Minimum-Latency Scheduling for Group Communications

Peng-Jun Wan

wan@cs.iit.edu

- Problem Description
- Dominating Tree
- Broadcast Scheduling
- Aggregation Scheduling
- Gathering Scheduling
- Gossiping Scheduling

э.

- V: a finite planar set of nodes
- Synchronous transmissions
- Protocol interference model:
 - unit communication radius: Communication topology *G* is the UDG on *V*
 - uniform interference radius $ho \geq 1$

- Broadcast
- Data aggregation
- Data gathering
- Gossiping

< 67 ▶

3 K K 3 K

- Routing
- Assignment of time-slot for each link
 - Link ordering should be followed
 - all links scheduled in the same time-slot are conflict-free

- Routing
- Assignment of time-slot for each link
 - Link ordering should be followed
 - all links scheduled in the same time-slot are conflict-free

Min-Latency Communication Scheduling: Compute a communication schedule of minimum latency for a specified communication task.

Communication	Approx. Bound
broadcast	$2\beta_{ ho}$
aggregation with $ ho>1$	$\left(lpha _{ ho} + 12 ight) eta _{ ho}$
gathering	$2\beta_{ ho}$
gossiping	$4\beta_{ ho}$

 $lpha_
ho = \max$. # of points in a unit-disk whose mutual dist. >
ho - 1. $eta_
ho = \max$. # of points in a half (
ho + 1)-disk whose mutual dist. > 1 • For any ho > 1,

$$lpha_{
ho} \leq \left\lfloor rac{2\pi/\sqrt{3}}{\left(
ho-1
ight)^2} + rac{\pi}{
ho-1}
ight
floor + 1.$$

• For any $ho \geq 1$,

$$eta_{
ho} \leq \left\lfloor rac{\pi}{\sqrt{3}} \left(
ho + 1
ight)^2 + \left(rac{\pi}{2} + 1
ight) \left(
ho + 1
ight)
ight
floor + 1.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Problem Description
- Dominating Tree
- Broadcast Scheduling
- Aggregation Scheduling
- Gathering Scheduling
- Gossiping Scheduling

• Broadcast: source

2

イロト イヨト イヨト イヨト

- Broadcast: source
- Aggregation/Gathering: sink

æ

- 4 同 6 4 日 6 4 日 6

- Broadcast: source
- Aggregation/Gathering: sink
- Gossiping: graph center of G

э

.∋...>

- 一司

-

- Broadcast: source
- Aggregation/Gathering: sink
- Gossiping: graph center of G

э

∃ >

- 一司

-

- Broadcast: source
- Aggregation/Gathering: sink
- Gossiping: graph center of G

L: the graph radius of G w.r.t. s

• I: first-fit MIS in BFS ordering w.r.t. s

æ

3 K K 3 K

< A

• I: first-fit MIS in BFS ordering w.r.t. s

• dominators

æ

- ∢ ∃ ▶

- I: first-fit MIS in BFS ordering w.r.t. s
 - dominators
- C: "connectors" for I

æ

- ∢ ∃ ▶

- *I*: first-fit MIS in BFS ordering w.r.t. *s*
 - dominators
- C: "connectors" for I
 - *G'*: *G*² [*U*]

3

- ∢ ∃ ▶

- I: first-fit MIS in BFS ordering w.r.t. s
 - dominators
- C: "connectors" for I
 - *G'*: *G*² [*U*]
 - L': radius of G' w.r.t. s. L' < L

э

- I: first-fit MIS in BFS ordering w.r.t. s
 - dominators
- C: "connectors" for I
 - *G'*: *G*² [*U*]
 - L': radius of G' w.r.t. s. L' < L
 - I_I : dominators of depth I in G'

- I: first-fit MIS in BFS ordering w.r.t. s
 - dominators
- C: "connectors" for I
 - *G'*: *G*² [*U*]
 - L': radius of G' w.r.t. s. L' < L
 - I_I : dominators of depth I in G'
 - P_l : nodes adj. to I_i and I_{l+1}

- I: first-fit MIS in BFS ordering w.r.t. s
 - dominators
- C: "connectors" for I
 - *G'*: *G*² [*U*]
 - L': radius of G' w.r.t. s. L' < L
 - I_I : dominators of depth I in G'
 - P_l : nodes adj. to I_i and I_{l+1}
 - $C_I \subseteq P_I$: a minimal cover of I_{I+1}

