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Applications of 
Recurrence Relations

Section 8.1



Recurrence Relations  
(recalling definitions from Chapter 2)
Definition: A recurrence relation for the sequence {an} is an 

equation that expresses an in terms of one or more of the 
previous terms of the sequence, namely, a0, a1, …, an-1, for 
all integers n with n ≥ n0, where n0 is a nonnegative integer. 

● A sequence is called a solution of a recurrence relation if its 
terms satisfy the recurrence relation.

● The initial conditions for a sequence specify the terms that 
precede the first term where the recurrence relation takes 
effect. 



Rabbits and the Fiobonacci Numbers
    Example: A young pair of rabbits (one of each gender) is 

placed on an island. A pair of rabbits does not breed 
until they are 2 months old. After they are 2 months old, 
each pair of rabbits produces another pair each month. 
Find a recurrence relation for the number of pairs of 
rabbits on the island after n months, assuming that 
rabbits never die.

    This is the original problem considered by Leonardo Pisano 
(Fibonacci) in the thirteenth century.



Rabbits and the Fiobonacci Numbers 
(cont.)

Modeling the Population Growth of Rabbits on an Island



Rabbits and the Fibonacci Numbers 
(cont.)
    Solution: Let fn  be the the number of pairs of rabbits after n months.

● There are is  f1 = 1 pairs of rabbits on the island at the end of the first 
month. 

● We also have f2 = 1 because the pair does not breed during the first 
month.

● To find the number of pairs on the island after n months, add the 
number on the island after the previous month, fn-1, and the  
number of newborn pairs, which equals fn-2, because each newborn 
pair comes from a pair at least two months old.

Consequently the sequence {fn } satisfies the recurrence relation                 
fn = fn-1  +  fn-2   for  n ≥  3 with the initial conditions  f1 = 1 and  f2 = 1. 
The number of pairs of rabbits on the island after n months is given by 
the nth Fibonacci number.



The Tower of Hanoi
    In the late nineteenth century, the French 

mathematician Édouard Lucas invented a puzzle 
consisting of three pegs on a board with disks of 
different sizes. Initially all of the disks are on the first 
peg in order of size, with the largest on the bottom.

   

Rules: You are allowed to move the disks one at a 
time from one peg to another as long as a larger 
disk is never placed on a smaller.
Goal: Using allowable moves, end up with all the 
disks on the second peg in order of size with 
largest on the bottom.



The Tower of Hanoi (continued)

The Initial Position in the Tower of Hanoi Puzzle



The Tower of Hanoi (continued)
    Solution: Let {Hn} denote the number of moves needed to solve the Tower of Hanoi Puzzle 

with n disks. Set up a recurrence   relation for the sequence {Hn}. Begin with n disks on peg 1. 
We can transfer the top n −1 disks, following the rules of the puzzle, to peg 3 using Hn−1 
moves. 

    

      First, we use 1 move to transfer the largest disk to the second peg. Then we  transfer the  n −1 
disks from peg 3 to peg 2 using Hn−1  additional moves. This can not be done in fewer steps. 
Hence, 

                            Hn  = 2Hn−1   + 1.  
    The initial condition is H1= 1 since a single disk can be transferred from peg 1 to peg 2 in one move.
     



The Tower of Hanoi (continued)
● We can use an iterative approach to solve this recurrence relation by repeatedly expressing Hn in terms of the 

previous terms of the sequence.
           Hn = 2Hn−1 + 1

     =  2(2Hn−2 + 1) + 1 = 22 Hn−2 +2 + 1
     =  22(2Hn−3 + 1) + 2 + 1 = 23 Hn−3 +22 + 2 + 1

     ⋮
     = 2n-1H1 + 2n−2 + 2n−3 + …. + 2 + 1
     = 2n−1 + 2n−2 + 2n−3 + …. + 2 + 1       because H1= 1 

     = 2n − 1       using the formula for the sum of the terms of a  geometric series
● There was a myth created with the puzzle. Monks  in a tower in Hanoi are transferring 64 gold disks from 

one peg to another following the rules of the puzzle.  They move one disk each day. When the puzzle is 
finished, the world will end. 

