CDS in Plane Geometric Networks: Short, Small, And Sparse

Peng-Jun Wan
Outline

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement
Three Parameters of A Virtual Backbone (CDS)

\[G = (V, E): \text{a (connected) UDG} \]
\[s \in V: \text{a fixed node} \]
\[R: \text{radius of } G \text{ w.r.t. } s. \]
Three Parameters of A Virtual Backbone (CDS)

$G = (V, E)$: a (connected) UDG

$s \in V$: a fixed node

R: radius of G w.r.t. s.

U: a CDS of G containing s

- Size: $|U|$
Three Parameters of A Virtual Backbone (CDS)

\[G = (V, E): \text{a (connected) UDG} \]
\[s \in V: \text{a fixed node} \]
\[R: \text{radius of } G \text{ w.r.t. } s. \]
\[U: \text{a CDS of } G \text{ containing } s \]

- **Size:** \(|U| \)
- **Radius:** \(\text{Rad}(G[U], s) \)
Three Parameters of A Virtual Backbone (CDS)

\[G = (V, E): \text{a (connected) UDG} \]
\[s \in V: \text{a fixed node} \]
\[R: \text{radius of } G \text{ w.r.t. } s. \]
\[U: \text{a CDS of } G \text{ containing } s \]

- **Size:** \(|U|\)
- **Radius:** \(\text{Rad}(G[U], s) \)
- **Sparsity:** \(\Delta(G[U]) \)
Our objective is to construct a CDS U of G with $s \in U$ such that

1. U is small: $|U| = \Theta (\text{poly} (R))$
2. U is short: $\text{Rad} (G [U], s) = \Theta (R)$
3. U is sparse: $\Delta (G [U])$ is small, preferably bounded by a constant.
2-Phased Algorithm

- Phase 1: First-fit selection of an MIS I in the BFS ordering w.r.t. s
2-Phased Algorithm

- Phase 1: First-fit selection of an MIS I in the BFS ordering w.r.t. s
- Phase 2: Augment I with a set C of “connectors” to form a CDS
Roadmap

- Three Parameters of CDS
- **Dominator**s
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement
Sparsity of Dominators

- Each node is adjacent to at most 5 dominators.

Figure: The layout of 18 dominators in the annulus of radii $1 + 2\varepsilon$ and $(1 + 2\varepsilon) \sqrt{2 + \sqrt{3}}$ centered at a node v_0.
Sparsity of Dominators

- Each node is adjacent to at most 5 dominators.
- The annulus of radii one and two centered at each node contains at most 18 dominators (Bateman and Erdös)

Figure: The layout of 18 dominators in the annulus of radii $1 + 2\varepsilon$ and $(1 + 2\varepsilon) \sqrt{2 + \sqrt{3}}$ centered at a node v_0.
Theorem

Suppose that S is a compact convex set and U is a set of points with mutual distances at least one. Then

$$|U \cap S| \leq \frac{\text{area}(S)}{\sqrt{3}/2} + \frac{\text{peri}(S)}{2} + 1,$$

where $\text{area}(S)$ and $\text{peri}(S)$ are the area and perimeter of S respectively.
Corollary

Suppose that S (respectively, S') is a disk (respectively, half-disk) of radius r, and U is a set of points with mutual distances at least one. Then

\[|U \cap S| \leq \frac{2\pi}{\sqrt{3}} r^2 + \pi r + 1, \]

\[|U \cap S'| \leq \frac{\pi}{\sqrt{3}} r^2 + \left(\frac{\pi}{2} + 1 \right) r + 1. \]
Since all dominators lie in the disk of radius R centered at s, we have

$$|I| \leq \left(\frac{2\pi}{\sqrt{3}} R^2 + \pi R + 1 \right).$$
Roadmap

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement
• \(\forall u \in I \setminus \{s\}, p(u) \leftarrow \) the least-ID neighbor of \(u \) in the layer above \(u \).
Basic Set of Connectors

- $\forall u \in I \setminus \{s\}, p(u)$ ← the least-ID neighbor of u in the layer above u.
- output $C = \{p(u) : u \in I \setminus \{s\}\}$.

\[
\begin{align*}
\text{Layer 0} & \quad s
\end{align*}
\]
\[
\begin{align*}
\text{Layer 1} & \quad \quad \\
\text{Layer 2} & \quad \quad \\
\text{Layer R} & \quad \quad \\
\end{align*}
\]
\[|C| \leq |I \setminus \{s\}| = |I| - 1. \]
Size And Radius

\[|C| \leq |I \setminus \{s\}| = |I| - 1. \]

