Minimum Latency Link Scheduling under Protocol Interference Model

Peng-Jun Wan

wan@cs.iit.edu

- Problem Description
- Introduction to Graph Coloring
- First-Fit Link Scheduling
- Strip-wise Link Scheduling

э

.∋...>

< 67 ▶

Protocol Interference Model

Figure: (a) Communication range and interference range of each node; (b) a communication link; (c) a conflicting pair of communication links.

A link schedule for A: a partition {A_i : 1 ≤ i ≤ k} of A s.t. each A_i is conflict-free

- A link schedule for A: a partition {A_i : 1 ≤ i ≤ k} of A s.t. each A_i is conflict-free
 - k: latency (or length) of the schedule

- A link schedule for A: a partition {A_i : 1 ≤ i ≤ k} of A s.t. each A_i is conflict-free
 - k: latency (or length) of the schedule
- Conflict graph *H* of *A*: a pair links in *A* are adjacent in *H* iff they conflict with each other

- A link schedule for A: a partition {A_i : 1 ≤ i ≤ k} of A s.t. each A_i is conflict-free
 - k: latency (or length) of the schedule
- Conflict graph *H* of *A*: a pair links in *A* are adjacent in *H* iff they conflict with each other
- A link schedule for A corresponds to a vertex coloring of H

• MLLS: Given a set A of communication links, find a shortest link schedule for A

3 ×

- **MLLS**: Given a set *A* of communication links, find a shortest link schedule for *A*
- NP-hard even restricted to the class of networks in which

- **MLLS**: Given a set *A* of communication links, find a shortest link schedule for *A*
- NP-hard even restricted to the class of networks in which
 - all nodes have uniform (and fixed) communication radii,

- **MLLS**: Given a set *A* of communication links, find a shortest link schedule for *A*
- NP-hard even restricted to the class of networks in which
 - all nodes have uniform (and fixed) communication radii,
 - all nodes have uniform (and fixed) interference radii, and

- **MLLS**: Given a set *A* of communication links, find a shortest link schedule for *A*
- NP-hard even restricted to the class of networks in which
 - all nodes have uniform (and fixed) communication radii,
 - all nodes have uniform (and fixed) interference radii, and
 - the positions of all nodes are available

• First-fit link scheduling: applicable to any interference radii and any interference radii

< 3 > < 3 >

- First-fit link scheduling: applicable to any interference radii and any interference radii
- Strip-wise link scheduling: applicable to uniform communication radii and uniform interference radii.

• Problem Description

• Introduction to Graph Coloring

- First-Fit Link Scheduling
- Strip-wise Link Scheduling

< 67 ▶

.∋...>

Independence Number and Clique number

Figure: $\alpha(G) = 3$ and $\{v_2, v_4, v_6\}$ is a maximum IS. $\omega(G) = 4$ and $\{v_1, v_2, v_3, v_7\}$ is a maximum clique.

Vertex Coloring

- Vertex coloring: adj. nodes receive distinct colors
 - partition of vertices into IS's
- Minimum Vertex Coloring: NP-hard in general
 - chromatic number: $\chi(G)$

$$\chi(G) \ge \max\left\{\frac{|V|}{\alpha(G)}, \omega(G)\right\}.$$

• $\langle v_1, v_2, \cdots, v_n \rangle$: a vertex ordering of V $N_{\prec}(v_i) = \{v_j : 1 \le j < i, v_j \in N(v_i)\}.$

Figure: First-fit coloring in $\langle v_1, v_2, \cdots, v_7 \rangle$, whose indictivity is 4.

3

 ⟨v₁, v₂, · · · , v_n⟩: a vertex ordering of V N ≺ (v_i) = {v_j : 1 ≤ j < i, v_j ∈ N (v_i)}.
 FF coloring in ⟨v₁, v₂, · · · , v_n⟩:

Figure: First-fit coloring in $\langle v_1, v_2, \cdots, v_7 \rangle$, whose indictivity is 4.

10 / 31

3

Figure: First-fit coloring in $\langle v_1, v_2, \cdots, v_7 \rangle$, whose indictivity is 4.

æ

Figure: First-fit coloring in $\langle v_1, v_2, \cdots, v_7 \rangle$, whose indictivity is 4.

⟨v₁, v₂, ..., v_n⟩: a vertex ordering of V N_≺(v_i) = {v_j : 1 ≤ j < i, v_j ∈ N(v_i)}.
FF coloring in ⟨v₁, v₂, ..., v_n⟩:
col (v₁) = {1}.
For i = 2 up to n, col (v_i) ← first color ∉ {col (u) : u ∈ N_≺(v_i)}.

• number of colors $\leq 1 + \max_{1 < i \leq n} |N_{\prec}(v_i)|$.

Figure: First-fit coloring in $\langle v_1, v_2, \dots, v_7 \rangle$, whose indictivity is 4.

