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Virtual Backbone (CDS)

Virtual backbone/CDS: a subset U of nodes such that any pair of
non-adjacent nodes can communicate with each other though the nodes in
U.
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Minimum CDS (MCDS)

MCDS: compute a CDS of the smallest size in a network.

MCDS in plane geometric networks: NP-hard, but admits PTAS.
MCDS in symmetric networks: admits no (1� ε) ln n-approximation

for any �xed ε > 0 unless NP � DTIME
h
nO (log log n)

i
.

MCDS in arbitrary (or asymmetric) networks: at least as hard as
MCDS in symmetric networks.
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Summary on Algorithms

MCDS in arbitrary networks: (4H (n� 2)� 2)-approximation

MCDS in symmetric networks: (2+ ln (∆� 2))-approximation
MCDS in plane geometric networks: 6. 075-approximation
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CDS from Arborescences

T1: a spanning s-arborescence in D
T2: a spanning inward s-arborescence in D

Lemma
All non-sink nodes of T1 and all non-source nodes of T2 form a CDS of D.

(a) (b) (c) (d)

sss s
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Spanning Arborescence with Fewest Internal Nodes

SAFIN: Given a digraph D = (V ,A) and a root node s 2 V , compute a
spanning s-arborescence T with minimum jI (T ) n fsgj, where I (T )
denote the set of non-sink nodes of T .

Reduction to Min-Power Routing for Broadcast
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From SAFIN to MCDS

A: a µ-approximation algorithm for SAFIN
s: a node in OPT \ S .
DR : reverse of D
T1: spanning s-arborescence of D output by A
T2: spanning s-arborescence of DR output by A

jI (T1) [ I (T2)j � 1+ jI (T1) n fsgj+ jI (T2) n fsgj
� 1+ 2µ (γc � 1)
= 2µ � γc � 2µ+ 1.
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Candidates of Root

Fact: for any node u, any CDS must contain at least one node in N in [u]
and at least one node in Nout [u].

S : candidates of root

u  argminv2V min
�
δin (v) , δout (v)

�
;

If δin (u) � δout (u) then S  N in [u] ;
else S  Nout [u] ;
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Outline of The Algorithm for MCDS

Algorithm A�:
U  V ;
for each s 2 S ,
T1  spanning s-arborescence in D output by A;
T2  spanning s-arborescence in DR output by A;
if jI (T1) [ I (T2)j < jU j then
U  I (T1) [ I (T2);

output U.
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Greedy Algorithm for SAFIN

GBA2:
B  fsg;
while f (B) > 0,
�nd a cheapest T 2 T (B) ;
B  B [ I (T );

output a BFS arborescence of D hBi rooted at s.

f (B) = # of orphan components of D hBi = (V ,Sv2B δout (v)).
Head of an orphan component: node of smallest ID.

price of T =
jI (T ) n B j

# of heads in T

T (B): a set of at most jV j � f (B) candidates
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Candidate Arborescences Supplied by u

BFS (u): a BFS u-arborescence in D.

Sort all the heads in the increasing order of depth in BFS (u).

Th (B, u) for 1 � h � f (B): the minimal arborescence in BFS (u)
spanning u and the �rst h heads.

If u = s, then,

T (B, u) = fTh (B, u) : 1 � h � f (B)g ;

otherwise,

T (B, u) = fTh (B, u) : 2 � h � f (B)g .
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Approximation Bound

Theorem
The approximation ratio of the algorithm GBA2 is at most
2H (n� 2)� 1.

Theorem
The approximation ratio of the algorithm GBA2� is at most
4H (n� 2)� 2.
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MCDS in Graphs with Max. Degree at Most 2

If ∆ � 2, G is either a path or a cycle.

When G is a path, the MCDS consists of all internal vertices.

When G is a cycle, a MCDS can be obtained by deleting two adjacent
vertices.

(b)(a)

So we assume that ∆ � 3 from now on.