● Using this formula for the 64 gold disks of the myth, 
                 264  −1 = 18,446, 744,073, 709,551,615 
      days are needed to solve the puzzle, which is more than 500 billion years.
● Reve’s puzzle (proposed in 1907 by Henry Dudeney) is similar but has 4 pegs. There is a well-known 

unsettled conjecture for the the minimum number of moves needed to solve this puzzle.  (see Exercises 38-45)



Counting Bit Strings
      Example 3: Find a recurrence relation and give initial conditions for the number of bit strings of length n 

without two consecutive 0s. How many such bit strings are there of length five?
      Solution: Let an  denote the number of bit strings of length  n without two consecutive 0s.  To obtain a 

recurrence relation for {an } note that the number of bit strings of length n that do not have two consecutive 0s 
is the number of bit strings ending with a 0 plus the number of such bit strings ending with a 1. 

      Now assume that n ≥ 3. 
●  The bit strings of length n ending with 1 without two consecutive 0s are the bit strings of length n −1 with no two 

consecutive 0s with a 1  at the end. Hence, there are an−1  such bit strings.
● The bit strings of length n ending with 0 without two consecutive 0s are the bit strings of length n −2 with no two 

consecutive 0s with 10  at the end. Hence, there are an−2  such bit strings.
       We conclude that an  = an−1  + an−2  for n ≥ 3.

      

    

   



Bit Strings (continued)
    
     The initial conditions are: 

● a1  = 2, since both the bit strings 0 and 1 do not have consecutive 0s.
● a2  = 3, since the bit strings 01, 10, and 11 do not have consecutive 0s, while 00 does.

     To obtain a5 , we use the recurrence relation three times to find that:

●  a3 = a2  + a1  = 3 + 2 = 5
●  a4 = a3  + a2  = 5+ 3 = 8
●  a5 = a4  + a3  = 8+ 5 = 13

      

    

   

Note that {an } satisfies the same recurrence relation as the Fibonacci 
sequence. Since a1  = f3  and  a2  = f4 , we conclude that an  = fn+2 .

         



Counting the Ways to Parenthesize a 
Product
 Example: Find a recurrence relation  for C

n 
, the number of ways to parenthesize the product of 

  n + 1 numbers, x
0
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n
, to specify the order of multiplication. 

  For example, C
3 
 = 5, since all the possible ways to parenthesize 4 numbers are 

  ((x
0
 · x

1
 )· x

2
 )· x

3  
,    (x

0
 · (x

1
 · x

2
 ))· x

3
 ,    (x

0
 · x

1
 )· (x

2
 · x

3
 ),  x

0
 · (( x

1
 · x

2
 ) · x

3
 ),     x

0
 · ( x

1
 · ( x

2
 · x

3
 ))

Solution:  Note that however parentheses are inserted in x
0
 · x

1
 · x

2
 · …⋯ · x

n
, one  “·” operator remains  

outside all parentheses. This final operator appears between two of the n + 1 numbers, say x
k
 and x

k+1
. Since there are 

C
k
  ways  to insert parentheses in the product x

0
 · x

1
 · x

2
 · …⋯ · x

k
  and  C

n−k−1
  ways  to insert parentheses in 

the product x
k+1

 · x
k+2

  · …⋯ · x
n
, we have 

ß

The initial conditions are C
0
 = 1 and C

1
 = 1.

      

The sequence {Cn } is the sequence of Catalan Numbers. 
This recurrence  relation can be solved using the method 
of generating functions; see Exercise 41 in Section 8.4. 



Solving Linear 
Recurrence Relations

Section 8.2



Section Summary
● Linear Homogeneous Recurrence Relations
● Solving Linear Homogeneous Recurrence Relations 

with Constant Coefficients. 
● Solving Linear Nonhomogeneous Recurrence 

Relations with Constant Coefficients.



