CDS in Plane Geometric Networks: Short, Small, And Sparse

Peng-Jun Wan

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement

G = (V, E): a (connected) UDG $s \in V$: a fixed node R: radius of G w.r.t. s.

- G = (V, E): a (connected) UDG $s \in V$: a fixed node R: radius of G w.r.t. s. U: a CDS of G containing s
 - Size: |*U*|

- G = (V, E): a (connected) UDG $s \in V$: a fixed node R: radius of G w.r.t. s. U: a CDS of G containing s
 - Size: |*U*|
 - Radius: Rad(G[U], s)

- G = (V, E): a (connected) UDG $s \in V$: a fixed node R: radius of G w.r.t. s. U: a CDS of G containing s
 - Size: |*U*|
 - Radius: Rad(G[U], s)
 - Sparsity: $\Delta(G[U])$

Our objective is to construct a CDS U of G with $s \in U$ such that

•
$$U$$
 is small: $|U| = \Theta(poly(R))$

2
$$U$$
 is short: $Rad(G[U], s) = \Theta(R)$

• U is sparse: $\Delta(G[U])$ is small, preferably bounded by a constant.

• Phase 1: First-fit selection of an MIS I in the BFS ordering w.r.t. s

∃ ▶ ∢ ∃ ▶

Phase 1: First-fit selection of an MIS / in the BFS ordering w.r.t. s
Phase 2: Augment / with a set C of "connectors" to form a CDS

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement

Sparsity of Dominators

• Each node is adjacent to at most 5 dominators.

Figure: The layout of 18 dominators in the annulus of radii $1 + 2\varepsilon$ and $(1 + 2\varepsilon) \sqrt{2 + \sqrt{3}}$ centered at a node v_0 .

Sparsity of Dominators

- Each node is adjacent to at most 5 dominators.
- The annulus of radii one and two centered at each node contains at most 18 dominators (Bateman and Erdös)

Figure: The layout of 18 dominators in the annulus of radii $1 + 2\varepsilon$ and $(1 + 2\varepsilon) \sqrt{2 + \sqrt{3}}$ centered at a node v_0 .

Theorem

Suppose that S is a compact convex set and U is a set of points with mutual distances at least one. Then

$$|U \cap S| \leq rac{\operatorname{area}(S)}{\sqrt{3}/2} + rac{\operatorname{peri}(S)}{2} + 1,$$

where area (S) and peri(S) are the area and perimeter of S respectively.

Corollary

Suppose that S (respectively, S') is a disk (respectively, half-disk) of radius r, and U is a set of points with mutual distances at least one. Then

$$|U \cap S| \le \frac{2\pi}{\sqrt{3}}r^2 + \pi r + 1,$$

 $|U \cap S'| \le \frac{\pi}{\sqrt{3}}r^2 + (\frac{\pi}{2} + 1)r + 1.$

Since all dominators lie in the disk of radius R centered at s, we have

$$|I| \leq \left(\frac{2\pi}{\sqrt{3}}R^2 + \pi R + 1\right).$$

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement

• $\forall u \in I \setminus \{s\}$, $p(u) \leftarrow$ the least-ID neighbor of u in the layer above u.

∀u ∈ I \ {s}, p(u) ← the least-ID neighbor of u in the layer above u.
output C = {p(u) : u ∈ I \ {s}}.

$|C| \leq |I \setminus \{s\}| = |I| - 1.$

æ

Hence,

$$|C| \le |I \setminus \{s\}| = |I| - 1.$$

 $|I \cup C| \le 2|I| - 1 \le \frac{4\pi}{\sqrt{3}}R^2 + 2\pi R + 1.$

æ

$$|\mathcal{C}| \leq |\mathcal{I} \setminus \{s\}| = |\mathcal{I}| - 1.$$

Hence,

$$|I \cup C| \le 2|I| - 1 \le \frac{4\pi}{\sqrt{3}}R^2 + 2\pi R + 1.$$

In addition,

$$Rad\left(G\left[I\cup C
ight]
ight, s
ight) \leq2\left(R-1
ight) .$$

æ

• Each dominatee is adj. to at most 4 dominators in the layer below itself.

Figure: The node v_0 is s. It is adjacent to 16 connectors.