- I: first-fit MIS in BFS ordering w.r.t. s
 - dominators
- C: "connectors" for I
 - *G'*: *G*² [*U*]
 - L': radius of G' w.r.t. s. L' < L
 - I_I : dominators of depth I in G'
 - P_l : nodes adj. to I_i and I_{l+1}
 - $C_I \subseteq P_I$: a minimal cover of I_{I+1}
- $W = V \setminus (I \cup C)$: dominatees

$$|C| \le |I| - 1,$$

Rad $(G[I \cup C], s) \le 2(L - 1).$

Lemma

 $|C_0| \leq 12$ and each dominator in I_l with $2 \leq l \leq L'-1,$ is adjacent to at most 11 connectors in $C_l.$

3

An Equilateral Triangle Property

Figure: The two circles have unit radius, and $1 \le ||uv|| \le 2$. Then, both $\triangle pvx$ and $\triangle qvy$ are equilateral.

Lemma

Consider three nodes u, v and w satisfying that $1 < ||uw|| \le ||uv|| \le 2$ and ||vw|| > 1. If $\widehat{vuw} \le 2 \arcsin \frac{1}{4} \approx 28.955^{\circ}$, then $B(u) \cap B(v) \subseteq B(w)$.

Figure: If $\theta \leq 2 \arcsin \frac{1}{4}$, then $||uy|| \geq ||uv||$, and hence $w \in ux \subset \triangle upq$.

A Geometric Lemma on Angle Separation

$$\|uy\| \ge \|uv\| \Leftrightarrow \widehat{uvy} \ge \widehat{uyv} = \widehat{uxy} \Leftrightarrow \widehat{xvy} \ge \theta.$$

$$\|vz\| = \|uv\|\sin\theta \le 2\sin\theta = 4\sin\frac{\theta}{2}\cos\frac{\theta}{2} \le \cos\frac{\theta}{2}$$
$$\Rightarrow \widehat{xvy} = 2\arccos\|vz\| \ge 2\arccos\left(\cos\frac{\theta}{2}\right) = \theta.$$

Figure: If $\theta \leq 2 \arcsin \frac{1}{4}$, then $||uy|| \geq ||uv||$.

Proof of Sparsity

 $|C_0| \le 12$:

Figure: w_1, w_2, \dots, w_k are the connectors in C_0 . Each v_j is a private dominator neighbor of w_j in I_1 with respect to C_0 .

15 / 42

Proof of Sparsity

 $|C_0| \le 12$:

Figure: w_1, w_2, \dots, w_k are the connectors in C_0 . Each v_j is a private dominator neighbor of w_j in I_1 with respect to C_0 .

If $k \ge 13$, then there exist two dominators $v_{j'}$ and $v_{j''}$ s.t. $\angle v_{j'}uv_{j''} \le \frac{2\pi}{13}$. Assume by symmetry $v_{j''}$ is closer to u then $v_{j'}$. Then,

$$w_{j'} \in B(u) \cap B(v_{j'}) \subseteq B(v_{j''})$$

Each dominator $u \in I_l$ is adj. to at most 11 connectors in C_l :

• Parent of each node $v \neq s$

æ

- Parent of each node $v \neq s$
 - $v \in I_l$: adj. connector of least ID in C_{l-1}

3 K K 3 K

æ

- Parent of each node $v \neq s$
 - $v \in I_l$: adj. connector of least ID in C_{l-1}
 - $v \in C_l$: adj. dominator of least ID in I_l

- ∢ ∃ →

- Parent of each node $v \neq s$
 - $v \in I_l$: adj. connector of least ID in C_{l-1}
 - $v \in C_l$: adj. dominator of least ID in I_l
 - $v \in W$: adj. dominator of least (depth,ID)

- Parent of each node $v \neq s$
 - $v \in I_l$: adj. connector of least ID in C_{l-1}
 - $v \in C_l$: adj. dominator of least ID in I_l
 - $v \in W$: adj. dominator of least (depth,ID)
- Depth: $\leq 2L' + 1 \leq 2L 1$

- Parent of each node $v \neq s$
 - $v \in I_l$: adj. connector of least ID in C_{l-1}
 - $v \in C_l$: adj. dominator of least ID in I_l
 - $v \in W$: adj. dominator of least (depth,ID)
- Depth: $\leq 2L' + 1 \leq 2L 1$
- $s: \leq 12$ connector children

