v)NO<,| = 3 N (v) N O<,| < X)‘B =B < Ba.
Case 2: v € O. Then
1
|O N {v} +X [N (v) N O,
1

:1+§\|N(U)ﬂ0<v|§1+§\()‘_1)B:ﬁ(1_>\>+1§5/\‘



Using the relations between the original weights and the discounted weights,
we have

veO

= Z@(U)‘F% @(N(U)QS>_D)
vEO veO

> Y W)+ YN )N
vESNO veO

= > w(v) +§ w (N (u) N Swy)
veESNO ueO

= Y W)+ IV @ N0
veSNO veS

= Zw(v) {On {v} + % [N (v) N Ol
vES

<B Y W) =/ (S).

vES

So, the lemma holds.

Motivated by the above lemma and Lemma 1, we propose the following
ordering-based approximation algorithm, which runs in three steps:

1. Compute the greedy candidate subset S of V in <.
2. Compute the maximal inductively feasible subset F' of S in <.
3. Compute the greedy coloring of F' in <.

All the three steps are greedy in nature and have very simple implementations.
The approximation bound of this algorithm follows immediately from Lemma 1
and Lemma 2.

Theorem 1. F' has an approximate bound [y .

Note that when A < g, By = B. For A > 3, 6y = B(l—%)—l—l and we
compare it against the best-known approximation bound. The comparison is a
based on the following algebraic inequalities.

Lemma 3. For any positive integer p, if 1 < A < 2pu, then

—1— R su(1=3) 11
A a A ’

if A > 2u then




The proof of the above lemma is quite lengthy, and is omitted in this paper.
From the above lemma, we conclude that when A < 2u, () is smaller than the

A
best-known approximation bound [1 — (1 — %) ]

4 Orientation-Based Selection

Suppose that D is an orientation of G with ILIN ~. In this section, we present
an approximation algorithm for A-MWCS with approximation bound

(27), := max {27,27 (1 - i) + 1} .

Consider a non-zero “opportunistic” vector = € [0, 1]V. For any non-empty
subset U of V', a vertex v € U is said to be a surplus vertex in U with respect
to z and D if

x(]\@” (v)NU) >z (Np* (v)NU).

It was proved in [8] that there exists at least one a surplus vertex in U with
respect to z and D. Based on this fact, an ordering of V' can be computed by a
simple greedy strategy as follows.

— Initialize U to V.

— For ¢ = |V| down to 1, let v; be a surplus bid in U with respect to z and
and delete v; from U.

Then, the ordering <v1, Vg, ,v‘V|> is referred to as a surplus-preserving order-
ing of V with respect to x and D. It has the following property.

Lemma 4. Suppose that < is a surplus-preserving ordering of V with respect
to D and some non-zero x € [0, 1]V. Then, the greedy candidate subset S in <
satisfies that

; Ppey v 0)a 0
(5) = max,ev (z (v) + 3z (NZ (v)))

Proof. Since < is a surplus-preserving ordering of V' with respect to z and D,
for any v € V' we have

z (N (v) NVs,) <22 (NP (v) N V) <22 (NJ(v)).



Using the relations between the original weights and the discounted weights, we
have

ueV
:Z@(v)x(v)+%2x(v) Z w (u)
veV veV wEN (v)NSyy
SZW(U)x(U)‘F%Zx(U) Z w (u)
veES veV u€N (v)NSy
= Z w ( )\ Z w ( Z x (v)
vES uesS vEN(u)ﬂV<u
= w JF Z'UJ ﬂ V<v)
vES veS
1
= W) z()+ sz (N()NVs,)
> ( ; )
<> o) (20 + 3o (5 )
veS
2
SI&&&( (x(v) 3 z (Np (v )Zw

veS

veV

9 .
=w (S) max <9: (v) + 3 (NG (1}))) .
Therefore, the lemma holds.

Note that a non-zero z € [0,1]" maximizing the value

Y ovev W (v) (V)
maxyev (z (v) + 32 (N3 (v)))

is achieved by an optimal solution to the following linear program (LP):

max ». w(v)x (v)
veV

st. z(v)+ 3z (Ng (v) <L, VWweV (1)
z(v)>0,YvoeV

The value of the above LP and the weight of a maximum-weight feasible subset
O are related as follows.

Lemma 5. The value of the LP in equation (1) is at least w (O) / (27), .

Proof. Consider any link v € V. We show that

{v}nol+ 3 | v)NO| < (27),-



We consider two cases.
Case 1: v ¢ O. Then

2 : 2 ; 2
\Oﬂ{v}|+X|NB’(v)ﬂO‘:X|NB’(U)QO|§X)\’y§2'y§(2’y))\.
Case 2: v € O. Then
2, 2 1
0N {uH+3 NS N0 =14 30 -0y =2(1- 5 )+ 122,

Let y be the function on V' defined by
i if v € O
NN 7
y(©) {0, Y itvgo.

Then, for each v € V,

v () + 22 (VB ()
1 2, 1
= s {|{v}ﬂ0| +5 |ND' (v) m0|] < IR

Thus, y is a feasible solution to the LP in equation (1), and consequently the
value of the LP in equation (1) is at least

S w @)y @) = —— Y ww) = ——w(0).

= 2V &2 (27)a

So, the lemma holds.

(27), = 1.

The above two lemmas together with Lemma 1 motivates us to propose the
following orientation-based approximation algorithm, which runs in five steps

. Compute an optimal solution = to the LP in equation (1).

. Compute a surplus-preserving ordering < of V' with respect to D and x.
. Compute the greedy candidate subset S of V in <.