Linear Homogeneous Recurrence 
Relations
   Definition: A linear homogeneous recurrence relation of degree 

k with constant coefficients is a recurrence relation of the 
form an = c1an−1 + c2an−2 + ….. + ck an−k , where                c1, c2, 
….,ck are real numbers, and ck ≠ 0 

• it is linear because the right-hand side is a sum of the previous terms of the sequence each 
multiplied by a function of n.
• it is homogeneous because no terms occur that are not multiples of the ajs. Each coefficient 
is a constant.
• the degree is k  because  an is expressed in terms of the previous k terms of the sequence. 

By strong induction, a sequence satisfying such a recurrence relation is uniquely 
determined by the recurrence relation and the k initial conditions a0  = C1, a0  = C1 ,… , ak−1  = 
Ck−1.



Examples of Linear Homogeneous 
Recurrence Relations 
● Pn = (1.11)Pn-1     linear homogeneous recurrence 

relation of degree one
●  fn = fn-1  + fn-2   linear homogeneous recurrence 

relation of degree two
●                                          not linear

● Hn = 2Hn−1 + 1   not homogeneous

● Bn = nBn−1  coefficients are not constants 



Solving Linear Homogeneous 
Recurrence Relations
● The basic approach is to look for solutions of the form                          

an = rn, where r is a constant.  
● Note that an = rn  is a solution to the recurrence relation                         

an = c1an−1 + c2an−2 + …⋯ + ck an−k   if and only if                                       
rn = c1rn−1 + c2rn−2 + …⋯ + ck rn−k .

● Algebraic manipulation yields the characteristic equation: 
      rk − c1rk−1  − c2rk−2 − …⋯ − ck−1r  − ck   = 0
● The sequence {an} with  an = rn  is a solution if and only if r is a 

solution to the characteristic equation. 
● The solutions to the characteristic equation are called the characteristic 

roots of the recurrence relation. The roots are used to give an explicit 
formula for all the solutions of the recurrence relation. 

  



Solving Linear Homogeneous 
Recurrence Relations of Degree Two
   Theorem 1:  Let c1 and c2 be real numbers. Suppose 

that r2 – c1r – c2 = 0 has two distinct roots r1 and r2. 
Then the sequence {an} is a solution to the recurrence    
relation   an = c1an−1 + c2an−2   if and only if

    for n = 0,1,2,… , where α1 and α2 are constants.



Using Theorem 1
    Example: What is the solution to the recurrence relation  
           
            a

n
 = a

n−1
 + 2a

n−2
 with a

0
 = 2 and a

1
 = 7? 

    Solution: The characteristic equation is  r
2
 −  r − 2 = 0.   

    Its roots are r = 2 and r = −1 . Therefore, {a
n
} is a solution to the recurrence relation if and

    only if  a
n
 = α

1
2

n
 + α

2
(−1)

n
, for some constants α

1
 and α

2
.

      
     To find the constants  α

1
 and α

2
, note that

            a
0
 = 2 = α

1
 + α

2
  and  a

1
 = 7 = α

1
2 + α

2
(−1).

     Solving these equations, we find that   α
1 

 = 3 and α
2 

 = −1.  

     Hence, the solution is the sequence {a
n
} with   a

n
 = 3·2

n
 − (−1)

n
.

  
    



An Explicit Formula for the Fibonacci 
Numbers

    We can use Theorem 1 to find an explicit formula for the 
Fibonacci numbers. The sequence of Fibonacci numbers 
satisfies the recurrence relation   fn = fn−1  +  fn−2 with the 
initial conditions:  f0 = 0  and f1 = 1.

    Solution:  The roots of the characteristic equation                            
r2 – r – 1 = 0 are

    



Fibonacci Numbers (continued)
     Therefore by Theorem 1

     for some constants α1 and α2.
    Using the initial conditions f0 = 0 and  f1 = 1 , we have

     Solving, we obtain                                     .
     Hence, 

.