⟨v₁, v₂, ..., v_n⟩: a vertex ordering of V N_≺ (v_i) = {v_j : 1 ≤ j < i, v_j ∈ N (v_i)}.
FF coloring in ⟨v₁, v₂, ..., v_n⟩:
col (v₁) = {1}.
For i = 2 up to n, col (v_i) ← first color ∉ {col (u) : u ∈ N_≺ (v_i)}.
number of colors ≤ 1 + max_{1<i≤n} |N_≺ (v_i)|.
max_{1<i≤n} |N_≺ (v_i)|: inductivity of ⟨v₁, v₂, ..., v_n⟩

Figure: First-fit coloring in $\langle v_1, v_2, \dots, v_7 \rangle$, whose indictivity is 4.

Smallest-Degree-Last Ordering

Objective: find a least-inductivity ordering $\langle v_1, v_2, \cdots, v_n \rangle$

- $H \leftarrow G$.
- For i = n down to 1,
 - $v_i \leftarrow$ a vertex of H with least degree
 - $H \leftarrow H \{v_i\}$

Figure: $\langle v_1, v_7, v_6, v_5, v_4, v_3, v_2 \rangle$ is a smallest-last ordering.

Inductivity of *G*:

$$\delta^{*}\left(\mathcal{G}\right) = \max_{U \subseteq V} \delta\left(\mathcal{G}\left[U\right]\right)$$

Theorem

The smallest-degree-last ordering $\langle v_1, v_2, \cdots, v_n \rangle$ achieves the smallest inductivity $\delta^*(G)$ among all vertex orderings.

For each $1 < i \leq n$,

$$|N_{\prec}(v_i)| = \delta\left(G\left[\{v_1, v_2, \cdots, v_i\}\right]\right) \leq \delta^*(G).$$

æ

イロト イヨト イヨト イヨト

For each $1 < i \leq n$,

$$|N_{\prec}(\mathbf{v}_i)| = \delta\left(G\left[\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_i\}\right]\right) \leq \delta^*\left(G\right).$$

Let U be such that $\delta^{*}\left(\mathcal{G}\right) = \delta\left(\mathcal{G}\left[U
ight]
ight)$ and

$$j = \max\left\{1 \le i \le n : v_i \in U\right\}.$$

Then,

$$\delta^{*}\left(\mathcal{G}\right) = \delta\left(\mathcal{G}\left[\mathcal{U}\right]\right) \leq \deg_{\mathcal{G}\left[\mathcal{U}\right]}\left(\mathbf{v}_{j}\right) \leq \left|\mathbf{N}_{\prec}\left(\mathbf{v}_{j}\right)\right|.$$

3

- 本間 と 本語 と 本語 と

Inductive Local Independence Number (LIN)

Inductive LIN of $\langle v_1, v_2, \cdots, v_n \rangle$:

$$\alpha^* = \max_{1 < i \le n} \left\{ |I| : I \in \mathcal{I}, I \subseteq N_{\prec}(v_i) \right\}.$$

Figure: Inductive indepence number of $\langle v_1, v_2, v_3, v_4, v_5, v_6, v_7 \rangle$ is 2, while the Inductive indepence number of $\langle v_2, v_3, v_4, v_5, v_6, v_7, v_1 \rangle$ is 3.

Any vertex ordering with inductive LIN α^* has inductivity at most $\alpha^* (\chi(G) - 1)$.

э

- 4 同 ト - 4 目 ト

Any vertex ordering with inductive LIN α^* has inductivity at most $\alpha^* (\chi(G) - 1)$.

For any $1 < i \leq n$,

 $\chi(G) \geq \left| \mathsf{N}_{\prec}(\mathsf{v}_{i}) \right| / \alpha^{*} + 1 \Rightarrow \left| \mathsf{N}_{\prec}(\mathsf{v}_{i}) \right| \leq \alpha^{*} \left(\chi(G) - 1 \right)$

3

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Inward Local Independence Number (LIN)

• D = (V, A): an orientation of G

Figure: Two graph orientations: (a) the local independence number is two, (b) the local independence number is one.

< 🗇 🕨 < 🖃 🕨

Inward Local Independence Number (LIN)

- D = (V, A): an orientation of G
- Inward LIN of *D*:

$$eta^* = \max_{u \in V} \left\{ |I| : I \in \mathcal{I}, I \subseteq N_D^{in}(u) \right\}.$$

Figure: Two graph orientations: (a) the local independence number is two, (b) the local independence number is one.

If G has an orientation D with inward LIN β^* , then $\delta^*(G) \leq 2\beta^*(\chi(G) - 1)$.

2

イロト イポト イヨト イヨト

If G has an orientation D with inward LIN β^* , then $\delta^*(G) \leq 2\beta^*(\chi(G) - 1)$.

