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A Motivating Example
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Figure: Consider the unicast from s to t in (a). If only one path in either (b) or
(c) is used, the life is 10. On the other hand, we can use both paths for 10 time
units each to achieve an overall life of 20.
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Network model

Communication topology: D = (V ,A; c)

Adjustable transmission power

Power consumption: same as in the previous chapter

Receiving power consumption is ignored
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Communication Tasks

Concurrent Unicasts

Aggregation

Broadcast

Multicast

R: a collection of routes for a given communication task
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Routing Schedule

b 2 RV
+: energy budget function

A routing schedule is a set of pairs (Hi , xi ) 2 R�R+ for
i = 1, � � � ,m satisfying that

m

∑
i=1
pHi (u) xi � b (u) , 8u 2 V .

The life (or length) of this schedule is ∑m
i=1 xi .
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Max-Life Routing Schedule

Max-Life Routing Schedule (MLRS): �nding a routing schedule of
maximum life.

max ∑H2R xH
s.t. ∑H2R xHpH (u) � b (u) , 8u 2 V ;

xH � 0, 8H 2 R.

jV j = n constraints ) 9 an optimal solution using at most n routes.
# of variables jRj is exponential ) standard LP solvers are not
practical.
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Summary on Algorithms

Ellipsoid Algorithm (EA)

Price-Directive Algorithm (PDA)

Flow-Based Algorithm (FBA)

EA PDA FBA

Conc. Unicasts exact 1+ ε exact
Aggregation exact 1+ ε exact
Broadcast 2H (n� 1)� 1 (1+ ε) (2H (n� 1)� 1) N/A
Multicast O (k ε) O (k ε) N/A
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Roadmap

Problem Description
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Ellipsoid Algorithm
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Min-Cost Routing

y 2 RV
+: a price function

H: a subgraph of D

cost of H w.r.t. y = ∑
u2V

y (u) pH (u)

Min-Cost Routing (MCR): �nd an H 2 R of minimum cost w.r.t y .

A generalization of Min-Power Routing
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(Approximation) Algorithms for MCR

By applying the algorithms developed in the previous chapter for MPR, we
immediately have the following algorithmic results:

1 Concurrent Unicasts: polynomial
2 Aggregation: polynomial
3 Broadcast: (2H (n� 1)� 1)-approximation algorithm
4 Multicast: O (k ε)-approximation algorithm for any �xed ε > 0
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MCR vs. Dual of MLRS

Dual of MLRS:

min ∑u2V b (u) y (u)
s.t. ∑u2V pH (u) y (u) � 1, 8H 2 R

y (u) � 0, 8u 2 V

MCR: separation problem of the dual of MLRS
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Max-Life vs. Min-Cost

opt: life of a max-life routing schedule.

For any price function y 2 RV
+, let

α (y) = min
H2R ∑

u2V
pH (u) y (u) : min-cost of routes in R w.r.t.y ,

β (y) = ∑
u2V

b (u) y (u) : total energy cost w.r.t. y .

Lemma

For any y 2 RV
+, α (y) � β(y )

opt . In addition, there exists some y 2 RV
+ such

that α (y) = β(y )
opt .

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule 13 / 42



Max-Life vs. Min-Cost

opt: life of a max-life routing schedule.

For any price function y 2 RV
+, let

α (y) = min
H2R ∑

u2V
pH (u) y (u) : min-cost of routes in R w.r.t.y ,

β (y) = ∑
u2V

b (u) y (u) : total energy cost w.r.t. y .

Lemma

For any y 2 RV
+, α (y) � β(y )

opt . In addition, there exists some y 2 RV
+ such

that α (y) = β(y )
opt .

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule 13 / 42



Max-Life vs. Min-Cost

First Part: Trivial if α (y) = 0. So, we assume that α (y) > 0. Then, y
α(y )

is a feasible solution of the dual LP. Hence

opt � β

�
y

α (y)

�
=

β (y)
α (y)

) α (y) � β (y)
opt

.

Second Part: Suppose y is an optimal solution to dual LP. Then,

opt = β (y) and α (y) = 1) α (y) =
β (y)
opt

.
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Ellipsoid Method with (Approximate) Separation Oracle

N : a network class
Theorem
Suppose that there is a polynomial (respectively, a polynomial
µ-approximation) algorithm for MCR for a communication task restricted
to N . Then, there is a polynomial (respectively, a polynomial
µ-approximation) algorithm for MLRS for the same communication task
restricted to N .
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Ellipsoid Algorithm for MLRS

Ellipsoid Algorithm

Conc. Unicasts exact
Aggregation exact
Broadcast 2H (n� 1)� 1
Multicast O (k ε)

Drawback: very slow practically
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Basic Idea

An iterative algorithm, in each iteration:

