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A Motivating Example
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Figure: Consider the unicast from s to t in (a). If only one path in either (b) or
(c) is used, the life is 10. On the other hand, we can use both paths for 10 time
units each to achieve an overall life of 20.
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Network model

e Communication topology: D = (V, A; ¢)
o Adjustable transmission power
@ Power consumption: same as in the previous chapter

o Receiving power consumption is ignored
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Communication Tasks

Concurrent Unicasts
Aggregation
Broadcast

Multicast
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Communication Tasks

Concurrent Unicasts
Aggregation
Broadcast

Multicast

R: a collection of routes for a given communication task
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Routing Schedule

e be ]RK: energy budget function

@ A routing schedule is a set of pairs (H;, x;) € R x R4 for
i=1,---,msatisfying that

Y b (u)xi < b(u) ,Yue V.
i=1
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Routing Schedule

e be ]RK: energy budget function
@ A routing schedule is a set of pairs (H;, x;) € R x R4 for
i=1,---,msatisfying that

Y b (u)xi < b(u) ,Yue V.
i=1

@ The life (or length) of this schedule is Y17 ; x;.
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Max-Life Routing Schedule

Max-Life Routing Schedule (MLRS): finding a routing schedule of
maximum life.
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Max-Life Routing Schedule

Max-Life Routing Schedule (MLRS): finding a routing schedule of
maximum life.

max ) yer XH
sit. YperxupH (u) < b(u),YueV,;
xy > 0,VHER.
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Max-Life Routing Schedule

Max-Life Routing Schedule (MLRS): finding a routing schedule of
maximum life.

max ) yer XH
sit. YperxupH (u) < b(u),YueV,;
xy > 0,VHER.

@ |V| = n constraints = 3 an optimal solution using at most n routes.

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule



Max-Life Routing Schedule

Max-Life Routing Schedule (MLRS): finding a routing schedule of
maximum life.

max ) yer XH
sit. YperxupH (u) < b(u),YueV,;
xy > 0,VHER.

@ |V| = n constraints = 3 an optimal solution using at most n routes.

@ # of variables |R| is exponential = standard LP solvers are not
practical.
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Summary on Algorithms

e Ellipsoid Algorithm (EA)
@ Price-Directive Algorithm (PDA)
o Flow-Based Algorithm (FBA)

| [ EA \ PDA | FBA |
Conc. Unicasts exact 1+4+¢ exact
Aggregation exact 1+4+¢ exact
Broadcast 2H(n—1)—1| (1+¢)(2H(n—1)—1) | N/A
Multicast O (k%) O (k%) N/A
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Min-Cost Routing

IS ]RK: a price function
@ H: a subgraph of D

cost of Hw.rt. y = Yy (u) py (u)
ueV
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Min-Cost Routing

IS ]RK: a price function
@ H: a subgraph of D

cost of Hw.rt. y = Yy (u) py (u)
ueV

Min-Cost Routing (MCR): find an H € R of minimum cost w.r.t y.
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Min-Cost Routing

IS ]RK: a price function
@ H: a subgraph of D

cost of Hw.rt. y = Yy (u) py (u)
ueV

Min-Cost Routing (MCR): find an H € R of minimum cost w.r.t y.

A generalization of Min-Power Routing
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(Approximation) Algorithms for MCR

By applying the algorithms developed in the previous chapter for MPR, we
immediately have the following algorithmic results:

@ Concurrent Unicasts: polynomial

@ Aggregation: polynomial

© Broadcast: (2H (n— 1) — 1)-approximation algorithm

© Multicast: O (k®)-approximation algorithm for any fixed ¢ > 0
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MCR vs. Dual of MLRS

@ Dual of MLRS:

min Yyev b(u)y(u)
st Yuev P (u)y (“) >1LVHeR
y () >0VueV
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MCR vs. Dual of MLRS

@ Dual of MLRS:

min Yyev b(u)y(u)
st Yuev P (u)y (“) >1LVHeR
y () >0VueV

@ MCR: separation problem of the dual of MLRS
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Max-Life vs. Min-Cost

@ opt: life of a max-life routing schedule.

@ For any price function y € RY, let

a(y) =min Y py (u)y (u): min-cost of routes in R w.r.t.y,
" HeR
ueV
Z b(u . total energy cost w.r.t. y.
ueV
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Max-Life vs. Min-Cost

@ opt: life of a max-life routing schedule.

@ For any price function y € ]RK, let

a(y) =min Y py (u)y (u): min-cost of routes in R w.r.t.y,
" HeR
ueV
Z b(u . total energy cost w.r.t. y.
ueV

Foranyy € RY, a(y) < ﬁ(yt). In addition, there exists some y € RY such

that a (y) = BY).

opt
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Max-Life vs. Min-Cost

First Part: Trivial if « (y) = 0. So, we assume that a (y) > 0. Then, ﬁ

is a feasible solution of the dual LP. Hence

y Y_BW ., B(y)
or<B () = 5oy = w0 < 0
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Max-Life vs. Min-Cost

First Part: Trivial if « (y) = 0. So, we assume that a (y) > 0. Then, —*

)
is a feasible solution of the dual LP. Hence
y B(y) B(y)
opt < = =N < .
b () = By = e <5

Second Part: Suppose y is an optimal solution to dual LP. Then,

opt = B(y) anda(y) =1 = a(y) = L.
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Ellipsoid Method with (Approximate) Separation Oracle

N a network class

Suppose that there is a polynomial (respectively, a polynomial
u-approximation) algorithm for MCR for a communication task restricted
to N. Then, there is a polynomial (respectively, a polynomial
u-approximation) algorithm for MLRS for the same communication task
restricted to \ .
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Ellipsoid Algorithm for MLRS