,



The Solution when there is a Repeated 
Root
    Theorem 2:  Let c1 and c2 be real numbers with c2 ≠ 0.  

Suppose that r2 – c1r – c2 = 0 has one repeated root r0. 
Then the sequence {an} is a solution to the recurrence  
relation an = c1an−1 + c2an−2  if  and only if

  for n = 0,1,2,… , where α1 and α2  are constants.



Using Theorem 2
    Example:  What is the solution to the recurrence  relation                                                                     

an = 6an−1 − 9an−2 with a0 = 1 and a1 = 6? 

    Solution: The characteristic equation is  r2 − 6r + 9 = 0. 
    The only root is  r = 3. Therefore,  {an} is a solution to the recurrence relation  if and only if  
                an = α13n + α2n(3)n                                                   
     where α1 and α2  are constants.

      To find the constants  α1 and α2, note that 
  
                a0 = 1 = α1    and       a1 = 6 = α1 · 3 + α2 ·3.

        Solving, we find that  α1  = 1 and    α2  = 1  .
       Hence, 
             an = 3n + n3n .
  



Solving Linear Homogeneous Recurrence 
Relations of Arbitrary Degree
    This theorem can be used to solve linear homogeneous recurrence 

relations with constant coefficients of any degree when the 
characteristic equation has distinct roots.

    Theorem 3: Let c1, c2 ,…, ck be real numbers. Suppose that the 
characteristic equation                   

          rk – c1r
k−1 –…⋯ – ck = 0 

    has k distinct roots r1, r2, …, rk. Then a sequence {an}   is a solution of the 
recurrence relation

        an = c1an−1 + c2an−2 + ….. + ck an−k

      if and only if

    for n = 0, 1, 2, …, where α1, α2,…, αk are constants. 



The General Case with Repeated Roots 
Allowed 
    Theorem 4: Let c1, c2 ,…, ck be real numbers. Suppose that the characteristic equation                   
              rk – c1rk−1 –…⋯ – ck = 0 
     has t distinct roots r1, r2, …, rt with multiplicities  m1, m2, …, mt, respectively so that mi 
≥ 1 for i = 0, 1, 2, …,t and m1 +  m2 +  … + mt = k. Then a sequence {an}   is a solution of the 
recurrence relation

           an = c1an−1 + c2an−2 + ….. + ck an−k

       if and only if

     for n = 0, 1, 2, …, where αi,j are constants for 1≤ i ≤ t  and 0≤ j ≤ mi−1. 



Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients
   Definition: A linear nonhomogeneous recurrence relation with 

constant coefficients is a recurrence relation of the form:
          an = c1an−1 + c2an−2 + ….. + ck an−k + F(n) ,

   where c1, c2, ….,ck are real numbers, and F(n) is a function 
not identically zero depending only on n.

    The recurrence relation
          an = c1an−1 + c2an−2 + ….. + ck an−k ,

   is called the associated homogeneous recurrence relation.



Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients (cont.)
    The following are linear nonhomogeneous recurrence relations with 

constant coefficients:
    an = an−1 + 2n

 ,

    an = an−1 + an−2 + n2 + n + 1, 
    an = 3an−1 +  n3n ,
    an = an−1 + an−2 + an−3 + n! 
    where the following are the associated linear homogeneous recurrence 

relations, respectively:
    an = an−1  ,

    an = an−1 + an−2, 
    an = 3an−1 ,
    an = an−1 + an−2 + an−3



Solving Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients 

    Theorem 5:  If {an
(p)} is a particular  solution of the 

nonhomogeneous linear recurrence relation with 
constant coefficients

       an = c1an−1 + c2an−2 + …⋯ + ck an−k + F(n) ,

   then every solution is of the form {an
(p) + an

(h)}, where  
{an

(h)} is a solution of the associated homogeneous 
recurrence relation

         an = c1an−1 + c2an−2 + …⋯ + ck an−k .