Hence,

\[|I \cup C| \leq 2|I| - 1 \leq \frac{4\pi}{\sqrt{3}} R^2 + 2\pi R + 1. \]
\[|C| \leq |I \setminus \{s\}| = |I| - 1. \]

Hence,
\[|I \cup C| \leq 2|I| - 1 \leq \frac{4\pi}{\sqrt{3}} R^2 + 2\pi R + 1. \]

In addition,
\[\operatorname{Rad} (G[I \cup C], s) \leq 2(R - 1). \]
Sparsity

- Each dominatee is adj. to at most 4 dominators in the layer below itself.

Figure: The node v_0 is s. It is adjacent to 16 connectors.
Sparsity

- Each dominatee is adj. to at most 4 dominators in the layer below itself.
- s is adj. to at most 18 connectors.

Figure: The node v_0 is s. It is adjacent to 16 connectors.
Sparsity

- Each dominatee is adj. to at most 4 dominators in the layer below itself.
- s is adj. to at most 18 connectors
- Each other dominator is adj. to at most 17 connectors in the same or the next layer.

Figure: The node v_0 is s. It is adjacent to 16 connectors.
Roadmap

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- **The First Improvement**
- The Second Improvement
- The Third Improvement
Figure: (a) $X = \{x_i : 1 \leq i \leq 7\}$ is covered by $Y = \{y_i : 1 \leq i \leq 5\}$. (b) $\{y_2, y_3, y_4\}$ is a minimal cover of X. The black nodes are private neighbors.
for each $0 \leq i \leq R$, $l_i \leftarrow \{\text{dominators of depth } i \text{ in } G\}$;
$C \leftarrow \emptyset$;
for each $1 \leq i \leq R - 1$,
$C_i \leftarrow \text{a minimal cover of } l_{i+1} \text{ in } \{p(u) : u \in l_{i+1}\}$;
$C \leftarrow C \cup C_i$;
output C.

\[\text{Layer 0} \quad \text{Layer 1} \quad \text{Layer 2} \quad \text{Layer R}\]
\[|C| \leq |I| - 1, \]
\[\text{Rad} \left(G [I \cup C], s \right) \leq 2(R - 1). \]

Lemma

For each \(2 \leq i < R - 1 \), each dominator in \(I_i \) is adjacent to at most 12 connectors in \(C_i \) and at most 11 connectors in \(C_{i+1} \). In addition, \(|C_0| \leq 12 \).
An Equilateral Triangle Property

Figure: The two circles have unit radius, and $1 \leq \|uv\| \leq 2$. Then, both $\triangle pvx$ and $\triangle qvy$ are equilateral.
Lemma

Consider three nodes u, v and w satisfying that $1 < \|uw\| \leq \|uv\| \leq 2$ and $\|vw\| > 1$. If $\overline{vw} \leq 2 \arcsin \frac{1}{4} \approx 28.955^\circ$, then $B(u) \cap B(v) \subseteq B(w)$.

Figure: If $\theta \leq 2 \arcsin \frac{1}{4}$, then $\|uy\| \geq \|uv\|$, and hence $w \in ux \subset \triangle upq$.
A Geometric Lemma on Angle Separation

\[\| uy \| \geq \| uv \| \iff \widehat{uy} \geq \widehat{uv} = \widehat{uxy} \iff \widehat{xvy} \geq \theta. \]

\[\| vz \| = \| uv \| \sin \theta \leq 2 \sin \theta = 4 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \leq \cos \frac{\theta}{2} \]

\[\Rightarrow \widehat{xvy} = 2 \arccos \| vz \| \geq 2 \arccos \left(\cos \frac{\theta}{2} \right) = \theta. \]

Figure: If \(\theta \leq 2 \arcsin \frac{1}{4} \), then \(\| uy \| \geq \| uv \| \).
Proof of Sparsity

Each dominator $u \in I_i$ is adj. to at most 12 connectors in C_i:

Figure: w_1, w_2, \cdots, w_k are the connectors in C_i adjacent to u. Each v_j is a private dominator neighbor of w_j in I_{i+1}.
Proof of Sparsity

Each dominator \(u \in I_i \) is adj. to at most 12 connectors in \(C_i \):

\[
\begin{align*}
\text{Figure: } w_1, w_2, \cdots, w_k \text{ are the connectors in } C_i \text{ adjacent to } u. \text{ Each } v_j \text{ is a private dominator neighbor of } w_j \text{ in } I_{i+1}.
\end{align*}
\]

If \(k \geq 13 \), then there exist two dominators \(v_{j'} \) and \(v_{j''} \) s.t. \(\angle v_{j'} uv_{j''} \leq \frac{2\pi}{13} \).