- Parent of each node $v \neq s$
 - $v \in I_l$: adj. connector of least ID in C_{l-1}
 - $v \in C_l$: adj. dominator of least ID in I_l
 - $v \in W$: adj. dominator of least (depth,ID)
- Depth: $\leq 2L' + 1 \leq 2L 1$
- $s: \leq 12$ connector children
- ullet other dominators: ≤ 11 connector children

 Distance-(ρ + 1) coloring of a set U of dominators: any pair of dominators in U with distance ≤ ρ + 1 receive distinct colors

- Distance- $(\rho + 1)$ coloring of a set U of dominators: any pair of dominators in U with distance $\leq \rho + 1$ receive distinct colors
- ullet a coloring of the (
 ho+1)-disk graph on U

- Distance- $(\rho + 1)$ coloring of a set U of dominators: any pair of dominators in U with distance $\leq \rho + 1$ receive distinct colors
- ullet a coloring of the $(\rho+1)\text{-disk}$ graph on U
- First-fit coloring in lexicographic order: $\leq eta_
 ho$ colors

- Distance-(ρ + 1) coloring of a set U of dominators: any pair of dominators in U with distance ≤ ρ + 1 receive distinct colors
- \bullet a coloring of the $(\rho+1)\text{-disk}$ graph on U
- First-fit coloring in lexicographic order: $\leq eta_
 ho$ colors
 - inductivity $\leq \beta_{
 ho} 1$

・ 日本 ・ 日本 ・ 日本 ・

- Problem Description
- Dominating Tree
- Broadcast Scheduling
- Aggregation Scheduling
- Gathering Scheduling
- Gossiping Scheduling

∃ >

• s: source of the broadcast

æ

∃ ► < ∃ ►</p>

- 一司

- s: source of the broadcast
- T: dominating tree rooted as s

э

э

- s: source of the broadcast
- T: dominating tree rooted as s
- Routing: spanning *s*-aborescence oriented from *T*

- s: source of the broadcast
- T: dominating tree rooted as s
- Routing: spanning *s*-aborescence oriented from *T*
- Scheduling: 2L' + 1 rounds sequentially dedicated to the transmissions by

$$I_0, C_0, I_1, C_1, \cdots, I_{L'-1}, C_{L'-1}, I_{L'}$$

resp.

For each $1 \le l \le L'$, compute a first-fit distance- $(\rho + 1)$ coloring of I_l in the lexicographic order.

- Round for *I*₀: *s* transmits in one time-slot.
- Round for C_0 : all nodes in C_0 transmit one by one in ≤ 12 time-slots.
- Round for I_l with $1 \le l \le L'$: a dominator of *i*-th color transmits in *i*-th time slot. Latency $\le \beta_{\rho}$
- Round for C_l with 1 ≤ l ≤ L' − 1: a connector with a child dominator of *i*-th color transmits in *i*-th time slot. Latency ≤ β_ρ

• Total latency at most

$$\begin{aligned} 1 + 12 + (2L' - 1) \ \beta_{\rho} &\leq 13 + \beta_{\rho} (2L - 3) \\ &= 2\beta_{\rho}L - (3\beta_{\rho} - 13) \ . \end{aligned}$$

æ

3 K K 3 K

- 一司

• Total latency at most

$$egin{aligned} 1 + 12 + (2L'-1) \ eta_{
ho} &\leq 13 + eta_{
ho} \, (2L-3) \ &= 2eta_{
ho} L - (3eta_{
ho} - 13) \ . \end{aligned}$$

• Min. broadcast latency $\geq L$

æ

3 K K 3 K

• Total latency at most

$$egin{aligned} 1 + 12 + (2L'-1) \ eta_{
ho} &\leq 13 + eta_{
ho} \, (2L-3) \ &= 2eta_{
ho} L - (3eta_{
ho} - 13) \ . \end{aligned}$$

- Min. broadcast latency $\geq L$
- Approx ratio $\leq 2\beta_{\rho}$

æ

< 🗗 🕨

- A I I I A I I I I

- Problem Description
- Dominating Tree
- Broadcast Scheduling
- Aggregation Scheduling
- Gathering Scheduling
- Gossiping Scheduling

• s: sink of the aggregation

æ

・ 何 ト ・ ヨ ト ・ ヨ ト

- s: sink of the aggregation
- T: dominating tree rooted as s

.∋...>

- s: sink of the aggregation
- T: dominating tree rooted as s
- Routing: spanning inward s-aborescence oriented from T

- s: sink of the aggregation
- T: dominating tree rooted as s
- Routing: spanning inward s-aborescence oriented from T
- Scheduling: 2L' + 1 rounds sequentially dedicated to the transmissions by

$$W, I_{L'}, C_{L'-1}, I_{L'-1}, \cdots, C_1, I_1, C_0$$

resp.