Solving Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients (continued) 
     Example:  Find all solutions of the recurrence relation an = 3an−1 + 2n.  
     What is the solution with a1 = 3? 

     Solution: The associated linear homogeneous equation is an = 3an−1. 
     Its solutions are an

(h) = α3n, where α  is a constant.

      Because F(n)= 2n is a polynomial in n of degree one,  to find a particular solution we might try a linear function in n,  say  pn = 
cn + d, where c and d are constants. Suppose that pn = cn + d  is such a solution. 

      Then an = 3an−1 + 2n   becomes   cn + d = 3(c(n− 1) + d)+ 2n. 

      Simplifying yields (2 + 2c)n + (2d − 3c)  = 0. It follows that cn + d is  a solution if and only if 
       2 + 2c  = 0 and 2d − 3c  = 0.  Therefore, cn + d is  a solution if and only if c = − 1 and d = − 3/2. 
       Consequently,    an

(p) = −n − 3/2  is a particular solution. 

       By Theorem 5, all solutions are of the form  an = an
(p) + an

(h) = −n − 3/2 + α3n, where α  is a constant.

      To find the solution with a1 = 3, let n = 1 in the above formula for the general solution. 
       Then 3 = −1 − 3/2 + 3 α,  and α = 11/6. Hence, the solution is an = −n − 3/2 + (11/6)3n.
  



Divide-and-Conquer Algorithms 
and Recurrence Relations

Section 8.3



Section Summary
● Divide-and-Conquer Algorithms and Recurrence 

Relations
● Examples

● Binary Search
● Merge Sort
● Fast Multiplication of Integers

● Master Theorem
● Closest Pair of Points (not covered yet in these slides)



Divide-and-Conquer Algorithmic 
Paradigm
   Definition: A divide-and-conquer algorithm  works by first  

dividing a problem into one or more instances of the same 
problem of smaller size and then conquering the problem 
using the solutions of the smaller problems to find a 
solution of the original problem.

    Examples:
● Binary search, covered in Chapters 3 and 5: It works by comparing the 

element to be located to the middle element. The original list is then split 
into two lists and the search continues recursively  in the appropriate 
sublist.

● Merge sort, covered in Chapter 5: A list is  split into two approximately 
equal sized sublists, each  recursively sorted by merge sort.  Sorting is 
done by successively merging pairs of lists. 



Divide-and-Conquer Recurrence 
Relations

● Suppose that a recursive algorithm divides a problem of 
size n into a subproblems.

● Assume each subproblem is of size n/b.
● Suppose g(n) extra operations are needed in the 

conquer step.
● Then f(n) represents the number of operations to solve a 

problem of size n satisisfies the following recurrence 
relation:

            f(n) = af(n/b) + g(n)
● This is called a divide-and-conquer recurrence relation.



Example: Binary Search
● Binary search reduces the search for an element in a 

sequence of size n to the search in a sequence of size n/2. 
Two comparisons are needed to implement this reduction;
● one to decide whether to search the upper or lower half of the 

sequence and 
● the other to determine if the sequence has elements.

● Hence, if f(n) is the number of comparisons required to 
search for an element in a sequence of size n, then

      when n is even.
        

 f(n) = f(n/2) + 2



Example: Merge Sort
● The merge sort algorithm splits a list of n (assuming n is 

even) items to be sorted into two lists with n/2 items. It 
uses fewer than n comparisons to merge the two sorted 
lists.

● Hence, the number of comparisons required to sort a 
sequence of size n,  is no more than than  M(n) where

      
        

 M(n) = 2M(n/2) + n.