Set the prices of the nodes with low residue energy relatively higher

Nodes with low residue energy are protected from getting drained of
energy quickly

Nodes with high residue energy are enforced to contribute more
energy

Challenge: how to choose the prices properly?
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Parameters

A: a µ-approximation algorithm for MCR

if µ = 1, the algorithm A is optimal for MCR

ε: a constant parameter 2 (0, 1)
output: an (1+ ε) µ-approximation.
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Variables

H: the set of chosen routes;
xH for each H 2 H: the duration of H;

z 2 RV
+: the energy consumption percentage vector de�ned by

z (u) =
∑H2H xHpH (u)

b (u)
, 8u 2 V ;

φ: the maximum energy consumption percentage maxu2V z (u);

y 2 RV
+: the price vector;

β: the total energy cost ∑u2V b (u) y (u).
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Outline of PDA

H  ∅; 8u 2 V , z (u) 0; φ 0;
8u 2 V , y (u) 1

b(u) ; β n;

repeat
compute an H 2 R using A on (D, y) ;
t  minv2V b (v) /pH (v);
if H 2 H then xH  xH + t,

else H  H[ fHg and xH  t;

8u 2 V , z (u) z (u) + t pH (u)b(u) ;

φ maxu2V z (u) ;

8u 2 V , y (u) y (u)
�
1+ εt pH (u)b(u)

�
;

β ∑u2V b (u) y (u) ;
until 0 < φ � 1+ε

ε ln β
n ;

Output f(H, xH/φ) : H 2 Hg.
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Running Time And Approximation Bound

Theorem
The algorithm PDA produces an (1+ ε) µ-approximation in at most

K = n
l

(1+ε) ln n
(1+ε) ln(1+ε)�ε

m
iterations.

PDA

Conc. Unicasts 1+ ε

Aggregation 1+ ε

Broadcast (1+ ε) (2H (n� 1)� 1)
Multicast O (k ε)
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Notations

opt: life of an optimal solution

H0, z0, φ0, y0 and β0: initial values of H, z , φ, y and β resp.

Hj , zj , φj , yj and βj : values of H, z , φ, y and β resp. at the end of
the j-th iteration for each j � 1
Hj : route selected in the j-th iteration

tj : value of t computed in the j-th iteration

τj = maxu2V yj (u) b (u): maximum energy cost of all nodes at the
end of j-th iteration
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Upper Bound on φj

Claim: φj � log1+ε τj for each j � 1.

Lemma
For any ε > 0 and 0 � t � 1, t � log1+ε (1+ εt).

zj (u)� zj�1 (u) � log1+ε (1+ ε (zj (u)� zj�1 (u))) = log1+ε
yj (u)
yj�1 (u)

,

)zj (u) � log1+ε
yj (u)
y0 (u)

= log1+ε (yj (u) b (u)) � log1+ε τj .
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Running Time

Prove by contradiction: assume > K iterations.

Among the �rst K iterations some node v appears as a �bottleneck�
node in at least K/n iterations.
In each of K/n iterations, y (v) is increased by a factor of 1+ ε.

yK (v) � y0 (v) (1+ ε)K/n =
(1+ ε)K/n

b (v)

) τK � yk (v) b (v) � (1+ ε)K/n

) φK

ln βK
n

� log1+ε τK
ln τK

n
=

1

ln (1+ ε)� ln n
log1+ε τK

� 1+ ε

ε

By the stopping rule, the number of iterations � K , which is a
contradiction.
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Correctness of The output Solution

k: number of iterations.

Claim: By the end of the j-th iteration for 1 � j � k, the energy
consumption percentage of each node u is zj (u), i.e.,

zj (u) =
∑H2Hj xHpH (u)

b (u)
, 8u 2 V .

Therefore, the �nal scaling by a factor φk results in a feasible solution.
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Lower Bound on tj

Claim: tj � 1
εµ

βj�βj�1
βj�1

opt for each 1 � j � k,

βj = ∑
u2V

b (u) yj (u)

= ∑
u2V

b (u) yj�1 (u)
�
1+ εtj

pHj (u)

b (u)

�

= ∑
u2V

b (u) yj�1 (u) + εtj

 
∑
u2V

pHj (u) yj�1 (u)

!

= βj�1 + εtj

 
∑
u2V

pHj (u) yj�1 (u)

!

� βj�1 + εtj � µ
βj�1
opt

.
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u2V

b (u) yj (u)

= ∑
u2V

b (u) yj�1 (u)
�
1+ εtj

pHj (u)

b (u)

�

= ∑
u2V

b (u) yj�1 (u) + εtj

 
∑
u2V

pHj (u) yj�1 (u)

!

= βj�1 + εtj

 
∑
u2V

pHj (u) yj�1 (u)

!

