Preliminaries on Graphs

Peng-Jun Wan

wan@cs.iit.edu

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

(문) (문)

- Communication Topology
- Conflict/Interference Topology
- Abstract representation of a network in a common language
- Two types graphs
 - undirected graph or graph
 - directed graph of digraph

- T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill, 2001. (Chapter 5)
- R. Diestel, Graph Theory (3rd ed.). Springer-Verlag, Graduate Texts in Mathematics, Volume 173, July 2005. (Chapter 1)
- B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms (4th ed.). Algorithms and Combinatorics 21, Springer, Berlin Heidelberg New York, 2008. (Chapter 2)
- A. Schrijver, *Combinatorial Optimization: Polyhedra and Efficiency.* Algorithms and Combinatorics 24, Springer, Berlin, 2003. (Chapter 3)

- A I I I A I I I I

- Undirected Graph
- Directed Graph (Digraph)
- Weighted Graph/Digraph

æ

< A

Figure: An example of gaph G = (V, E).

• V: vertices/nodes; E: edges

∃ ► < ∃ ►</p>

Figure: An example of gaph G = (V, E).

• V: vertices/nodes; E: edges

•
$$e = uv := \{u, v\} \in E$$
:

- e joins/connects/is incident on u and v
- *u* and *v* are ends of/incident with e
- *u* and *v* are *adjacent*
- *u* is a *neighbor* of *v*, and vice versa.

Figure: An example of gaph G = (V, E).

• V: vertices/nodes; E: edges

•
$$e = uv := \{u, v\} \in E$$
:

- e joins/connects/is incident on u and v
- *u* and *v* are ends of/incident with e
- *u* and *v* are *adjacent*
- *u* is a *neighbor* of *v*, and vice versa.
- A pair of edges: adjacent, disjoint

Basic Terms and Notations

Figure: $\Delta(G) = \deg(v_1) = 6$ and $\delta(G) = \deg(v_4) = 3.$

- For $v \in V$,
 - $\delta_{G}(v)$: the set of edges incident on v.
 - $\deg_{G}(v) = |\delta_{G}(v)|$: degree of v
 - $N_G(v)$: (open) neighborhood of v
 - N_G [v] = N_G (v) ∪ {v}: closed neighborhood of v

Basic Terms and Notations

Figure: $\Delta(G) = \deg(v_1) = 6$ and $\delta(G) = \deg(v_4) = 3.$ • For $v \in V$,

- $\delta_{G}(v)$: the set of edges incident on v.
- $\deg_{G}(v) = |\delta_{G}(v)|$: degree of v
- $N_G(v)$: (open) neighborhood of v
- N_G [v] = N_G (v) ∪ {v}: closed neighborhood of v
- $\Delta(G)$: maximum degree of G
- $\delta(G)$: minimum degree of G

- For $U \subseteq V$,
 - $\delta_{G}\left(U
 ight)$: the set of edges joining U and $V\setminus U$
 - $N_G(U)$: (open) neighborhood of U
 - $N_{G}\left[U
 ight]=N_{G}\left(U
 ight)\cup U$: closed neighborhood of U

- A I I I A I I I I

Subgraph

$$G' = (V', E') \subseteq G = (V, E)$$
: if $V' \subseteq V$ and $E' \subseteq E$.

• Spanning: if
$$V' = V$$

 Induced: if E' consists of all edges of G spanned by V'. In this case, G' is denoted by G [V']

Figure: (a). A graph G; (b) an spanning but not induced subgraph of G; (c) an induced but not spanning subgraph of G; (d) a subgraph which is nether spanning nor induced.

Peng-Jun Wan (wan@cs.iit.edu)

Walk, Path And Circuit

Let $P = \langle v_0, v_1, \cdots, v_k \rangle$ be a sequence of vertices such that $v_{i-1}v_i \in E$ for $1 \le i \le k$. Then, P is a

- walk: if all edges in P are distinct
- path: if all vertices in P are distinct
- *circuit*: if $v_0 = v_k$ and v_1, \dots, v_k are all distinct

Figure: (a) A walk; (b) a path; and (c) a circuit.

Walk, Path And Circuit

- Length of a walk/path/circuit: the number of edges
- Hamiltonian path: spanning path
- Hamiltonian circuit: spanning circuit
- Hamiltonian graph: a graph with Hamiltonian circuit

Figure: (a) A Hamiltonian path; and (b) a Hamiltonian circuit.

Connectivity, Distance, Diameter and Radius

Figure: diam(G) = 2, rad (G) = 1 and v_1 is the graph center of G.