Peng-Jun Wan ()

CDS in Plane Geometric Networks: Short, Sm

- Each dominatee is adj. to at most 4 dominators in the layer below itself.
- s is adj. to at most 18 connectors

Figure: The node v_0 is s. It is adjacent to 16 connectors.

Peng-Jun Wan ()

CDS in Plane Geometric Networks: Short, Sm

- Each dominatee is adj. to at most 4 dominators in the layer below itself.
- s is adj. to at most 18 connectors
- Each other dominator is adj. to at most 17 connectors in the same or the next layer.

Figure: The node v_0 is s. It is adjacent to 16 connectors.

Peng-Jun Wan ()

CDS in Plane Geometric Networks: Short, Sm

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement

Figure: (a) $X = \{x_i : 1 \le i \le 7\}$ is covered by $Y = \{y_i : 1 \le i \le 5\}$. (b) $\{y_2, y_3, y_4\}$ is a minimal cover of X. The black nodes are private neighbors.

The First Improvement on Connectors

for each
$$0 \le i \le R$$
, $I_i \leftarrow \{\text{dominators of depth } i \text{ in } G\};$
 $C \leftarrow \emptyset;$
for each $1 \le i \le R - 1$,
 $C_i \leftarrow a \text{ minimal cover of } I_{i+1} \text{ in } \{p(u) : u \in I_{i+1}\};$
 $C \leftarrow C \cup C_i;$
output C .

Peng-Jun Wan ()

< 市利

17 / 38

.∋...>

$$|C| \le |I| - 1,$$

Rad $(G[I \cup C], s) \le 2(R - 1).$

Lemma

For each $2 \le i < R - 1$, each dominator in I_i is adjacent to at most 12 connectors in C_i and at most 11 connectors in C_{i+1} . In addition, $|C_0| \le 12$.

An Equilateral Triangle Property

Figure: The two circles have unit radius, and $1 \le ||uv|| \le 2$. Then, both $\triangle pvx$ and $\triangle qvy$ are equilateral.

Lemma

Consider three nodes u, v and w satisfying that $1 < ||uw|| \le ||uv|| \le 2$ and ||vw|| > 1. If $\widehat{vuw} \le 2 \arcsin \frac{1}{4} \approx 28.955^{\circ}$, then $B(u) \cap B(v) \subseteq B(w)$.

Figure: If $\theta \leq 2 \arcsin \frac{1}{4}$, then $||uy|| \geq ||uv||$, and hence $w \in ux \subset \triangle upq$.

A Geometric Lemma on Angle Separation

$$\|uy\| \ge \|uv\| \Leftrightarrow \widehat{uvy} \ge \widehat{uyv} = \widehat{uxy} \Leftrightarrow \widehat{xvy} \ge \theta.$$

$$\|vz\| = \|uv\|\sin\theta \le 2\sin\theta = 4\sin\frac{\theta}{2}\cos\frac{\theta}{2} \le \cos\frac{\theta}{2}$$
$$\Rightarrow \widehat{xvy} = 2\arccos\|vz\| \ge 2\arccos\left(\cos\frac{\theta}{2}\right) = \theta.$$

Figure: If $\theta \leq 2 \arcsin \frac{1}{4}$, then $||uy|| \geq ||uv||$.

Proof of Sparsity

Each dominator $u \in I_i$ is adj. to at most 12 connectors in C_i :

Figure: w_1, w_2, \dots, w_k are the connectors in C_i adjacent to u. Each v_j is a private dominator neighbor of w_i in I_{i+1} .

Proof of Sparsity

Each dominator $u \in I_i$ is adj. to at most 12 connectors in C_i :

Figure: w_1, w_2, \dots, w_k are the connectors in C_i adjacent to u. Each v_j is a private dominator neighbor of w_i in I_{i+1} .

If $k \ge 13$, then there exist two dominators $v_{j'}$ and $v_{j''}$ s.t. $\angle v_{j'}uv_{j''} \le \frac{2\pi}{13}$. Assume by symmetry that $v_{j''}$ is closer to u then $v_{j'}$. Then,

$$w_{j'} \in B(u) \cap B(v_{j'}) \subseteq B(v_{j''}).$$

Each dominator $u \in I_i$ is adj. to at most 11 connectors in C_{i+1} :

An Example

Figure: The node v_0 is s. It is adjacent to 12 connectors.