Peng-Jun Wan () Minimum Connected Dominating Set in Multihop Wireless Networks 16 / 49



MCDS in Graphs with Max. Degree at Most 2

If ∆ � 2, G is either a path or a cycle.
When G is a path, the MCDS consists of all internal vertices.

When G is a cycle, a MCDS can be obtained by deleting two adjacent
vertices.

(b)(a)

So we assume that ∆ � 3 from now on.

Peng-Jun Wan () Minimum Connected Dominating Set in Multihop Wireless Networks 16 / 49



MCDS in Graphs with Max. Degree at Most 2

If ∆ � 2, G is either a path or a cycle.
When G is a path, the MCDS consists of all internal vertices.

When G is a cycle, a MCDS can be obtained by deleting two adjacent
vertices.

(b)(a)

So we assume that ∆ � 3 from now on.

Peng-Jun Wan () Minimum Connected Dominating Set in Multihop Wireless Networks 16 / 49



MCDS in Graphs with Max. Degree at Most 2

If ∆ � 2, G is either a path or a cycle.
When G is a path, the MCDS consists of all internal vertices.

When G is a cycle, a MCDS can be obtained by deleting two adjacent
vertices.

(b)(a)

So we assume that ∆ � 3 from now on.

Peng-Jun Wan () Minimum Connected Dominating Set in Multihop Wireless Networks 16 / 49



MCDS in Graphs with Max. Degree at Most 2

If ∆ � 2, G is either a path or a cycle.
When G is a path, the MCDS consists of all internal vertices.

When G is a cycle, a MCDS can be obtained by deleting two adjacent
vertices.

(b)(a)

So we assume that ∆ � 3 from now on.

Peng-Jun Wan () Minimum Connected Dominating Set in Multihop Wireless Networks 16 / 49



A Two-Phased Algorithm

1 Phase 1: apply the greedy algorithm for minimum submodular cover
to produce a dominating set U with jU j � H (∆) γc .

2 Phase 2: select a set W of �connectors� to interconnect U.

start with an empty W
iteratively reduce the # of components of G [U [W ] by adding at
most two connectors to W until G [U [W ] is connected.

(b)(a)

U2 11

v
UU U2

v

jW j � 2 (jU j � 1)) jU [W j � 3 jU j � 2 � 3H (∆) γc � 2.
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A Single-Phased Greedy Algorithm

Single phase with proper potential function

Better approximation bound: 2+ ln (∆� 2)
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Potential Function

8U � V ,
f1 (U) = # of components in G [U ] ,

f2 (U) = # of components in G hUi ,
where

G hUi =
 
V ,

[
u2U

δ (u)

!
.

Then, the potential of U is f (U) = f1 (U) + f2 (U)� 1.

(b)(a)

Figure: U consists of black nodes. In both (a) and (b), f1 (U) = 2, f2 (U) = 1,
and f (U) = 2.
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Potential Function

Clearly,
f1 (∅) = 0, f2 (∅) = n) f (∅) = n� 1;

8∅ 6= U � V ,

f1 (U) � 1, f2 (U) � 1) f (U) � 1.
U is a CDS , f (U) = 1
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Gain

The gain of v 2 V w.r.t. U � V is de�ned to be

∂v f (U) = f (U)� f (U [ fvg) .

(b)

v

(a)

v

Figure: U consists of black nodes. (a) ∂v f (U) = 0; (b) ∂v f (U) = 1.
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Gain

Denote

∂v f1 (U) = f1 (U)� f2 (U [ fvg) ,
∂v f2 (U) = f2 (U)� f2 (U [ fvg) ,

Then
∂v f (U) = ∂v f1 (U) + ∂v f2 (U) .