- *G* is *connected* if there is a path in *G* between any pair of nodes.
- Distance between u and v: dist_G (u, v)
- Diameter of G: diam $(G) = \max_{u,v \in V} dist_G(u, v)$
- Radius of G:
 rad (G) = min_{u∈V} max_{v∈V} dist_G (u, v)
 - graph center
 - $rad(G) \leq diam(G) \leq 2rad(G)$.

Connected Components

- A maximal connected nonempty subgraph of G is called a *connected component*, or just a *component*, of G.
- Each component is an induced subgraph, and hence is often identified with the set of its vertices.
- Each vertex and each edge of G belong to exactly one component.

Figure: (a) A connected graph; and (b) a disconnected graph with two connected components.

- *Tree*: a connected graph without a circuit
 - minimal connected graph
- For any tree (V, E), |E| = |V| - 1
- *Leaf*: a vertex of degree 1
- Special trees: star, spider
- *Subtree*: connected subgraph of a tree

Figure: (a) A tree which is a spider, (b) a tree which is a star.

Forests

- Forest: a graph without a circuit
- Each component is a tree
- Any forest (V, E) has |V| |E| tree components

Figure: (a) A forest, which is a tree, (b) a forest, consisting of two trees.

Independent Set

- Independent set (IS): pairwise non-adjacent set of vertices
- Maximum IS: NP-hard in general
 - Independence number $\alpha(G)$
- Maximal IS
 - first-fit selection

Figure: $\{v_2, v_4, v_6\}$ is a maximum IS, while both $\{v_1\}$ and $\{v_2, v_5\}$ are maximal IS.

Clique

- clique: pairwise adjacent
- Maximum clique: NP-hard in general
 - clique number $\omega(G)$
- Maximal clique
 - first-fit selection

Figure: $\{v_1, v_2, v_3, v_7\}$ is a maximum clique, while $\{v_1, v_3, v_4\}$ is a maximal clique.

-∢ ∃ ▶

Vertex Coloring

- Vertex coloring: adj. nodes receive distinct colors
 - partition of vertices into IS's
- Minimum Vertex Coloring: NP-hard in general
 - chromatic number $\chi(G)$

$$\chi(G) \ge \max\left\{\frac{|V|}{\alpha(G)}, \omega(G)\right\}.$$

Dominating Set And Connected Dominating Set

- Dominating set (DS): a subset $U \subseteq V$ s.t. $N_G[U] = V$.
 - Any maximal IS is a DS
 - Minimum DS: NP-hard in general
 - Domination number $\gamma(G)$: size of a minimum DS
- Connected dominating set (CDS): a DS U s.t. G[U] is connected
 - Minimum CDS: NP-hard in general
 - Connected domination number $\gamma_{c}\left(\mathcal{G}
 ight)$: size of a minimum CDS

Figure: (a) The black nodes form a DS; (b) the black nodes form a CDS.

Matching

- Matching: a set of disjoint edges
- Maximum matching: solvable in polynomial time

Figure: The black edges form a maximum matching.

- Undirected Graph
- Directed Graph (Digraph)
- Weighted Graph/Digraph

æ

< A

Figure: An example of digaph D = (V, A).

• V: vertices/nodes; A: arcs/links

• For
$$a = (u, v) \in A$$
:

- a joins/connects/is incident on u and v
 a leaves u and enters v.
- u and v are ends of/incident with e
- *u* is the *tail* of *a*, and *v* the *head* of *a*
- *u* and *v* are *adjacent*
- v is an out-neighbor of u, and u is an in-neighbor of v.
- A pair of arcs: adjacent, disjoint

- For $v \in V$,
 - $\delta_D^{out}(v)$: the set of arcs leaving v
 - $\delta_D^{in}(v)$: the set of arcs entering v
 - $\deg_{D}^{out}(v) = \left| \delta_{D}^{out}(v) \right|$: out-degree of v
 - deg^{*in*}_D(v) = $\left|\delta_D^{$ *in* $}(v)\right|$: in-degree of v
 - $N_{D}^{out}\left(v
 ight)$, $N_{D}^{in}\left(v
 ight)$; $N_{D}^{out}\left[v
 ight]$, $N_{D}^{in}\left[v
 ight]$

Basic Terms and Notations

- $\Delta^{out}(D)$: maximum out-degree of D
- $\Delta^{in}(D)$: maximum in-degree of D
- $\delta^{out}(D)$: minimum out-degree of D
- $\delta^{in}(D)$: minimum in-degree of D

Figure: $\Delta_D^{out} = \deg_D^{out}(v_1) = 5$, $\Delta_D^{in} = \deg_D^{out}(v_7) = 3$, $\delta_D^{out} = \deg_D^{out}(v_1) = 1$, $\delta_D^{in} = \deg_D^{out}(v_2) = 2$.