-∢ ∃ ▶

• Partition B into $B_1, B_2, \cdots, B_{\phi}$ of disjoint links

- Partition B into $B_1, B_2, \cdots, B_{\phi}$ of disjoint links
- Schedule of B: ϕ sub-rounds dedicated to $B_1, B_2, \cdots, B_{\phi}$ resp.

- Partition B into $B_1, B_2, \cdots, B_{\phi}$ of disjoint links
- Schedule of *B*: ϕ sub-rounds dedicated to $B_1, B_2, \cdots, B_{\phi}$ resp.
 - Sub-round for B_i:

- Partition B into $B_1, B_2, \cdots, B_{\phi}$ of disjoint links
- Schedule of *B*: ϕ sub-rounds dedicated to $B_1, B_2, \cdots, B_{\phi}$ resp.
 - Sub-round for B_j:
 - ${\, \bullet \,}$ compute a first-fit distance- $(\rho+1)$ coloring of all incident dominators

・ 日本 ・ 日本 ・ 日本 ・

- Partition B into $B_1, B_2, \cdots, B_{\phi}$ of disjoint links
- Schedule of B: ϕ sub-rounds dedicated to $B_1, B_2, \cdots, B_{\phi}$ resp.
 - Sub-round for *B_j*:
 - ${\, \bullet \,}$ compute a first-fit distance- $(\rho+1)$ coloring of all incident dominators
 - a link whose dominator end has the *i*-th color is scheduled in the *i*-th time-slot

・ 日本 ・ 日本 ・ 日本 ・

- Partition B into $B_1, B_2, \cdots, B_{\phi}$ of disjoint links
- Schedule of B: ϕ sub-rounds dedicated to $B_1, B_2, \cdots, B_{\phi}$ resp.
 - Sub-round for *B_j*:
 - ${\, \bullet \,}$ compute a first-fit distance- $(\rho+1)$ coloring of all incident dominators
 - a link whose dominator end has the *i*-th color is scheduled in the *i*-th time-slot
 - Latency: $\leq \phi \beta_{\rho}$.

- Round for W: previous link schedule. Latency $\leq \left(\Delta-1
 ight)eta_{
 ho}$
- Round for C_l with $1 \le l \le L' 1$: previous link schedule. Latency $\le 11 \beta_{
 ho}$
- Round for C_0 : all nodes in C_0 transmit one by one. Latency ≤ 12 .
- Round for I_l with $1 \le l \le L'$:
 - compute a first-fit distance- $(\rho+1)$ coloring of ${\it I}_{\it I}$ in the lexicographic order
 - each dominator of the *i*-th color transmit in the *i*-th time slot
 - latency $\leq eta_{
 ho}$

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

• Total latency: at most

$$\begin{split} \left(\Delta-1\right)\beta_{\rho}+11\beta_{\rho}\left(L'-1\right)+12+L'\beta_{\rho}\\ &=\Delta\beta_{\rho}+12\beta_{\rho}\left(L'-1\right)+12\\ &\leq\Delta\beta_{\rho}+12\beta_{\rho}\left(L-2\right)+12 \end{split}$$

æ

- 4 目 ト - 4 日 ト - 4 日 ト

• Total latency: at most

$$\begin{split} \left(\Delta-1\right)\beta_{\rho}+11\beta_{\rho}\left(L'-1\right)+12+L'\beta_{\rho}\\ &=\Delta\beta_{\rho}+12\beta_{\rho}\left(L'-1\right)+12\\ &\leq\Delta\beta_{\rho}+12\beta_{\rho}\left(L-2\right)+12 \end{split}$$

• Minimum aggregation latency $\geq \max \{L, \Delta/\alpha_{\rho}\}$

3

くほと くほと くほと

Total latency: at most

$$\begin{split} \left(\Delta-1\right)\beta_{\rho}+11\beta_{\rho}\left(L'-1\right)+12+L'\beta_{\rho}\\ &=\Delta\beta_{\rho}+12\beta_{\rho}\left(L'-1\right)+12\\ &\leq\Delta\beta_{\rho}+12\beta_{\rho}\left(L-2\right)+12 \end{split}$$

- Minimum aggregation latency $\geq \max \{L, \Delta/\alpha_{\rho}\}$
- Approx ratio $\leq \left(lpha_{
 ho} + 12
 ight) eta_{
 ho}$

3

くぼう くほう くほう

- Problem Description
- Dominating Tree
- Broadcast Scheduling
- Aggregation Scheduling
- Gathering Scheduling
- Gossiping Scheduling

• s: sink of the aggregation

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- s: sink of the aggregation
- T: dominating tree rooted as s

э

< 一型

∃ ► < ∃ ►</p>

- s: sink of the aggregation
- T: dominating tree rooted as s
- Routing: spanning inward s-aborescence oriented from T

Multi-labelling of Dominating Tree

30 / 42

э

Multi-labelling of Dominating Tree

31 / 42
Multi-labelling of Dominating Tree

æ

э.

