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Graphs in Wireless Networks

Communication Topology

Con�ict/Interference Topology

Abstract representation of a network in a common language

Two types graphs

undirected graph or graph
directed graph of digraph
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Roadmap

Undirected Graph
Directed Graph (Digraph)

Weighted Graph/Digraph
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(Undirected) Graph G = (V ,E)
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Figure: An example of gaph
G = (V ,E ).

V : vertices/nodes; E : edges

e = uv := fu, vg 2 E :
e joins/connects/is incident on u and v
u and v are ends of/incident with e
u and v are adjacent
u is a neighbor of v , and vice versa.

A pair of edges: adjacent, disjoint
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Basic Terms and Notations
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Figure:
∆ (G ) = deg (v1) = 6 and
δ (G ) = deg (v4) = 3.

For v 2 V ,
δG (v): the set of edges incident on v .
degG (v) = jδG (v)j: degree of v
NG (v): (open) neighborhood of v
NG [v ] = NG (v) [ fvg: closed
neighborhood of v

∆ (G ): maximum degree of G

δ (G ): minimum degree of G
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Basic Terms and Notations

For U � V ,
δG (U): the set of edges joining U and V n U
NG (U): (open) neighborhood of U
NG [U ] = NG (U) [U: closed neighborhood of U
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Subgraph

G 0 = (V 0,E 0) � G = (V ,E ): if V 0 � V and E 0 � E .
Spanning: if V 0 = V
Induced: if E 0 consists of all edges of G spanned by V 0. In this case,
G 0 is denoted by G [V 0]

(d)(a) (b) (c)
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Figure: (a). A graph G ; (b) an spanning but not induced subgraph of G ; (c) an
induced but not spanning subgraph of G ; (d) a subgraph which is nether spanning
nor induced.
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Walk, Path And Circuit

Let P = hv0, v1, � � � , vk i be a sequence of vertices such that vi�1vi 2 E
for 1 � i � k. Then, P is a

walk: if all edges in P are distinct

path: if all vertices in P are distinct

circuit: if v0 = vk and v1, � � � , vk are all distinct

(c)(a) (b)
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Figure: (a) A walk; (b) a path; and (c) a circuit.
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Walk, Path And Circuit

Length of a walk/path/circuit: the number of edges

Hamiltonian path: spanning path

Hamiltonian circuit: spanning circuit

Hamiltonian graph: a graph with Hamiltonian circuit
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Figure: (a) A Hamiltonian path; and (b) a Hamiltonian circuit.
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Connectivity, Distance, Diameter and Radius
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Figure: diam (G ) = 2,
rad (G ) = 1 and v1 is the
graph center of G .

G is connected if there is a path in G
between any pair of nodes.

Distance between u and v : distG (u, v)

Diameter of G :
diam (G ) = maxu,v2V distG (u, v)

Radius of G :
rad (G ) = minu2V maxv2V distG (u, v)

graph center
rad (G ) � diam (G ) � 2rad (G ) .
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Connected Components

A maximal connected nonempty subgraph of G is called a connected
component, or just a component, of G .
Each component is an induced subgraph, and hence is often identi�ed
with the set of its vertices.
Each vertex and each edge of G belong to exactly one component.
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Figure: (a) A connected graph; and (b) a disconnected graph with two connected
components.
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Trees

Tree: a connected graph
without a circuit

minimal connected graph

For any tree (V ,E ),
jE j = jV j � 1
Leaf: a vertex of degree 1

Special trees: star, spider

Subtree: connected subgraph of
a tree
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Figure: (a) A tree which is a spider, (b)
a tree which is a star.
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Forests

Forest: a graph without a circuit

Each component is a tree

Any forest (V ,E ) has jV j � jE j tree components

(b)(a)
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Figure: (a) A forest, which is a tree, (b) a forest, consisting of two trees.
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Independent Set

Independent set (IS): pairwise non-adjacent set of vertices
Maximum IS: NP-hard in general

Independence number α (G )

Maximal IS
�rst-�t selection
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Figure: fv2, v4, v6g is a maximum IS, while both fv1g and fv2, v5g are maximal
IS.
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Clique

clique: pairwise adjacent
Maximum clique: NP-hard in general

clique number ω (G )

Maximal clique
�rst-�t selection
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Figure: fv1, v2, v3, v7g is a maximum clique, while fv1, v3, v4g is a maximal
clique.
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Vertex Coloring

Vertex coloring: adj. nodes receive distinct colors
partition of vertices into IS�s

Minimum Vertex Coloring: NP-hard in general
chromatic number χ (G )

χ (G ) � max
�
jV j

α (G )
,ω (G )

�
.

2

v2

3v

v5

v6 v7

v1

v4

Peng-Jun Wan (wan@cs.iit.edu) Preliminaries on Graphs 17 / 38



Dominating Set And Connected Dominating Set

Dominating set (DS): a subset U � V s.t. NG [U ] = V .
Any maximal IS is a DS
Minimum DS: NP-hard in general
Domination number γ (G ): size of a minimum DS

Connected dominating set (CDS): a DS U s.t. G [U ] is connected
Minimum CDS: NP-hard in general
Connected domination number γc (G ): size of a minimum CDS
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Figure: (a) The black nodes form a DS; (b) the black nodes form a CDS.
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Matching

Matching: a set of disjoint edges

Maximum matching: solvable in polynomial time
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Figure: The black edges form a maximum matching.
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Roadmap

Undirected Graph

Directed Graph (Digraph)
Weighted Graph/Digraph
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Directed Graph (Digraph) D = (V ,A)

v2
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Figure: An example of
digaph D = (V ,A).