Consider a node $v \in V$ with largest in-degree in D. Then,

$$\chi\left(G\right) \geq \left\lceil \Delta^{in}\left(D\right)/\beta^{*} \right\rceil + 1 \Rightarrow \Delta^{in}\left(D\right) \leq \beta^{*}\left(\chi\left(G\right)-1\right).$$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

If G has an orientation D with inward LIN β^* , then $\delta^*(G) \leq 2\beta^*(\chi(G) - 1)$.

Consider a node $v \in V$ with largest in-degree in D. Then,

$$\chi(G) \geq \left\lceil \Delta^{in}(D) / \beta^* \right\rceil + 1 \Rightarrow \Delta^{in}(D) \leq \beta^* \left(\chi(G) - 1 \right).$$

Let *U* be such that $\delta^*(G) = \delta(G[U])$. D[U] contains at least one node *u* with in-degree \geq out-degree. Thus,

$$\begin{split} \delta^*\left(G\right) &\leq \deg_{G\left[U\right]}\left(u\right) = \deg_{D\left[U\right]}^{in}\left(u\right) + \deg_{D\left[U\right]}^{out}\left(u\right) \\ &\leq 2\deg_{D\left[U\right]}^{in}\left(u\right) \leq 2\deg_{D}^{in}\left(u\right) \leq 2\Delta^{in}\left(D\right). \end{split}$$

Theorem

Let G = (V, E) be an undirected graph.

- If G has an vertex ordering with inductive LIN α*, then the first-fit coloring of G in the smallest-degree-last ordering uses at most α*χ (G) (α* 1) colors and hence is a α*-approximation.
- If G has an orientation D with inward LIN β*, then the first-fit coloring of G in the smallest-degree-last ordering uses at most 2β*χ(G) (2β* 1) colors and hence is a 2β*-approximation.

A graph G = (V, E) is *perfect* if it satisfies any of the following three equivalent conditions:

• For any
$$U \subseteq V$$
, $\chi(G[U]) = \omega(G[U])$.

③ For any
$$U \subseteq V$$
, $\alpha(G[U]) \cdot \omega(G[U]) \ge |U|$.

Neither G nor its complement contains an induced odd cycle of size larger than three.

伺下 イヨト イヨト

A graph G = (V, E) is *perfect* if it satisfies any of the following three equivalent conditions:

- For any $U \subseteq V$, $\chi(G[U]) = \omega(G[U])$.
- $\textbf{ Sor any } U \subseteq V, \ \alpha \left(G \left[U \right] \right) \cdot \omega \left(G \left[U \right] \right) \geq |U|.$
- Neither G nor its complement contains an induced odd cycle of size larger than three.

Coloring of perfect graphs are solvable in poly. time.

・ 何 ト ・ ヨ ト ・ ヨ ト

Cocomparability ordering $\langle v_1, v_2, \cdots, v_n \rangle$: i < j < k and $v_i v_k \in E \Rightarrow$ either $v_i v_j \in E$ or $v_j v_k \in E$.

э

- 4 同 6 4 日 6 4 日 6

Cocomparability ordering $\langle v_1, v_2, \cdots, v_n \rangle$: i < j < k and $v_i v_k \in E \Rightarrow$ either $v_i v_j \in E$ or $v_j v_k \in E$.

- Perfect
- Minimum vertex coloring: reduced to maximum bipartite matching

・何ト ・ヨト ・ヨト

- Problem Description
- Introduction to Graph Coloring
- First-Fit Link Scheduling
- Strip-wise Link Scheduling

э

.∋...>

< 一型

• First-fit link scheduling: first-fit coloring of the conflict graph in the smallest-degree-last ordering

- First-fit link scheduling: first-fit coloring of the conflict graph in the smallest-degree-last ordering
- Assumption: $c = \min_{v \in V} \rho(v) / r(v) > 1$

- First-fit link scheduling: first-fit coloring of the conflict graph in the smallest-degree-last ordering
- Assumption: $c = \min_{v \in V} \rho(v) / r(v) > 1$

- First-fit link scheduling: first-fit coloring of the conflict graph in the smallest-degree-last ordering
- Assumption: $c = \min_{v \in V} \rho(v) / r(v) > 1$

Theorem

The approximation bound of the first-fit link scheduling is at most $2(\lceil \pi / \arcsin \frac{c-1}{2c} \rceil - 1)$.

• Orientation of a pair of conflicting links $a_1 = (u_1, v_1)$ and $a_2 = (u_2, v_2)$

- < 🗇 > < E > < E >

- Orientation of a pair of conflicting links $a_1 = (u_1, v_1)$ and $a_2 = (u_2, v_2)$
 - if v_1 is in the interference range of u_2 , take (a_2, a_1) ; otherwise (a_1, a_2) .