Example: Fast Multiplication of 
Integers
● An algorithm  for the fast multiplication of  two 2n-bit integers  (assuming n is even) first splits each of the 2n-bit integers 

into two blocks, each of n bits.
● Suppose that a and b are integers with binary expansions of length 2n. Let
             a = (a2n−1a2n−2 … a1a0)2   and b = (b2n−1b2n−2 … b1b0)2 . 
● Let a = 2nA1 + A0,  b = 2nB1 + B0 , where
               A1 = (a2n−1 … an+1an)2 , A0 = (an−1 … a1a0)2 ,
               B1 = (b2n−1 … bn+1bn)2 , B0 = (bn−1 … b1b0)2.
● The algorithm is based on the fact that ab can be rewritten as:
               ab = (22n + 2n)A1B1 +2n (A1−A0)(B0 − B1) +(2n + 1)A0B0.
● This identity shows that the multiplication of two 2n-bit integers can be carried out using three multiplications of n-bit 

integers, together with additions, subtractions, and shifts. 
● Hence, if f(n) is the total number of operations needed to multiply two n-bit integers, then
         
                f(2n) = 3f(n) + Cn        

       where Cn  represents the total number of bit operations; the additions, subtractions and shifts that are a constant multiple 
of n-bit operations.

      
        



Estimating the Size of Divide-and-Conquer 
Functions 

   Theorem 1: Let f be an increasing function that satisfies 
the recurrence relation

              f(n) = af(n/b) + cnd

    whenever n is divisible by b, where a≥ 1, b is an integer 
greater than 1, and c is a positive real number. Then

    Furthermore, when n = bk and a ≠1, where k is a 
positive integer,

    where C1 = f(1) + c/(a−1) and C1 =  −c/(a−1). 



Complexity of Binary Search
   Binary Search Example: Give a big-O estimate for the 

number of comparisons used by a binary search.
    Solution:  Since the number of comparisons used by 

binary search is f(n) = f(n/2) + 2 where n is even, by 
Theorem 1, it follows that f(n) is O(log n). 



Estimating the Size of Divide-and-conquer 
Functions (continued)

   Theorem 2. Master Theorem: Let f be an increasing 
function that satisfies the recurrence relation

              f(n) = af(n/b) + cnd

    whenever n = bk, where  k is a positive integer greater 
than 1, and c  and d are real numbers with c positive 
and d nonnegative. Then

    



Complexity of Merge Sort
   Merge Sort Example: Give a big-O estimate for the 

number of comparisons used by merge sort.
   Solution:  Since the number of comparisons used by 

merge  sort to sort a list of n elements is less than  M(n) 
where M(n) = 2M(n/2) + n, by the master theorem M(n) is O(n 
log n). 

 



Complexity of Fast Integer 
Multiplication Algorithm
    Integer Multiplication Example: Give a big-O estimate for the number of 

bit operations used needed to multiply two n-bit integers using the fast 
multiplication algorithm. 

    Solution: We have shown that f(n) = 3f(n/2) + Cn, when n is even, where 
f(n) is the number of bit operations needed to multiply two n-bit 
integers. Hence by the master theorem  with a = 3,        b = 2, c = C, 
and d = 0 (so that we have the case where a > bd), it follows that f(n) is 
O(nlog 3). 

    Note that log 3 ≈ 1.6. Therefore the fast multiplication algorithm is a 
substantial improvement over the conventional algorithm that uses O(n2) 
bit operations.

 



Generating Functions
Section 8.4



Section Summary
● Generating Functions
● Counting Problems and Generating Functions
● Useful Generating Functions
● Solving Recurrence Relations Using Generating 

Functions (not yet covered in the slides)
● Proving Identities Using Generating Functions (not 

yet covered in the slides)



Generating Functions
   Definition: The generating function for the sequence  a0, a1,

…, ak, … of real numbers is the infinite series

    Examples:
● The sequence {ak} with ak = 3  has the generating function 
● The sequence {ak} with ak =  k + 1 has the generating 

function  has the generating function
● The sequence {ak} with ak =  2k  has the generating function 



Generating Functions for Finite 
Sequences
● Generating functions for finite sequences of real 

numbers can be defined by extending a finite sequence  
a0,a1, … , an   into an infinite sequence by setting               
an+1 = 0, an+2 = 0, and so on.