If v 2 U then
∂v f1 (U) = ∂v f2 (U) = ∂v f (U) = 0;

else

∂v f1 (U) = (# of components of G [U ] adj. to v)� 1,
∂v f2 (U) = # of components of G hUi adj. to v .
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Greedy Algorithm

GCDS
B  ∅;
While f (B) > 1 do

select v 2 V n B with maximum ∂v f (B) ;
B  B [ fvg;

Output B.
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Running Time And Approximation Bound

Theorem
The algorithm GCDS runs in at most n� 2 iterations and has
approximation bound of at most 2+ ln (∆� 2).
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Extensibility

Lemma
If U is not a CDS, then at least one node v has a positive gain w.r.t. U.

(d)(c)(b)(a)

vv v
2UU

v

U U1 2 1U

Figure: A node v with positive gain w.r.t. U. (a) U = ∅; (b) U 6= ∅ but is not a
DS; (c) and (d) U is a DS.
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�Shifted�Supermodularity

Lemma
Suppose that U and W are two subsets of V satisfying that G [W ] is
connected. Then, for any node v 2 V ,

∂v f (U [W ) � ∂v f (U) + 1.

∂v f1 (U [W ) � ∂v f1 (U) + 1,

∂v f2 (U [W ) � ∂v f2 (U) .
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Lower Bound on The Gain

Lemma
If U is not a CDS, then then at least one node v has gain at least
max

n
1, f (U )γc

� 1
o
w.r.t. U.

W = fvi : 1 � i � γcg: a MCDS sorted in the BFS order in G [W ].
Wj = fvi : 1 � i � jg with 1 � j � γc .

Peng-Jun Wan () Minimum Connected Dominating Set in Multihop Wireless Networks 27 / 49



Lower Bound on The Gain

Lemma
If U is not a CDS, then then at least one node v has gain at least
max

n
1, f (U )γc

� 1
o
w.r.t. U.

W = fvi : 1 � i � γcg: a MCDS sorted in the BFS order in G [W ].
Wj = fvi : 1 � i � jg with 1 � j � γc .

Peng-Jun Wan () Minimum Connected Dominating Set in Multihop Wireless Networks 27 / 49



Lower Bound on The Gain

f (U)� 1 = f (U)� f (U [W ) = ∂v1 f (U) +
γc

∑
j=2

∂vj f (U [Wj�1)

� ∂v1 f (U) +
γc

∑
j=2

�
∂vj f (U) + 1

�
= γc � 1+

γc

∑
j=1

∂vj f (U)

� γc � 1+ γc � max
1�j�γc

∂vj f (U) .

Hence,

max
1�j�γc

∂vj f (U) �
f (U)

γc
� 1.
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Lower Bound on Optimum

Lemma

γc � n�2
∆�1 .

W = fvi : 1 � i � γcg: a MCDS sorted in the BFS order in G [W ].

v1 dominates at most ∆+ 1 nodes. Each vi with 2 � i � γc dominates
∆� 1 additional nodes.

n � (∆+ 1) + (∆� 1) (γc � 1)
= (∆� 1) γc + 2.
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Upper Bound on Greedy Solution

B: output of the greedy algorithm.
Bi for 1 � i � jB j, : the sequence of the �rst i nodes in B.
B0 = ∅.
k: be the �rst (smallest) nonnegative integer such that f (Bk ) < 2γc + 2.

Claim 1: jB n Bk j � 2γc � 1.
Claim 2: k � 1 � γc ln (∆� 2) .

jB j = k + jB n Bk j � k + 2γc � 1 � (2+ ln (∆� 2)) γc .
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Proof of Claim 1

Each node in B n Bk has gain � 1.

Case 1: f (Bk ) � 2γc .

jB n Bk j � f (Bk )� 1 � 2γc � 1.

Case 2: f (Bk ) = 2γc + 1. Then the �rst node in B n Bk has gain � 2.