Properties of Multi-labelling

- For each edge (v, p(v)) between v and its parent p(v):
 - # of labels = # of descendents (including v) of v;
 - all labels are even if $v \in I$, and odd otherwise.
- All edges across two consecutive layers receive distinct labels.
- The largest label is 2n − 3.

• For each $1 \leq k \leq 2n-3$,

- ∢ ⊢⊒ →

-

-∢ ∃ ▶

- For each $1 \leq k \leq 2n-3$,
 - E_k : edges in T with label k,

- For each $1 \le k \le 2n-3$,
 - E_k : edges in T with label k,
 - A_k : links in the inward *s*-arborescence oriented from E_k

- For each $1 \leq k \leq 2n-3$,
 - E_k : edges in T with label k,
 - A_k : links in the inward *s*-arborescence oriented from E_k
- All links in each A_k are disjoint

- For each $1 \leq k \leq 2n-3$,
 - E_k : edges in T with label k,
 - A_k : links in the inward *s*-arborescence oriented from E_k
- All links in each A_k are disjoint
- For odd (resp., even) k, all the receiving (resp., transmitting) ends of links in A_k are dominators.

• 2n-3 rounds sequentially dedicated to

$$A_{2n-3}, A_{2n-2}, \cdots, A_2, A_1$$

resp.

æ

- 4 目 ト - 4 日 ト - 4 日 ト

• 2n-3 rounds sequentially dedicated to

$$A_{2n-3}, A_{2n-2}, \cdots, A_2, A_1$$

resp.

• Round for A_k with $1 \le k \le 2n-3$:

э

・ 何 ト ・ ヨ ト ・ ヨ ト

• 2n - 3 rounds sequentially dedicated to

$$A_{2n-3}, A_{2n-2}, \cdots, A_2, A_1$$

resp.

- Round for A_k with $1 \le k \le 2n-3$:
 - compute a first-fit distance- $(\rho + 1)$ coloring of all incident dominators

伺下 イヨト イヨト

• 2n-3 rounds sequentially dedicated to

$$A_{2n-3}, A_{2n-2}, \cdots, A_2, A_1$$

resp.

- Round for A_k with $1 \le k \le 2n-3$:
 - compute a first-fit distance- $(\rho + 1)$ coloring of all incident dominators
 - a link whose dominator end has the *i*-th color is scheduled in the *i*-th time-slot

• Total latency $\leq (2n-3) \beta_{\rho}$

æ

イロト イヨト イヨト イヨト

- Total latency $\leq (2n-3) \beta_{\rho}$
- Minimum gathering latency $\geq n-1$

3

イロト 不得下 イヨト イヨト

- Total latency $\leq (2n-3) \beta_{
 ho}$
- Minimum gathering latency $\geq n-1$
- Approx ratio $\leq 2\beta_{\rho}$

3

イロト イポト イヨト イヨト

- Problem Description
- Dominating Tree
- Broadcast Scheduling
- Aggregation Scheduling
- Gathering Scheduling
- Gossiping Scheduling

∃ >

• s: graph center of G

38 / 42

э

< 67 ▶

- s: graph center of G
- Phase 1: gathering to *s* adopting the gathering schedule developed earlier

- s: graph center of G
- Phase 1: gathering to *s* adopting the gathering schedule developed earlier
- Phase 2: *n* broadcasting from *s*

- s: graph center of G
- Phase 1: gathering to *s* adopting the gathering schedule developed earlier
- Phase 2: *n* broadcasting from *s*
 - T: dominating tree rooted as s

- s: graph center of G
- Phase 1: gathering to *s* adopting the gathering schedule developed earlier
- Phase 2: *n* broadcasting from *s*
 - T: dominating tree rooted as s
 - Routing: spanning s-aborescence oriented from T

- s: graph center of G
- Phase 1: gathering to *s* adopting the gathering schedule developed earlier
- Phase 2: n broadcasting from s
 - T: dominating tree rooted as s
 - Routing: spanning s-aborescence oriented from T
 - Scheduling: Pipelined broadcasting

• Compute the first-fit coloring distance-(ho+1) coloring of dominators

э

- 4 目 ト - 4 日 ト - 4 日 ト

- Compute the first-fit coloring distance-(
 ho+1) coloring of dominators
 - k: # of colors used. Then, $k \leq \beta_{\rho}$.

