Minimum Latency Edge Scheduling under 802.11 Interference Model

Peng-Jun Wan

wan@cs.iit.edu

- Problem Description
- First-Fit Edge Scheduling
- Strip-wise Edge Scheduling

æ

ヨト イヨト

- ∢ 🗗 ト

802.11 Interference Model

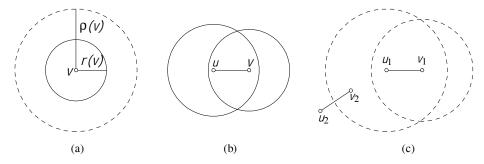


Figure: (a) Communication range and interference range of each node; (b) a communication edge; (c) a conflicting pair of communication edges.

An edge schedule for A: a partition {A_i : 1 ≤ i ≤ k} of A s.t. each A_i is conflict-free

∃ ► < ∃ ►</p>

- An edge schedule for A: a partition {A_i : 1 ≤ i ≤ k} of A s.t. each A_i is conflict-free
 - k: latency (or length) of the schedule

- An edge schedule for A: a partition $\{A_i : 1 \le i \le k\}$ of A s.t. each A_i is conflict-free
 - k: latency (or length) of the schedule
- Conflict graph *H* of *A*: a pair edges in *A* are adjacent in *H* iff they conflict with each other

- An edge schedule for A: a partition {A_i : 1 ≤ i ≤ k} of A s.t. each A_i is conflict-free
 - k: latency (or length) of the schedule
- Conflict graph *H* of *A*: a pair edges in *A* are adjacent in *H* iff they conflict with each other
- An edge schedule for A corresponds to a vertex coloring of H

• **MLES**: Given a set *A* of communication edges, find a shortest edge schedule for *A*

.∃ >

- **MLES**: Given a set *A* of communication edges, find a shortest edge schedule for *A*
- NP-hard even restricted to the class of networks in which

- **MLES**: Given a set *A* of communication edges, find a shortest edge schedule for *A*
- NP-hard even restricted to the class of networks in which
 - all nodes have uniform (and fixed) communication radii,

- **MLES**: Given a set *A* of communication edges, find a shortest edge schedule for *A*
- NP-hard even restricted to the class of networks in which
 - all nodes have uniform (and fixed) communication radii,
 - all nodes have uniform (and fixed) interference radii, and

- **MLES**: Given a set *A* of communication edges, find a shortest edge schedule for *A*
- NP-hard even restricted to the class of networks in which
 - all nodes have uniform (and fixed) communication radii,
 - all nodes have uniform (and fixed) interference radii, and
 - the positions of all nodes are available

• First-fit edge scheduling

米田 とくほと くほと

- First-fit edge scheduling
 - arbitrary interference radii: 23-approx

< 一型

.∋...>

- First-fit edge scheduling
 - arbitrary interference radii: 23-approx
 - uniform interference radii: 7-approx

- First-fit edge scheduling
 - arbitrary interference radii: 23-approx
 - uniform interference radii: 7-approx
- Strip-wise edge scheduling

- First-fit edge scheduling
 - arbitrary interference radii: 23-approx
 - uniform interference radii: 7-approx
- Strip-wise edge scheduling
 - uniform communication/interference radii: better approx.

- Problem Description
- First-Fit Edge Scheduling
- Strip-wise Edge Scheduling

æ

.∋...>

< 4 ► >

First-fit edge scheduling: first-fit coloring of the conflict graph in the smallest-degree-last ordering

・ 何 ト ・ ヨ ト ・ ヨ ト

First-fit edge scheduling: first-fit coloring of the conflict graph in the smallest-degree-last ordering

Theorem

The approximation bound of the first-fit edge scheduling is at most 7 in case of uniform interference radii, and at most 23 in general.

First-fit edge scheduling: first-fit coloring of the conflict graph in the smallest-degree-last ordering

Theorem

The approximation bound of the first-fit edge scheduling is at most 7 in case of uniform interference radii, and at most 23 in general.

Proof overview: find an ordering with inductive independence number at most 7 or 23.

• Lexicographic ordering: sort all edges in the lexicographic order of their right endpoints

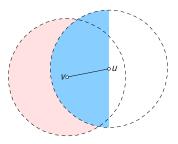
< 🗗 🕨

.