. Compute the maximal inductively feasible subset F' of S in <.

. Compute the greedy coloring of F' in <.

Ul W N~

The approximation bound of the output F' follows immediately from the above
two lemmas and Lemma 1.

Theorem 2. The F has an approzimation bound (2v),.
Again when A < 27, (27), = 2v. For A > 2+,

(27), =27 (1 - ;) +1.

By Lemma 3, when A < 4+, (2v), is smaller than the best-known approximation

R
bound {1—(1—271)\) ] .



5 Exact Algorithm in Cocomparability Graphs

Suppose that G = (V, E) is cocomparability graph with a cocomparability order-
ing (vy,v9,--+ ,v,) of its vertices. In this section, we present a polynomial-time
algorithm which computes a maximum-weighted A-colorable subset F' of V' by a
reduction to minimum-cost flow.

We first construct a flow network D. Each vertex v; € V is replaced by two
replicas x; and y;. Then the vertex set of D consists of all these 2n replicas, a
source vertex s, and a sink vertex t. The arc set of D consists of the 3n arcs

{(ziyy:) 1 <i<npU{(s,2;) : 1 <i<n}U{(y;t):1<i<n}
and the n (n — 1) /2 — |E| arcs
{(yi,zj) 11 <i<j<n,vuv; ¢ E}.

All arcs have unit capacity. In addition, each arc (x;,y;) has a cost —w (v;), and
each other arc has zero cost. There is an one-to-one correspondence between the
s-t paths in D and the independent sets in G:

— For each path P, let I be the set of vertices in V' who replications appear in
the path P. Then, I is independent, and is referred to the independent set
induced by P. In addition, the length (i.e., cost) of the path P is equal to

—w (I).
— For each independent set I in G sorted in the cocomparable order
Viy, Uiy, -, Vi, the sequence of vertices s, s, , Vi, Tiyy Yig, - » Tiy» Yiy, ¢ form

an s-t path P in D. Then, the length (i.e., cost) of P is equal to —w (I).

Since all arcs in D have unit capacity, the above correspondence implies that
the minimum cost of all s-t flows of value at most A in D is equal to the additive
inverse of the maximum weight of all A\-colorable subsets of vertices in G. Based
on this relation, a maximum-weighted A-colorable subset of vertices in G can be
computed as follows.

— Compute an integral minimum-cost flow s—t flow f of value at most k in D,
and decompose f into s—t paths flows using the standard flow decomposi-
tion method. Since each arc has unit capacity, each path in the path flow
decomposition carries exactly one unit of flow. Thus, the number of paths is
at most k.

— For each path P, let I be the independent set induced by P. The collection
of all these at most k£ independent sets is returned as the output.

6 Applications

Consider a set A of point-to-point wireless communication requests. All requests
in A are assumed to be node-disjoint and can access a common set of A channels.
A subset of A is said to be feasible if they can transmit at the same time over the



A channels. Suppose each request has a positive weight. We would like to select
a maximum weighted feasible subset of A. Under a protocol interference model,
the conflict relations among A is represented by a graph G on A, in which there
is an edge two requests ¢ and b in A if and only if they have conflict. Then, a
subset of A is feasible if and only if it is A-colorable in G.

The protocol interference model is classified into two communication modes:

— Unidirectional mode: For each request a € A, the communication occurs
in a single direction from its sender to its receiver, and the sender has an
interference range, and the interference range of a is the interference range
of its sender. Two requests in A conflict with each other if and only if the
receiver of at least one request lies in the interference range of the other.

— Bidirectional mode: For each request a € A, the communication occurs in
both directions between its two endpoints, and each of its endpoint has an
interference range. The interference range of a is the union of the interference
ranges of its two endpoints. Two requests in A conflict with each other if and
only if at least one request has an endpoint lying in the interference range
of the other.

In the plane geometric variant, the interference range of an endpoint u of a
request a is assumed to be a disk centered at u, whose radius is also knows as
the interference radius. The following special orientations of the conflict graph
and orderings of the requests have been discovered in the literature:

— Unidirectional mode: An orientation of the conflict graph introduced in [8]
has ILIN at most
c— 1—‘
-1
c

under the assumption that the interference radius of each request is at least
¢ times the distance between its sender and its receiver for some constant
c> 1.

— Bidirectional mode: An orientation of the conflict graph defined in [10] has
ILIN at most 8, and an ordering of the requests given in [8] has BLIN at
most 23. In case of symmetric interference radii (i.e, the two endpoints of
each request have equal interference radii), an ordering of the requests intro-
duced in [10] has BLIN at most 8. In the bidirectional mode with uniform
interference radii (i.e, all endpoints of all requests have equal interference
radii), an ordering of the requests described in [7] has BLIN at most 6.

’77'( / arcsin

By adopting those orientations of the conflict graphs or the orderings of the
requests, the approximation algorithms developed in Section 4 and Section
3 achieve constant approximation bounds when applied to the conflict graph
G. The derivation of these approximation bounds are straightforward and are
omitted in this paper. In addition, it is also easy to identify the range of A\ over
which these approximation bounds do not increase with A, or are smaller than
those achieved by the greedy approximation framework proposed in [3].



When all links have uniform interference radii, the links can be partitioned
into a small constant number p of groups such that the conflict graph of each
group is a co-comparability graph [11]. By applying the algorithm presented
in Section 5 to the conflict graph of each group, a maximum-weighted feasible
subset of each group can be computed in polynomial time. Then, among those p
feasible subsets, the one with the largest weight is returned as the output. Such
divide-and-conquer scheme achieves the approximation bound p, which does not
depend on the number A of channels at all.
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