Assume by symmetry that \(v_{j''} \) is closer to \(u \) then \(v_{j'} \). Then,

\[
w_{j'} \in B(u) \cap B(v_{j'}) \subseteq B(v_{j''}).
\]
Proof of Sparsity

Each dominator $u \in I_i$ is adj. to at most 11 connectors in C_{i+1}:
Figure: The node v_0 is s. It is adjacent to 12 connectors.
Roadmap

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- **The Second Improvement**
- The Third Improvement
An Auxiliary Graph on Dominators

- G': the graph on dominators in which there is edge between two dominators iff they have a common neighbor in G.

![Diagram](image-url)
An Auxiliary Graph on Dominators

- G': the graph on dominators in which there is edge between two dominators iff they have a common neighbor in G.
- R': radius of H w.r.t. s. Then, $R' \leq R - 1$.

![Diagram](image)
An Auxiliary Graph on Dominators

- G': the graph on dominators in which there is an edge between two dominators if and only if they have a common neighbor in G.
- R': radius of H w.r.t. s. Then, $R' \leq R - 1$.
- I_i for $0 \leq i \leq R'$: the set of dominators of depth i in G'.
The Second Improvement on Connectors

\[C \leftarrow \emptyset; \]
for each \(1 \leq i \leq R' - 1 \),
\[P_i \leftarrow \text{the set of nodes adj. to } l_i \text{ and } l_{i+1}, \]
\[C_i \leftarrow \text{a minimal cover in } P_i \text{ of } l_{i+1}; \]
\[C \leftarrow C \cup C_i \]
output \(C \).
\[|C| \leq |I| - 1, \]

\[\text{Rad} \left(G \left[I \cup C \right], s \right) = 2R' \leq 2(R - 1). \]

Lemma

\[|C_0| \leq 12, \text{ and for each } 1 \leq i < R' - 1 \text{ each dominator in } I_i \text{ is adjacent to at most 11 connectors in } C_i. \]
Roadmap

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- \textbf{The Third Improvement}
Ancestors

- \(T \): a BFS tree of \(G \) rooted at \(s \)
- T: a BFS tree of G rooted at s
- $p^i(v)$ for $v \neq s$: the i-th ancestor of v in T.

![BFS Tree Diagram]
k: a positive integer parameter

\[
C \leftarrow \emptyset; \\
\text{for each dominator } u \neq s, \\
i \leftarrow \min \{ j : p^i(u) \in I \}; \\
C \leftarrow C \cup \{ p^j(u) : 1 \leq j \leq \min \{ i - 1, k \} \}; \\
\text{output } C.
\]
\[|C| \leq k (|I| - 1). \]

Hence,

\[
|I \cup C| \leq |I| + k (|I| - 1) = (k + 1)|I| - k
\]
\[
\leq (k + 1) \left(\frac{2\pi}{\sqrt{3}}R^2 + \pi R + 1 \right) - k
\]
\[
= (k + 1) \left(\frac{2\pi}{\sqrt{3}}R^2 + \pi R \right) + 1.
\]
Radius

Denote $H = G[I \cup C]$. It is sufficient to show that for each dominator u,

$$\text{dist}_{H}(u, s) \leq (1 + 1/k) \text{dist}_{G}(u, s).$$

Induction on $\text{dist}_{G}(u, s)$: Trivial if $\text{dist}_{G}(u, s) = 0$. So, we assume that $\text{dist}_{G}(u, s) > k$ and let $i = \min j: p_j(u) \in I$.

$$\text{Rad}(G[I \cup C], s) \leq (1 + 1/k) R$$
Denote $H = G[I \cup C]$. It is sufficient to show that for each dominator u,

$$dist_H(u, s) \leq \left(1 + \frac{1}{k}\right) dist_G(u, s).$$
Radius

\[\text{Rad}(G[l \cup C], s) \leq (1 + 1/k) R \]

Denote \(H = G[l \cup C] \). It is sufficient to show that for each dominator \(u \),

\[\text{dist}_H(u, s) \leq \left(1 + \frac{1}{k}\right) \text{dist}_G(u, s). \]