� βj�1 + εtj � µ
βj�1
opt

.
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Approximation Bound

k

∑
j=1
tj �

opt
εµ

k

∑
j=1

βj � βj�1
βj�1

� opt
εµ
ln

βk
β0
=
opt
εµ
ln

βk
n
,

So,
∑k
j=1 tj
φk

� 1
εµ

ln βk
n

φk
opt � 1

εµ

ε

1+ ε
opt =

opt
(1+ ε) µ

.
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Single Flow

D = (V ,A): a digraph with two distinct nodes s and t

f 2 RA
+ is an s � t �ow in D if

f
�
δout (v)

�
= f

�
δin (v)

�
, 8v 2 V n fs, tg (�ow conservation law)

0
5 5

66

4

5

2

4
0

0 t

v4

v3

v2

v

s

1

Figure: An an s � t �ow of value 11.

Value of f : val (f ) = f (δout (s))� f
�
δin (s)

�
.

f is subject to an arc-capacity z 2 RA
+ if f � z .
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Flow Decomposition

5
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Figure: Any s � t �ow of value L can be decomposed into at most jAj s � t
paths of total value L and possibly some circuits.
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Maximum Flow

Maximum Flow: �nding an s � t �ow f subject to a given arc-capacity
z 2 RA

+ such that val (f ) is maximized.

Solvable in polynomial time by �ow-augmentation algorithms.
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Multi�ow

Given k commodities with si , ti being the source and sink, resp., for
commodity i .

Fi : the set of si�ti �ows.
A k-�ow is a sequence hf1, f2, � � � , fk i with fi 2 Fi 81 � i � k.

A k-�ow hf1, f2, � � � , fk i is subject to an arc-capacity z 2 RA
+ if

∑k
i=1 fi � z .
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Maximum Concurrent Multi�ow

max L
s.t. fi 2 Fi , 81 � i � k

val (fi ) = L, 81 � i � k
∑k
i=1 fi � z
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Concurrent Unicasts

Given k unicasts are treated as k commodities.

A k-�ow hf1, f2, � � � , fk i is subject to an energy budget b 2 RV
+ if

∑
e2δout (v )

c (e)

 
k

∑
i=1
fi (e)

!
� b (v) , 8v 2 V .

MLRS corresponds to maximum concurrent multi�ow subject to
energy budget b
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MLRS for Concurrent Unicasts

Step 1: Solve the LP

max L
s.t. fi 2 Fi , 81 � i � k

val (fi ) = L, 81 � i � k
∑e2δout (v ) c (e)

�
∑k
i=1 fi (e)

�
� b (v) , 8v 2 V

Step 2: Decompose each fi into at most jAj si�ti paths of total value L
and discarding the rest circuits if there is any.
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Fractional Arborescence Packing

D = (V ,A): a digraph with a �root�node s

T : collection of spanning arborescences rooted at s
A fractional s-arborescence packing in D subject to given arc-capacity
z 2 RA

+ is a set of k pairs (Tj ,λj ) 2 T �R+ satisfying that

∑
1�j�k ,e2Tj

λj � z (e) , 8e 2 A.

The value of this packing is ∑k
j=1 λj .
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Maximum Fractional Arborescence Packing

Maximum Fractional Arborescence Packing: �nding a fractional
s-arborescence packing in D subject to a given arc-capacity z 2 RA

+ whose
value is is maximized.

Gabow-Manu algorithm

a greedy algorithm

using at most jAj spanning s-arborescences.

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule 39 / 42



Maximum Fractional Arborescence Packing

Maximum Fractional Arborescence Packing: �nding a fractional
s-arborescence packing in D subject to a given arc-capacity z 2 RA

+ whose
value is is maximized.

Gabow-Manu algorithm

a greedy algorithm

using at most jAj spanning s-arborescences.

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule 39 / 42



A Min-Max Relation

m�ow (u, z): the value of a maximum s � u �ow in D subject to z ,
8u 2 V n fsg

Theorem
The value of a maximum fractional s-arborescence packing in D subject to
z is equal to

min
u2V nfsg

m�ow (u, z) .
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MLRS for Aggregation

Step 1: Compute an �optimal� arc-capacity z 2 RA
+ by solving the LP:

max L
s.t. ∑e2δout (v ) c (e) z (e) � b (v) , 8v 2 V

val (fu) = L, 8u 2 V n fsg
fu 2 Fu , 8u 2 V n fsg
fu � z , 8u 2 V n fsg

Step 2: Compute a maximum fractional packing of spanning inward
s-arborescences subject to z using the Gabow-Manu algorithm.
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Correctness

opt: life of a max-life routing schedule

L: the value of the LP in Step 1

Then,

1 opt � L
2 the life of the output solution in Step 2 � L by the min-max relation,
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