- Lexicographic ordering: sort all edges in the lexicographic order of their right endpoints
- α^* : inductive independence number of this ordering

- Lexicographic ordering: sort all edges in the lexicographic order of their right endpoints
- α^* : inductive independence number of this ordering

- Lexicographic ordering: sort all edges in the lexicographic order of their right endpoints
- α^* : inductive independence number of this ordering



• Interference radius decreasing ordering: sort all edges in the decreasing order of their larger interference radii

- Interference radius decreasing ordering: sort all edges in the decreasing order of their larger interference radii
- α^* : inductive independence number of this ordering

- Interference radius decreasing ordering: sort all edges in the decreasing order of their larger interference radii
- α^* : inductive independence number of this ordering

- Interference radius decreasing ordering: sort all edges in the decreasing order of their larger interference radii
- α^* : inductive independence number of this ordering

Fix an edge e = uv with $\rho(u) \ge \rho(v)$ and an $I \in \mathcal{I}$ in $N_{\prec}(e)$.

• Classification of edges in I into four types

< A > < > > <

Fix an edge e = uv with $\rho(u) \ge \rho(v)$ and an $I \in \mathcal{I}$ in $N_{\prec}(e)$.

- Classification of edges in I into four types
 - I_j with $1 \le j \le 4$: the edges in I of the j-th type

・ 何 ト ・ ヨ ト ・ ヨ ト

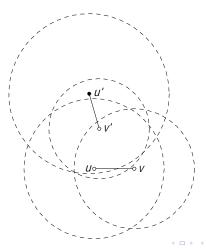
Fix an edge e = uv with $\rho(u) \ge \rho(v)$ and an $I \in \mathcal{I}$ in $N_{\prec}(e)$.

- Classification of edges in I into four types
 - I_j with $1 \le j \le 4$: the edges in I of the j-th type
- Prove $|I_1 \cup I_2| \le 12$ and $|I_3 \cup I_4| \le 11$, which together imply that $|I| \le 23$.

・聞き ・ ほき・ ・ ほき

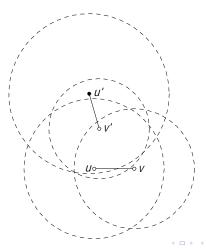
The First Type

• At least one end s.t. (1) it has larger or equal interference radius than *u*, and (2) its interference range contains *u*.



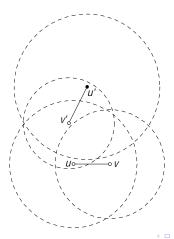
The First Type

- At least one end s.t. (1) it has larger or equal interference radius than *u*, and (2) its interference range contains *u*.
- Any such end is chosen as its representative.



The Second Type

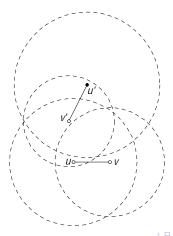
• Not of the first type



13 / 22

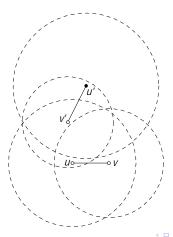
The Second Type

- Not of the first type
- At least one end lies in the interference range of *u*.



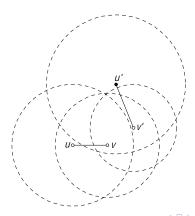
The Second Type

- Not of the first type
- At least one end lies in the interference range of *u*.
- Its end with larger interference radius is chosen as its representative.



The Third Type

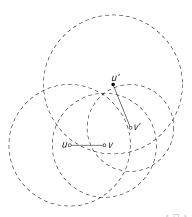
• Not of the first and second types



14 / 22

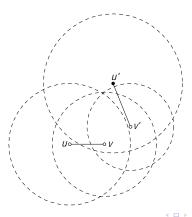
The Third Type

- Not of the first and second types
- At least one end s.t. (1) it has larger or equal interference radius than v, and (2) its interference range contains v.



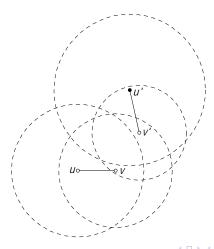
The Third Type

- Not of the first and second types
- At least one end s.t. (1) it has larger or equal interference radius than v, and (2) its interference range contains v.
- Any such end is chosen as its representative.



The Fourth Type

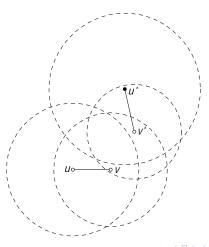
• Any remaining edge



15 / 22

The Fourth Type

- Any remaining edge
- Its end with larger interference radius is chosen as its representative.