- Orientation of a pair of conflicting links $a_1 = (u_1, v_1)$ and $a_2 = (u_2, v_2)$
 - if v_1 is in the interference range of u_2 , take (a_2, a_1) ; otherwise (a_1, a_2) .
- β^* : inward LIN of this orientation

- Orientation of a pair of conflicting links $a_1=(\mathit{u}_1,\mathit{v}_1)$ and $a_2=(\mathit{u}_2,\mathit{v}_2)$
 - if v_1 is in the interference range of u_2 , take (a_2, a_1) ; otherwise (a_1, a_2) .
- β^* : inward LIN of this orientation

- Orientation of a pair of conflicting links $a_1 = (u_1, v_1)$ and $a_2 = (u_2, v_2)$
 - if v_1 is in the interference range of u_2 , take (a_2, a_1) ; otherwise (a_1, a_2) .
- β^* : inward LIN of this orientation

$$\beta^* \leq \left\lceil \pi / \arcsin \frac{c-1}{2c} \right\rceil - 1.$$

3

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Angle Separation

Figure: In a convex quadruple upvq with $||pu|| = ||pq|| = \rho \ge 1 = ||pv||$ and ||uq|| = ||uv||, we have $\widehat{quv} \ge 2 \arcsin \frac{\rho - 1}{2\rho}$.

Local Independence Number

Consider three links $a_i = (u_i, v_i)$ for $1 \le i \le 3$ s.t. (1) v_1 is in the interference ranges of u_2 and u_3 (2) a_2 and a_3 are conflict-free.

Local Independence Number

Consider three links $a_i = (u_i, v_i)$ for $1 \le i \le 3$ s.t. (1) v_1 is in the interference ranges of u_2 and u_3 (2) a_2 and a_3 are conflict-free.

Local Independence Number

Consider three links $a_i = (u_i, v_i)$ for $1 \le i \le 3$ s.t. (1) v_1 is in the interference ranges of u_2 and u_3 (2) a_2 and a_3 are conflict-free.

$$\begin{split} \widehat{v_2 v_1 v_3} &> \widehat{v_2 v_1 q} \\ &\geq 2 \arcsin \frac{\rho(u_2) - r(u_2)}{2\rho(u_2)} \\ &\geq 2 \arcsin \frac{c-1}{2c}. \end{split}$$

Hence,

$$\beta^* \leq \left\lceil \pi / \arcsin rac{c-1}{2c}
ight
ceil - 1.$$

- Problem Description
- Introduction to Graph Coloring
- First-Fit Link Scheduling
- Strip-wise Link Scheduling

э

.∋...>

< 一型

Uniform Communication/Interference Radii

• Communication radii: normalized to one

∃ ► < ∃ ►</p>

Uniform Communication/Interference Radii

- Communication radii: normalized to one
- Interference radii: $\rho > 1$.

ヨト イヨト

Uniform Communication/Interference Radii

- Communication radii: normalized to one
- Interference radii: $\rho > 1$.
- Better scheduling algorithm

$$h\left(
ho
ight)=\left(
ho-1
ight)\sin\left(rccosrac{
ho-1}{2
ho}-rcsinrac{1}{
ho}
ight)$$
 , $ho\in\left[1,\infty
ight)$

æ

イロト イヨト イヨト イヨト

A Height Function

$$h\left(
ho
ight)=\left(
ho-1
ight)\sin\left(rccosrac{
ho-1}{2
ho}-rcsinrac{1}{
ho}
ight)$$
 , $ho\in\left[1,\infty
ight)$

æ

イロト イ団ト イヨト イヨト

A Height Function

$$h\left(
ho
ight)=\left(
ho-1
ight)\sin\left(rccosrac{
ho-1}{2
ho}-rcsinrac{1}{
ho}
ight)$$
 , $ho\in\left[1,\infty
ight)$

æ

э.

A Strip-wise Transitivity of Independence

Figure: If both (u_1, v_1) and (u_3, v_3) are independent with (u_2, v_2) , then they are independent with each other.

Strip-wise Link Scheduling with ho>1

Figure: Partition of the plane into strips of height $(\rho + 1) / f(\rho)$ where $f(\rho) = \lceil (\rho + 1) / h(\rho) \rceil$.

э

- 4 伺 ト 4 ヨ ト 4 ヨ ト

approx. ratio $\leq 1 + f(\rho) = 1 + k$ if $\rho \in [\rho_k, \rho_{k-1})$, where $\rho_1 = \infty$, and ρ_k with $k \geq 2$ is the root of $(\rho + 1) / h(\rho) = k$.

k	ρ_k	k	$ ho_k$
2	4.2462	7	1.5715
3	2.5689	8	1.5009
4	2.0632	9	1.4476
5	1.8167	10	1.4058
6	1.6697	11	1.3721

Table: Numberic values of ρ_k for $2 \le k \le 11$.