● The generating function G(x) of this infinite sequence 
{an} is a polynomial of degree n because no terms of the 
form ajxj with j > n occur, that is,

                    G(x) = a0 + a1x + …⋯ + an xn.



Generating Functions for Finite 
Sequences (continued)
   Example:  What is the generating function for the 

sequence 1,1,1,1,1,1?
   Solution: The generating function of 1,1,1,1,1,1  is 
       1 + x + x2 + x3 + x4 + x5.
    By Theorem 1 of Section 2.4, we have
       (x6 − 1)/(x −1) = 1 + x + x2 + x3 + x4 + x5

     when x ≠ 1.
     Consequently G(x) = (x6 − 1)/(x −1) is the generating 

function of the sequence. 





Counting Problems and Generating 
Functions
   Example: Find the number of solutions of 
          e1 + e2 + e3 = 17,
    where e1, e2, and e3 are nonnegative integers with                                 

2 ≤ e1≤ 5, 3 ≤ e2 ≤ 6, and 4 ≤ e3 ≤ 7.  
    Solution: The number of solutions is the coefficient of x17 in the 

expansion of  
            (x2 + x3 + x4 + x5) (x3 + x4 + x5 + x6) (x4 + x5 + x6 + x7).
    This follows because a term equal to  is obtained in the product 

by picking a term in the first sum xe1, a term in the second sum 
xe2, and a term in the third sum xe3, where  e1 + e2 + e3 = 17.

    There are three solutions since the coefficient of x17 in the product is 3. 



Counting Problems and Generating 
Functions (continued)
    Example: Use generating functions to find the number of k-combinations of a 

set with n elements, i.e., C(n,k). 
    Solution: Each of the n elements in the set contributes the term (1 + x) to the 

generating function

    Hence f(x) = (1 + x)n where f(x) is the generating function for {ak}, where ak 
represents the number of   k-combinations of a set with n elements. 

    By the binomial theorem, we have

    where

    Hence,   
 



Inclusion-Exclusion
Section 8.5



Principle of Inclusion-Exclusion
● In Section 2.2, we developed the following formula 

for the number of elements in the union of two finite 
sets:

● We will generalize this formula to finite sets of any 
size. 



Two Finite Sets
   Example: In a discrete mathematics class every student is a major in 

computer science or mathematics or both. The number of students 
having computer science as a  major (possibly along with 
mathematics) is 25; the number of students having mathematics as a 
major (possibly along with computer science) is 13; and the number 
of students majoring in both computer science and mathematics is 8. 
How many students are in the class?

     Solution: |A∪B| = |A| + |B| −|A∩B| 
                                    =  25 + 13 −8 = 30



Three Finite Sets



Three Finite Sets Continued
   Example: A total of 1232 students have taken a course in Spanish, 879 have 

taken a course in French, and 114 have taken a course in Russian. Further, 
103 have taken courses in both Spanish and French, 23 have taken courses 
in both Spanish and Russian, and 14 have taken courses in both French and 
Russian. If 2092 students have taken a course in at least one of Spanish 
French and Russian, how many students have taken a course in all 3 
languages. 

    Solution: Let S be the set of students who have taken a course in Spanish, F 
the set of students who have taken a course in French, and R the set of 
students who have taken a course in Russian. Then, we have

    |S| = 1232, |F| = 879, |R| = 114, |S∩F| = 103, |S∩R| = 23, |F∩R| = 14, and 
|S∪F∪R| = 23.

     Using the equation 
           |S∪F∪R| = |S|+ |F|+ |R| − |S∩F| − |S∩R| − |F∩R| + |S∩F∩R|,
      we obtain 2092 = 1232 + 879 + 114 −103 −23 −14 + |S∩F∩R|.
       Solving for |S∩F∩R| yields 7.