Angle Separations

- w_1, w_2 : representatives of two edges in $I_1 \cup I_2$. Then, $\widehat{w_1 u w_2} > 2 \arcsin \frac{1}{4}$.
- **2** w_1 , w_2 : representatives of two edges in $I_3 \cup I_4$. Then, $\widehat{w_1 v w_2} > 2 \arcsin \frac{1}{4}$.
- § w: representative of an edge in $I_3 \cup I_4$. Then $\widehat{uvw} > 30^\circ$.

Angle Separations

- w_1, w_2 : representatives of two edges in $I_1 \cup I_2$. Then, $\widehat{w_1 u w_2} > 2 \arcsin \frac{1}{4}$.
- 2 w_1 , w_2 : representatives of two edges in $I_3 \cup I_4$. Then, $\widehat{w_1 v w_2} > 2 \arcsin \frac{1}{4}$.
- § w: representative of an edge in $I_3 \cup I_4$. Then $\widehat{uvw} > 30^\circ$.

$$\begin{aligned} |I_1 \cup I_2| &\leq \left\lceil \frac{2\pi}{2 \arcsin \frac{1}{4}} \right\rceil - 1 = 12, \\ |I_3 \cup I_4| &\leq \left\lceil \frac{2\pi - \frac{\pi}{3}}{2 \arcsin \frac{1}{4}} \right\rceil = 11. \end{aligned}$$

- 4 同 ト - 4 目 ト

- Problem Description
- First-Fit Edge Scheduling
- Strip-wise Edge Scheduling

æ

< 4 ► >

∃ ► < ∃ ►</p>

Uniform Communication/Interference Radii

• Communication radii: normalized to one

Uniform Communication/Interference Radii

- Communication radii: normalized to one
- Interference radii: $\rho \geq 1$.

ヨト イヨト

- Communication radii: normalized to one
- Interference radii: $\rho \geq 1$.
- Better scheduling algorithm

A Height Function

$$h\left(
ho
ight)=\sqrt{
ho^2-rac{1}{4}}\cos\left(rac{\pi}{6}+rcsinrac{1}{2
ho}
ight)$$
 , $ho\in\left[1,\infty
ight)$

æ

イロト イヨト イヨト イヨト

A Height Function

$$h\left(
ho
ight)=\sqrt{
ho^2-rac{1}{4}}\cos\left(rac{\pi}{6}+rcsinrac{1}{2
ho}
ight)$$
 , $ho\in\left[1,\infty
ight)$

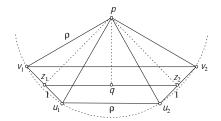


Figure: The distance between p and $z_1 z_2$ is exactly h(p).

2

A Height Function

$$h\left(
ho
ight)=\sqrt{
ho^2-rac{1}{4}}\cos\left(rac{\pi}{6}+rcsinrac{1}{2
ho}
ight)$$
 , $ho\in\left[1,\infty
ight)$

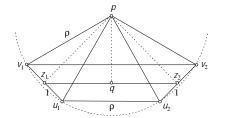


Figure: The distance between p and $z_1 z_2$ is exactly h(p).

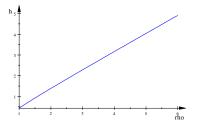


Figure: Plot of $h(\rho)$.

A Nature of the 802.11 Interference

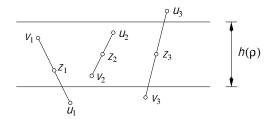


Figure: Under the 802.11 interference model, if (u_1, v_1) and (u_3, v_3) conflict with each other, then at least one of them conflicts with (u_2, v_2) .

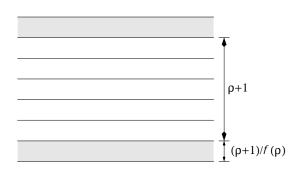


Figure: Partition of the plane into strips of height $(\rho + 1) / f(\rho)$ where $f(\rho) = \lceil (\rho + 1) / h(\rho) \rceil$.

э

イロト イ理ト イヨト イヨト

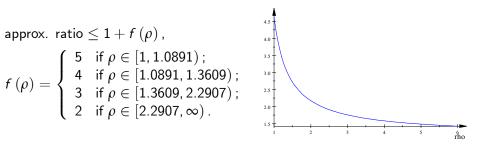


Figure: Plot of $(\rho + 1) / h(\rho)$.