æ

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement

An Auxiliary Graph on Dominators

• G': the graph on dominators in which there is edge between two dominators iff they have a common neighbor in G.

3

An Auxiliary Graph on Dominators

- G': the graph on dominators in which there is edge between two dominators iff they have a common neighbor in G.
- R': radius of H w.r.t. s. Then, $R' \leq R 1$.

3

An Auxiliary Graph on Dominators

- G': the graph on dominators in which there is edge between two dominators iff they have a common neighbor in G.
- R': radius of H w.r.t. s. Then, $R' \leq R 1$.
- I_i for $0 \le i \le R'$: the set of dominators of depth *i* in G'.

・ロト ・回ト ・ヨト ・ヨト

$$C \leftarrow \emptyset;$$

for each $1 \le i \le R' - 1$,
 $P_i \leftarrow$ the set of nodes adj. to I_i and I_{i+1}
 $C_i \leftarrow$ a minimal cover in P_i of $I_{i+1};$
 $C \leftarrow C \cup C_i$
output C .

イロト イポト イヨト イヨト

æ

$$|C| \le |I| - 1,$$

Rad $(G[I \cup C], s) = 2R' \le 2(R - 1).$

Lemma

 $|C_0| \le 12$, and for each $1 \le i < R' - 1$ each dominator in I_i is adjacent to at most 11 connectors in C_i .

- Three Parameters of CDS
- Dominators
- Basic Set of Connectors
- The First Improvement
- The Second Improvement
- The Third Improvement

э

• T: a BFS tree of G rooted at s

Peng-Jun Wan ()

문 > 문

• T: a BFS tree of G rooted at s

• $p^i(v)$ for $v \neq s$: the *i*-th ancestor of v in T.

k: a positive integer parameter

$$C \leftarrow \emptyset;$$

for each dominator $u \neq s$,
 $i \leftarrow \min \{j : p^j(u) \in I\};$
 $C \leftarrow C \cup \{p^j(u) : 1 \le j \le \min \{i - 1, k\}\};$
output C .

$$|C| \leq k \left(|I| - 1 \right).$$

Hence,

$$|I \cup C| \le |I| + k (|I| - 1) = (k + 1) |I| - k$$

$$\le (k + 1) \left(\frac{2\pi}{\sqrt{3}}R^2 + \pi R + 1\right) - k$$

$$= (k + 1) \left(\frac{2\pi}{\sqrt{3}}R^2 + \pi R\right) + 1.$$

æ

イロン イヨン イヨン イヨン

$\mathit{Rad}\left(\mathit{G}\left[\mathit{I}\cup\mathit{C} ight],\mathit{s} ight)\leq\left(1+1/k ight)\mathit{R}$

æ

$\mathit{Rad}\left(\mathit{G}\left[\mathit{I}\cup\mathit{C} ight],\mathit{s} ight)\leq\left(1+1/k ight)\mathit{R}$

Denote $H = G[I \cup C]$. It is sufficient to show that for each dominator u,

$$dist_{H}(u,s) \leq \left(1+rac{1}{k}\right) dist_{G}(u,s)$$
 .

э

くほと くほと くほと

$$\mathit{Rad}\left(\mathit{G}\left[\mathit{I}\cup\mathit{C}
ight],\mathit{s}
ight)\leq\left(1+1/k
ight)\mathit{R}$$

Denote $H = G[I \cup C]$. It is sufficient to show that for each dominator u,

$$dist_{H}(u,s) \leq \left(1+rac{1}{k}\right) dist_{G}(u,s)$$
 .

Induction on $dist_G(u, s)$: Trivial if $dist_G(u, s) = 0$.

くほと くほと くほと

$$\mathit{Rad}\left(\mathit{G}\left[\mathit{I}\cup\mathit{C}
ight]$$
 , $\mathit{s}
ight)\leq\left(1+1/k
ight)\mathit{R}$

Denote $H = G[I \cup C]$. It is sufficient to show that for each dominator u,

$$dist_{H}(u,s) \leq \left(1+rac{1}{k}\right) dist_{G}(u,s)$$
 .