- For $U \subseteq V$ and an arc a = (u, v),
 - a leaves (respectively, enter) U if $u \in U$ and $v \notin U$.
 - a enters U if $u \notin U$ and $v \in U$.
 - U spans a if $u \in U$ and $v \in U$.
- For $U \subseteq V$,
 - $\delta_D^{out}(U)$: the set of arcs leaving U
 - $\delta_D^{in}(U)$: the set of arcs entering U
 - $\overline{N_{D}^{out}}(U)$, $N_{D}^{in}(U)$; $N_{D}^{out}[U]$, $N_{D}^{in}[U]$

$$D' = (V', A') \subseteq D = (V, A)$$
: if $V' \subseteq V$ and $A' \subseteq A$.

• Spanning: if
$$V' = V$$

Induced: if A' consists of all arcs of D spanned by V'. In this case, D' is denoted by D [V']

æ

(B)

Image: Image:

Let $P = \langle v_0, v_1, \cdots, v_k \rangle$ be a sequence of vertices such that $v_{i-1}v_i \in A$ for $1 \le i \le k$. Then, P is a

- (directed) walk: if all arcs in P are distinct
- (directed) path: if all vertices in P are distinct
- (directed) circuit: if $v_0 = v_k$ and v_1, \cdots, v_k are all distinct

- Length of a (directed) walk/path/circuit: the number of arcs
- Hamiltonian path: spanning path
- Hamiltonian circuit: spanning circuit
- Hamiltonian digraph: a digraph with Hamiltonian circuit

Strong Connectivity, Distance, Diameter and Radius

- *D* is *strongly connected* if there is a path in *D* from *u* to *v* for any two distinct *u* and *v*
- Distance from u to v: $dist_D(u, v)$
- Diameter of D: $diam(D) = \max_{u,v \in V} dist_D(u, v)$

Figure: $diam(D) = dist_D(v_2, v_3) = 5$.

Strong Components

- A maximal strongly connected nonempty subgraph of *D* is called a *strongly connected component*, or a *strong component*, of *D*.
- Each strong component is an induced subgraph, and hence is often identified with the set of its vertices.
- Each vertex belongs to exactly one strong component,
- There may be arcs that belong to no strong component.

Figure: A digraph with three strong components.

Weak Connectivity And Weak Components

- D is weakly connected if \overline{D} is connected.
- A weakly connected component, or a weak component, of D is a component of \overline{D} .

Figure: A digraph which is weakly connected, but not strongly connected.

Acyclic Digraphs and Directed Trees

- A digraph without directed circuit is called *acyclic*.
 - Any acyclic digraph with at least one vertex has at least one source and at least one sink
 - Topological sort
- A digraph *D* is called a *directed forest* (resp., *directed tree*) if *D* is a forest (resp., tree).

Figure: (a) An acyclic digraph, (b) a directed tree.

Arborescence And Branching

- A digraph is called an *out-arborescence* (resp., *in-arborescence*) if it is a directed forest directed tree and its maximum in-degree (resp., out-degree) is one.
 - An out-arborescence (resp. in-arborescence), has precisely one source (resp., sink), which is the called the *root*.
- An *out-branching* (resp., *in-branching*) is a collection of node-disjoint out-arborescences (resp., in-arborescences)
 - A directed forest with maximum in-degree (resp., out-degree) equals to one.

Peng-Jun Wan (wan@cs.iit.edu)

Dominating Set And Strongly Connected Dominating Set

- Dominating set (DS): a subset $U \subseteq V$ s.t. $N_D^{out}[U] = N_D^{in}[U] = V$.
- Strongly connected dominating set (SCDS): a DS U s.t. $D\left[U\right]$ is strongly connected

Figure: (a) The black nodes form a DS; (b) the black nodes form a SCDS.

- Undirected Graph
- Directed Graph
- Weighted Graph/Digraph

æ

E ► < E ►

< m

- Edge-weighted graph
 - weigh of subgraph: total weight of edges
- Arc-weighted digraph
 - weigh of subgraph: total weight of arcs
- Vertex-weighted graph
 - weigh of subgraph or a subset of vertices: total weight of vertices

- Shortest/Longest Path
- Min-Weighted Spanning Tree
- Min-Weighted Spanning Arborescence
- Min-Weighted Strongly Connected Spanning Subgraph
- Max-Weighted Matching

- Max-Weighted IS
- Max-Weighted Clique
- Min-Weighted DS
- Min-Weighted CDS
- Min-Weighted SCDS

- BFS tree, DFS Tree
- Shortest path, shortest path tree
- Minimum spanning tree

-∢ ∃ ▶