Induction on \(\text{dist}_G(u, s) \): Trivial if \(\text{dist}_G(u, s) = 0 \).
\[\text{Rad} (G [I \cup C], s) \leq (1 + 1/k) R \]

Denote \(H = G [I \cup C] \). It is sufficient to show that for each dominator \(u \),

\[\text{dist}_H (u, s) \leq \left(1 + \frac{1}{k} \right) \text{dist}_G (u, s). \]

Induction on \(\text{dist}_G (u, s) \): Trivial if \(\text{dist}_G (u, s) = 0 \). So, we assume that \(\text{dist}_G (u, s) > k \) and let \(i = \min \{ j : p^j (u) \in I \} \).
Case 1: $i \leq k + 1$. Let $v = p^i(u)$. Then,

$$dist_H(u, s) \leq dist_H(v, s) + i$$

$$\leq \left(1 + \frac{1}{k}\right) dist_G(v, s) + i$$

$$\leq \left(1 + \frac{1}{k}\right) (dist_G(v, s) + i)$$

$$= \left(1 + \frac{1}{k}\right) dist_G(u, s).$$
Induction: Case 2

Case 2: $i > k + 1$ and $p^k(u)$ is adjacent to some dominator v at the same layer as $p^{k+1}(u)$.

\[
\begin{align*}
\text{dist}_H(u, s) & \leq \text{dist}_H(v, s) + k + 1 \\
& \leq \left(1 + \frac{1}{k}\right) \text{dist}_G(v, s) + k + 1 \\
& < \left(1 + \frac{1}{k}\right) (\text{dist}_G(v, s) + k + 1) \\
& = \left(1 + \frac{1}{k}\right) \text{dist}_G(u, s).
\end{align*}
\]
Case 3: $i > k + 1$ and $p^k(u)$ is adj. to some dominator v at the same layer as itself. Then,

\[
\text{dist}_H(u, s) \leq \text{dist}_H(v, s) + k + 1 \\
\leq \left(1 + \frac{1}{k}\right) \text{dist}_G(v, s) + (k + 1) \\
= \left(1 + \frac{1}{k}\right) (\text{dist}_G(v, s) + k) \\
= \left(1 + \frac{1}{k}\right) \text{dist}_G(u, s).
\]
\[\Delta(H) \leq 2\sqrt{3}\pi k^2 + 3\pi k + 3 + \frac{4\pi}{\sqrt{3}}. \]
For each $v \in C$, $q(v)$ denotes the closest descendant dominator of v; for each $v \in I$, $q(v) = v$.

\[\Delta(H) \leq 2\sqrt{3}\pi k^2 + 3\pi k + 3 + \frac{4\pi}{\sqrt{3}}. \]
\[\Delta(H) \leq 2\sqrt{3}\pi k^2 + 3\pi k + 3 + 4\pi / \sqrt{3}. \]

For each \(v \in C \), \(q(v) \) denotes the closest descendant dominator of \(v \); for each \(v \in I \), \(q(v) = v \). Then,

\[\text{dist}_G(v, q(v)) \leq k. \]
Sparsity

\[\Delta (H) \leq 2\sqrt{3} \pi k^2 + 3\pi k + 3 + 4\pi / \sqrt{3}. \]

For each \(v \in C \), \(q(v) \) denotes the closest descendant dominator of \(v \); for each \(v \in I \), \(q(v) = v \). Then,

\[\text{dist}_G (v, q(v)) \leq k. \]

Consider a node \(u \in I \cup C \). For each \(v \in N_H (u) \),

\[\text{dist}_G (u, q(v)) \leq \text{dist}_G (u, v) + \text{dist}_G (v, q(v)) \leq k + 1. \]
Let $S_1(u)$ (resp. $S_2(u)$, $S_3(u)$) be the set of dominators which are at most $k - 1$ (resp. k, $k + 1$) hops away from u. Then,

$$|N_H(u)|$$

$$\leq 3|S_1(u)| + 2|S_2(u) \setminus S_1(u)| + |S_3(u) \setminus S_2(u)|$$

$$= |S_1(u)| + |S_2(u)| + |S_3(u)|$$

$$\leq \sum_{i=k-1}^{k+1} \left(\frac{2\pi}{\sqrt{3}} i^2 + \pi i + 1 \right)$$

$$= 2\sqrt{3}\pi k^2 + 3\pi k + 3 + \frac{4\pi}{\sqrt{3}}.$$