Induction on $dist_G(u, s)$: Trivial if $dist_G(u, s) = 0$. So, we assume that $dist_G(u, s) > k$ and let $i = \min \{j : p^j(u) \in I\}$.

Case 1:
$$i \leq k + 1$$
. Let $v = p^{i}(u)$. Then,
 $dist_{H}(u, s) \leq dist_{H}(v, s) + i$
 $\leq \left(1 + \frac{1}{k}\right) dist_{G}(v, s) + i$
 $< \left(1 + \frac{1}{k}\right) (dist_{G}(v, s) + i)$
 $= \left(1 + \frac{1}{k}\right) dist_{G}(u, s)$.

2

Induction: Case 2

Case 2: i > k + 1 and $p^{k}(u)$ is adjacent to some dominator v at the same layer as $p^{k+1}(u)$.

$$\begin{split} & \operatorname{dist}_{H}\left(u,s\right) \leq \operatorname{dist}_{H}\left(v,s\right) + k + 1 \\ & \leq \left(1 + \frac{1}{k}\right) \operatorname{dist}_{G}\left(v,s\right) + k + 1 \\ & < \left(1 + \frac{1}{k}\right) \left(\operatorname{dist}_{G}\left(v,s\right) + k + 1\right) \\ & = \left(1 + \frac{1}{k}\right) \operatorname{dist}_{G}\left(u,s\right). \end{split}$$

Case 3: i > k + 1 and $p^{k}(u)$ is adj. to some dominator v at the same layer as itself. Then,

$$\begin{split} & \operatorname{dist}_{H}\left(u,s\right) \leq \operatorname{dist}_{H}\left(v,s\right) + k + 1 \\ & \leq \left(1 + \frac{1}{k}\right) \operatorname{dist}_{G}\left(v,s\right) + (k+1) \\ & = \left(1 + \frac{1}{k}\right) \left(\operatorname{dist}_{G}\left(v,s\right) + k\right) \\ & = \left(1 + \frac{1}{k}\right) \operatorname{dist}_{G}\left(u,s\right). \end{split}$$

$\Delta(H) \le 2\sqrt{3}\pi k^2 + 3\pi k + 3 + 4\pi/\sqrt{3}.$

2

くほと くほと くほと

$$\Delta(H) \le 2\sqrt{3}\pi k^2 + 3\pi k + 3 + 4\pi/\sqrt{3}.$$

For each $v \in C$, q(v) denotes the closest descendant dominator of v; for each $v \in I$, q(v) = v.

æ

- ∢ ∃ ▶

$$\Delta(H) \le 2\sqrt{3}\pi k^2 + 3\pi k + 3 + 4\pi/\sqrt{3}.$$

For each $v \in C$, q(v) denotes the closest descendant dominator of v; for each $v \in I$, q(v) = v. Then,

 $dist_{G}(v, q(v)) \leq k.$

э

- ∢ ∃ ▶

$$\Delta(H) \le 2\sqrt{3}\pi k^2 + 3\pi k + 3 + 4\pi/\sqrt{3}.$$

For each $v \in C$, q(v) denotes the closest descendant dominator of v; for each $v \in I$, q(v) = v. Then,

$$dist_{G}(v, q(v)) \leq k.$$

Consider a node $u \in I \cup C$. For each $v \in N_H(u)$,

$$dist_{G}(u, q(v)) \leq dist_{G}(u, v) + dist_{G}(v, q(v))$$
$$\leq k + 1.$$

Let $S_1(u)$ (resp. $S_2(u)$, $S_3(u)$) be the set of dominators which are at most k - 1 (resp. k, k + 1) hops away from u. Then,

$$\begin{split} &|N_{H}(u)| \\ &\leq 3 |S_{1}(u)| + 2 |S_{2}(u) \setminus S_{1}(u)| + |S_{3}(u) \setminus S_{2}(u)| \\ &= |S_{1}(u)| + |S_{2}(u)| + |S_{3}(u)| \\ &\leq \sum_{i=k-1}^{k+1} \left(\frac{2\pi}{\sqrt{3}}i^{2} + \pi i + 1\right) \\ &= 2\sqrt{3}\pi k^{2} + 3\pi k + 3 + \frac{4\pi}{\sqrt{3}}. \end{split}$$