2+ (jB n Bk j � 1) � f (Bk )� 1 = 2γc ) jB n Bk j � 2γc � 1.
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Proof of Claim 2

`i = f (Bi )� γc for 0 � i < k: �shifted�uncoverage

n� 1� γc = `0 > `1 > � � � > `k�1 � γc + 2,

`i�1 � `i �
f (Ci�1)

γc
� 1 = `i�1

γc
) `i�1 � `i

`i�1
� 1

γc
.

Therefore,

k � 1
γc
�

k�1
∑
i=1

`i�1 � `i
`i�1

� ln `0
`k�1

� ln n� 1� γc
γc + 2

� ln (∆� 1) γc + 2� 1� γc
γc + 2

= ln
�

∆� 2� 2∆� 5
γc + 2

�
< ln (∆� 2) .
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Roadmap

Overview

MCDS in Arbitrary Networks

MCDS in Symmetric Networks

MCDS in Plane Geometric Networks
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Performance of Greedy Algorithms in Plane Geometric
Networks

2

u

u2

v2
vkv1

1

k­120 21

20 2k­121

# of nodes

# of nodes

n = k + 2+ 2
k

∑
i=1
2i�1 = k + 2k+1,

∆ = 2k + k + 1,
γc = 2.

Greedy solution: vk , vk�1, � � � , v1
Approx. bound: � k

2 �
log ∆
2 �

1
2
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Greedy Solution

2

u

u2

v2
vkv1

1

k­120 21

20 2k­121

# of nodes

# of nodes

Initial degree:

vi : 2 � 2i�1 + (k � 1) + 2 =
2i + k + 1;

u1 and u2:
∑k
i=1 2

i�1 + k + 1 = 2k + k;

others:
∑k
i=1 2

i�1 � 1+ 1+ 1 = 2k .

So vk is selected as the �rst
dominator.
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Greedy Solution

2

u

u2

v2
vkv1

1

k­120 21

20 2k­121

# of nodes

# of nodes

After the selection of
vk , vk�1, � � � , vj , the �residue�
degree:

vi with i < j : 2 � 2i�1 = 2i ;

u1 and u2:
∑j�1
i=1 2

i�1 = 2j�1 � 1;
others:
∑j�1
i=1 2

i�1 � 1 = 2j�1 � 2.

So vj�1 is selected as a dominator.
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Independence Number vs. Connected Domination Number

α: independence number of G
γc : connected domination number of G

α �

8<:
5 if γc = 1;
8 if γc = 2;
min

�
3.4306γc + 4.8185, 323γc + 1

	
if γc � 3.

(a) (b) (c)
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A Conjecture

Conjecture: if γc � 3, then α � 3γc + 3.

(a)

(b)
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2-Phased Approximation Algorithm

Phase 1: Constructs an MIS with 2-hop separation property: any pair of its
nonempty complementary subsets are separated by exactly two hops.

Phase 2: Augment with the MIS with �connectors� to form a CDS
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Algorithm for Phase 1

1 Construct be an arbitrary rooted spanning tree T

2 Select an MIS I in the �rst-�t manner in the BFS ordering in T .

hv1, v2, � � � , vni: BFS ordering of V in T .
Initialization: I  fv1g.
First-�t selection: For i = 2 up to n, add vi to I if vi is not adjacent to
any node in I .
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2-Hop Separation Property

Lemma
Any pair of nonempty complementary subsets of I are separate by exactly
two hops.

u1, u2, � � � , uk : sequence of nodes added to I .
Hj for 1 � j � k: the graph over fui : 1 � i � jg in which a pair of nodes
is connected by an edge if and only if their graph distance in G is two.

Claim: Hj is connected (by induction on j)
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Algorithm for Phase 2

GC
C  ∅;
While f (C ) > 1 do

select v 2 V n (I [ C ) with maximum ∂v f (C ) ;
C  C [ fvg;

Output C .

For any subset U � V n I , f (U) = # of components in G [I [U ].
Gain of a node v w.r.t. U: ∂w f (U) = f (U)� f (U [ fxg) .
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Lower Bound on Gain

Lemma
If f (U) > 1, then at least one node w in V n (I [U) has gain at least
max f1, df (U) /γc e � 1g .