Illustration of Three Finite Set 
Example



The Principle of Inclusion-Exclusion
   Theorem 1. The Principle of Inclusion-Exclusion: 

Let A1, A2, …, An be finite sets. Then:



Inequality
≤

≥



The Principle of Inclusion-Exclusion 
(continued)
   Proof: An element in the union is counted exactly once 

in the right-hand side of the equation.  Consider an 
element a that is a member of r of the sets A1,…., An          
where 1≤  r ≤  n. 

● It is counted C(r,1) times by Σ|Ai|

● It is counted C(r,2) times by Σ|Ai ⋂Aj| 

● In general, it is counted C(r,m) times by the summation 
of m of the sets Ai.



The Principle of Inclusion-Exclusion 
(cont)

● Thus the element is counted exactly
       C(r,1) − C(r,2) + C(r,3) − …⋯ + (−1)r+1 C(r,r) 
    times by the right hand side of the equation.
● By Corollary 2 of Section 6.4, we have
         C(r,0) − C(r,1) + C(r,2) − …⋯ + (−1)r C(r,r) = 0.
● Hence,
         1 =  C(r,0) = C(r,1) − C(r,2) + …⋯ + (−1)r+1 C(r,r).



Applications of 
Inclusion-Exclusion

Section 8.6



Section Summary
● Counting Onto-Functions
● Derangements



The Number of Onto Functions
      Example: How many onto functions are there from a set with six elements to a set with three 

elements?
      Solution:  Suppose that the elements in the codomain are b1, b2, and b3. Let P1, P2, and P3  be the 

properties that b1, b2, and b3 are not in the range of the function, respectively. The function is onto if 
none of the properties P1, P2, and P3  hold. 

      By the inclusion-exclusion principle the number of onto functions from a set with six elements to a 
set with three elements is

    
           N − [N(P1) + N(P2) + N(P3)]  + 
                        [N(P1P2) + N(P1P3) + N(P2P3)] − N(P1P2P3)

● Here the total number of functions from a set with six elements to one with three elements is N = 36.
● The number of functions that do not have  in the range is N(P1) = 26. Similarly, N(P2) =  N(31) = 26 .
●  Note that N(P1P2) = N(P1P3) = N(P2P3) = 1 and N(P1P2P3)= 0. 

      Hence, the number of onto functions from a set with six elements to a set with three elements is:

                    36 − 3· 26  + 3  = 729 − 192   + 3  = 540



The Number of Onto Functions 
(continued)
   Theorem 1: Let m and n be positive integers with              

m ≥ n.  Then there are 

    onto functions from a set with m elements to a set with n 
elements. 

    Proof follows from the principle of inclusion-exclusion 
(see Exercise 27).

      



Derangements
   Definition:  A derangement is a permutation of objects 

that leaves no object in the original position.

   Example: The permutation of 21453 is a derangement 
of 12345 because no number is left in its original 
position. But 21543 is not a derangement of 12345, 
because 4 is in its original position. 



Derangements (continued)
   Theorem 2: The number of derangements of a set 

with n elements is 

Let Ai be the number of permutations that number i is in position i.
Number of dearrangements is n!-|A1 ∪ A2 ∪ A3 ∪ A4….. ∪ An|
Then |Ai|=(n-1)!,
|Ai ⋂ Aj|=(n-2)!
|Ai1⋂ Ai2⋂ Ai3……⋂ Aik|=(n-k)!
 



Derangements (continued)
   The Hatcheck Problem: A new employee checks the hats of n 

people at  restaurant, forgetting to put claim check numbers 
on the hats. When customers return for their hats, the checker 
gives them back hats chosen at random from the remaining 
hats. What is the probability that no one receives the correct 
hat.

   Solution: The answer is the number of ways the hats can be 
arranged so that there is no hat in its original position divided 
by n!, the number of permutations of n hats. 

    

Remark: It can be shown 
that the probability of a 
derangement 
approaches 1/e as n 
grows without bound. 