V : vertices/nodes; A: arcs/links

For a = (u, v) 2 A:
a joins/connects/is incident on u and v
a leaves u and enters v .
u and v are ends of/incident with e
u is the tail of a, and v the head of a
u and v are adjacent
v is an out-neighbor of u, and u is an
in-neighbor of v .

A pair of arcs: adjacent, disjoint
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Basic Terms and Notations

For v 2 V ,
δoutD (v): the set of arcs leaving v
δinD (v): the set of arcs entering v
degoutD (v) =

��δoutD (v)
��: out-degree of v

deginD (v) =
��δinD (v)��: in-degree of v

NoutD (v) ,N inD (v); N
out
D [v ] ,N inD [v ]
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Basic Terms and Notations

∆out (D): maximum out-degree of D
∆in (D): maximum in-degree of D
δout (D): minimum out-degree of D
δin (D): minimum in-degree of D
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v1

Figure: ∆outD = degoutD (v1) = 5, ∆inD = deg
out
D (v7) = 3, δoutD = degoutD (v1) = 1,

δinD = deg
in
D (v2) = 2.
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Basic Terms and Notations

For U � V and an arc a = (u, v),

a leaves (respectively, enter) U if u 2 U and v /2 U.
a enters U if u /2 U and v 2 U.
U spans a if u 2 U and v 2 U.

For U � V ,
δoutD (U): the set of arcs leaving U
δinD (U): the set of arcs entering U
NoutD (U) ,N inD (U); N

out
D [U ] ,N inD [U ]
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Subgraph

D 0 = (V 0,A0) � D = (V ,A): if V 0 � V and A0 � A.
Spanning: if V 0 = V

Induced: if A0 consists of all arcs of D spanned by V 0. In this case, D 0

is denoted by D [V 0]
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Directed Walk, Path, And Circuit

Let P = hv0, v1, � � � , vk i be a sequence of vertices such that vi�1vi 2 A
for 1 � i � k. Then, P is a

(directed) walk: if all arcs in P are distinct

(directed) path: if all vertices in P are distinct

(directed) circuit: if v0 = vk and v1, � � � , vk are all distinct
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Directed Walk, Path And Circuit

Length of a (directed) walk/path/circuit: the number of arcs

Hamiltonian path: spanning path

Hamiltonian circuit: spanning circuit

Hamiltonian digraph: a digraph with Hamiltonian circuit
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Strong Connectivity, Distance, Diameter and Radius

D is strongly connected if there is a path in D from u to v for any
two distinct u and v

Distance from u to v : distD (u, v)

Diameter of D: diam (D) = maxu,v2V distD (u, v)
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v1

Figure: diam (D) = distD (v2, v3) = 5.
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Strong Components

A maximal strongly connected nonempty subgraph of D is called a
strongly connected component, or a strong component, of D.
Each strong component is an induced subgraph, and hence is often
identi�ed with the set of its vertices.
Each vertex belongs to exactly one strong component,
There may be arcs that belong to no strong component.
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Figure: A digraph with three strong components.
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Weak Connectivity And Weak Components

D is weakly connected if D is connected.

A weakly connected component, or a weak component, of D is a
component of D.
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Figure: A digraph which is weakly connected, but not strongly connected.
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Acyclic Digraphs and Directed Trees

A digraph without directed circuit is called acyclic.
Any acyclic digraph with at least one vertex has at least one source and
at least one sink
Topological sort

A digraph D is called a directed forest (resp., directed tree) if D is a
forest (resp., tree).
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Figure: (a) An acyclic digraph, (b) a directed tree.
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Arborescence And Branching

A digraph is called an out-arborescence (resp., in-arborescence) if it is
a directed forest directed tree and its maximum in-degree (resp.,
out-degree) is one.

An out-arborescence (resp. in-arborescence), has precisely one source
(resp., sink), which is the called the root.

An out-branching (resp., in-branching) is a collection of node-disjoint
out-arborescences (resp., in-arborescences)

A directed forest with maximum in-degree (resp., out-degree) equals to
one.
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Figure: (a) A digraph D, (b) an out-arboresence in D rooted at v1, (c) (b) an
in-arboresence in D rooted at v1.
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Dominating Set And Strongly Connected Dominating Set

Dominating set (DS): a subset U � V s.t. NoutD [U ] = N inD [U ] = V .

Strongly connected dominating set (SCDS): a DS U s.t. D [U ] is
strongly connected
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Figure: (a) The black nodes form a DS; (b) the black nodes form a SCDS.
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Roadmap

Undirected Graph

Directed Graph

Weighted Graph/Digraph
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Weighted Graph/Digraph

Edge-weighted graph

weigh of subgraph: total weight of edges

Arc-weighted digraph

weigh of subgraph: total weight of arcs

Vertex-weighted graph

weigh of subgraph or a subset of vertices: total weight of vertices
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Min/Max-Weighted Subgraph

Shortest/Longest Path
Min-Weighted Spanning Tree
Min-Weighted Spanning Arborescence
Min-Weighted Strongly Connected Spanning Subgraph

Max-Weighted Matching
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Min/Max-Weighted Subset of Vertices

Max-Weighted IS

Max-Weighted Clique

Min-Weighted DS

Min-Weighted CDS

Min-Weighted SCDS
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Reading Assignments

BFS tree, DFS Tree

Shortest path, shortest path tree

Minimum spanning tree
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