★聞▶ ★ 国▶ ★ 国▶

- Compute the first-fit coloring distance-(
 ho+1) coloring of dominators
 - k: # of colors used. Then, $k \leq \beta_{\rho}$.
 - s has the first color by proper renumbering of the colors

- Compute the first-fit coloring distance- $(\rho + 1)$ coloring of dominators
 - k: # of colors used. Then, $k \leq \beta_{\rho}$.
 - s has the first color by proper renumbering of the colors
- Framing: frame = k-slot dominator subframe + k-slot connector subframe

dominator	connector	dominator	connector	dominator	connector
subframe	subframe	subframe	subframe	subframe	subframe

• s transmits one packet in each frame.

40 / 42

・ 何 ト ・ ヨ ト ・ ヨ ト

- s transmits one packet in each frame.
- Upon receiving a packet in a dominator subframe, each connector transmits the received packet in all the time-slots corresponding to the colors of its child dominators of the connector subframe in the same frame.

- s transmits one packet in each frame.
- Upon receiving a packet in a dominator subframe, each connector transmits the received packet in all the time-slots corresponding to the colors of its child dominators of the connector subframe in the same frame.
- Upon receiving a packet in a connector subframe, each dominator of the *i*-th color transmits the received packet in the *i*-th time-slot of the dominator subframe in the subsequent frame.

• After n-1 frames, s transmits the last packet.

41 / 42

.

- After n-1 frames, s transmits the last packet.
- After another L' frames, the last packet reaches all nodes in $I_{L'}$.

- After n-1 frames, s transmits the last packet.
- After another L' frames, the last packet reaches all nodes in $I_{L'}$.
- After another half-frame, the last packet reaches all nodes.

- After n-1 frames, s transmits the last packet.
- After another L' frames, the last packet reaches all nodes in $I_{L'}$.
- After another half-frame, the last packet reaches all nodes.

- After n-1 frames, s transmits the last packet.
- After another L' frames, the last packet reaches all nodes in $I_{L'}$.
- After another half-frame, the last packet reaches all nodes.

So, the latency of the second phase is at most

$$2k (n-1+L') + k \le 2k (n+L-2) + k = 2k (n+L-1.5) \le 2\beta_{\rho} (n+L-1.5).$$

• Total latency: at most

$$\beta_{\rho}(2n-3) + 2\beta_{\rho}(n+L-1.5) = \beta_{\rho}(4n-6+2L).$$

2

< 回 ト < 三 ト < 三 ト

• Total latency: at most

$$\beta_{\rho}(2n-3) + 2\beta_{\rho}(n+L-1.5) = \beta_{\rho}(4n-6+2L).$$

• Minimum aggregation latency $\geq n - 1 + L$

3

- 4 週 ト - 4 三 ト - 4 三 ト

• Total latency: at most

$$\beta_{\rho}(2n-3) + 2\beta_{\rho}(n+L-1.5) = \beta_{\rho}(4n-6+2L).$$

- Minimum aggregation latency $\geq n 1 + L$
 - Some node v must take $\geq L$ transmissions by pigeonhole principle

< 回 ト < 三 ト < 三 ト
• Total latency: at most

$$\beta_{\rho}(2n-3) + 2\beta_{\rho}(n+L-1.5) = \beta_{\rho}(4n-6+2L).$$

- Minimum aggregation latency $\geq n 1 + L$
 - Some node v must take $\geq L$ transmissions by pigeonhole principle
 - v must take $\geq n-1$ receptions

く 伺 ト く ヨ ト く ヨ ト

• Total latency: at most

$$\beta_{\rho}(2n-3) + 2\beta_{\rho}(n+L-1.5) = \beta_{\rho}(4n-6+2L).$$

- Minimum aggregation latency $\geq n 1 + L$
 - Some node v must take $\geq L$ transmissions by pigeonhole principle
 - v must take $\geq n-1$ receptions
- Approx ratio $\leq 4\beta_{
 ho}$

くぼう くほう くほう