Since the set I has 2-hop separation property, at least one node
w 2 V n (I [U) is adjacent to at least two connected components of
G [I [U ].

Since each component of G [I [U ] must be adjacent to some node in
OPT n (I [U), at lease some node w 2 OPT n (I [U) is adjacent to�

f (U)
jOPT n (I [U)j

�
�
�
f (U)

γc

�
components of G [I [U ].
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Main Theorem

C : sequence of selected connectors

Theorem
jI [ C j � 6. 075γc + 5. 425.

If γc = 1, then jI j � 5 and jC j � 1, hence jI [ C j � 6.
If jI j � 3γc + 2, then jI [ C j � 2 jI j � 1 � 6γc + 3.

From now on, we assume that γc � 2 and jI j > 3γc + 2.
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Three Subsequences

Break C into three contiguous (and possibly empty) subsequences C1, C2
and C3 as follows.

C1: the shortest pre�x of C satisfying that f (C1) � 3γc + 2

C1 [ C2: the shortest pre�x of C satisfying that
f (C1 [ C2) � 2γc + 1.

We will prove that

jC1j �
(

jI j
3 � γc if f (C1) � 3γc + 1,
jI j�2
3 � γc if f (C1) = 3γc + 2;

jC2j �
� γc

2 if f (C1) � 3γc + 1,
γc+1
2 if f (C1) = 3γc + 2;

jC3j � 2γc � 1.
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� γc

2 if f (C1) � 3γc + 1,
γc+1
2 if f (C1) = 3γc + 2;

jC3j � 2γc � 1.
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Three Subsequences

jC1 [ C2j �
jI j
3
� γc
2

and

jC j � jI j
3
� γc
2
+ 2γc � 1 =

jI j
3
+
3
2

γc � 1.

So,

jI [ C j � 4 jI j
3
+
3
2

γc � 1

�4
3
(3.4306γc + 4.8185) +

3
2

γc � 1

�6. 075γc + 5. 425.
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Upper Bound on jC1j

Trivial if C1 = ∅. So we assume that C1 6= ∅ and let u be the last node
in C1. Then,

f (C1 n fug) � 3γc + 3.

Case 1: f (C1) � 3γc + 1.

3 (jC1j � 1) � jI j � f (C1 n fug) � jI j � (3γc + 3)

) jC1j �
jI j
3
� γc .

Case 2: f (C1) = 3γc + 2.

3 jC1j � jI j � f (C1) = jI j � (3γc + 2)

) jC1j �
jI j � 2
3
� γc .
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Upper Bound on jC2j
Trivial if jC2j � 1. So, assume jC2j � 2 and let v be the last node in C2.
Then,

f (C1 [ C2 n fvg) � 2γc + 2.

Case 1: f (C1) � 3γc .

2 (jC2j � 1) � f (C1)� f (C1 [ C2 n fvg) � 3γc � (2γc + 2)

) jC2j � γc/2.

Case 2: f (C1) = 3γc + 1.

3+ 2 (jC2j � 2) � f (C1)� f (C1 [ C2 n fvg) � 3γc + 1� (2γc + 2)

) jC2j � γc/2.

Case 3: f (C1) = 3γc + 2.

3+ 2 (jC2j � 2) � f (C1)� f (C1 [ C2 n fvg) � 3γc + 2� (2γc + 2)

) jC2j �
γc + 1
2

.
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Upper Bound on jC3j

Case 1: f (C1 [ C2) � 2γc .

jC3j � f (C1 [ C2)� 1 � 2γc � 1.

Case 2: f (C1 [ C2) = 2γc + 1.

2+ (jC3j � 1) � f (C1 [ C2)� 1 = 2γc + 1� 1
) jC3j � 2γc � 1
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