’ H Ellipsoid Algorithm ‘

Conc. Unicasts exact
Aggregation exact
Broadcast 2H(n—1)—1
Multicast O (k)

Drawback: very slow practically
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An iterative algorithm, in each iteration:

@ Set the prices of the nodes with low residue energy relatively higher

@ Nodes with low residue energy are protected from getting drained of
energy quickly
@ Nodes with high residue energy are enforced to contribute more

energy
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An iterative algorithm, in each iteration:

@ Set the prices of the nodes with low residue energy relatively higher

@ Nodes with low residue energy are protected from getting drained of
energy quickly
@ Nodes with high residue energy are enforced to contribute more

energy

Challenge: how to choose the prices properly?
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Parameters

e A: a p-approximation algorithm for MCR
o if =1, the algorithm A is optimal for MCR
@ & a constant parameter € (0, 1)

@ output: an (1+ €) y-approximation.
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@ H: the set of chosen routes;
@ xy for each H € 'H: the duration of H;
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@ H: the set of chosen routes;
@ xy for each H € 'H: the duration of H;
@ z¢E ]RK: the energy consumption percentage vector defined by

z(u) = ZHGH;E’ZI))H (u),Vu eV,

@ ¢: the maximum energy consumption percentage max,cy z (u);
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@ H: the set of chosen routes;
@ xy for each H € 'H: the duration of H;
@ z¢E ]RK: the energy consumption percentage vector defined by

z(u) = ZHGH;E’ZI))H (u),Vu eV,

@ ¢: the maximum energy consumption percentage max,cy z (u);

o yeE ]RK: the price vector;

o B: the total energy cost }_,cy b(u)y (u).
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Outline of PDA

H—O;Vue V,z(u) «—0;¢ «—0;

Yu € V,y(u)%ﬁ;[%—n;

repeat
compute an H € R using A on (D, y);
t < minyev b(v) /pny (v);
if He H then xy «— xy + t,

else H — HU{H} and xpy < t;

Yue V, z(u) <—z(u)+tplf((;3);
¢ — max,ey z (u);
VueV,y(u)—y(u) <1—|—€tp£’;’((u“))>;
B Luev b(u)y(u);

until 0 < ¢ < L n £,

Output {(H,xy/¢) : H € H}.
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Running Time And Approximation Bound

The algorithm PDA produces an (1 + €) y-approximation in at most
K — [ (1+€)Inn —‘ . .
=n| s | Iterations.

(1+¢€) In(1+€)—e
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Running Time And Approximation Bound

The algorithm PDA produces an (1 + €) y-approximation in at most
K — [ (1+€)Inn —‘ . .
=n|mra-f1o | /terations.

(1+¢€) In(1+€)—e

y \ PDA |
Conc. Unicasts 1+¢
Aggregation 14¢
Broadcast (I+¢e)(2H(n—1)—1)
Multicast O (k%)
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Notations

@ opt: life of an optimal solution
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@ opt: life of an optimal solution
@ Ho, 20, ¢o, ¥o and Bg: initial values of H, z, ¢, y and B resp.
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@ opt: life of an optimal solution
@ Ho, 20, ¢o, ¥o and Bg: initial values of H, z, ¢, y and B resp.

e H;, z, ¢j, yj and B;: values of H, z, ¢, y and B resp. at the end of
the j-th iteration for each j > 1
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@ opt: life of an optimal solution
@ Ho, 20, ¢o, ¥o and Bg: initial values of H, z, ¢, y and B resp.

e H;, z, ¢j, yj and B;: values of H, z, ¢, y and B resp. at the end of
the j-th iteration for each j > 1

@ Hj: route selected in the j-th iteration
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@ opt: life of an optimal solution
@ Ho, 20, ¢o, ¥o and Bg: initial values of H, z, ¢, y and B resp.

e H;, z, ¢j, yj and B;: values of H, z, ¢, y and B resp. at the end of
the j-th iteration for each j > 1

@ Hj: route selected in the j-th iteration

@ t;: value of t computed in the j-th iteration
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@ opt: life of an optimal solution
@ Ho, 20, ¢o, ¥o and Bg: initial values of H, z, ¢, y and B resp.

e H;, z, ¢j, yj and B;: values of H, z, ¢, y and B resp. at the end of
the j-th iteration for each j > 1

@ Hj: route selected in the j-th iteration
@ t;: value of t computed in the j-th iteration

o Tj = max,ecv ¥ (1) b(u): maximum energy cost of all nodes at the
end of j-th iteration
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Upper Bound o

Claim: ¢; < log; . 7; for each j > 1.
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Upper Bound on ¢;

Claim: ¢; < log; . 7; for each j > 1.

Foranye>0and0 <t <1, t<log (l+et).
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Upper Bound on ¢;

Claim: ¢; < log; . 7; for each j > 1.

Foranye>0and0 <t <1, t<log (l+et). \

7 (u) — 71 () < logy o (1+¢ (5 (u) — 21 (1)) = logy

i (u)
(u)

yj-1(u)’

<

=z (u) < logy . = logy¢ (yj (u) b(u)) < logy, T

S
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Running Time

Prove by contradiction: assume > K iterations.
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Prove by contradiction: assume > K iterations.

@ Among the first K iterations some node v appears as a “bottleneck”
node in at least K/ n iterations.
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Prove by contradiction: assume > K iterations.

@ Among the first K iterations some node v appears as a “bottleneck”
node in at least K/ n iterations.

@ In each of K/ n iterations, y (v) is increased by a factor of 1 4 ¢.
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Prove by contradiction: assume > K iterations.

@ Among the first K iterations some node v appears as a “bottleneck”
node in at least K/ n iterations.

@ In each of K/ n iterations, y (v) is increased by a factor of 1 4 ¢.

14¢)</"

> 1 K/n — (7

vk (v) =y (v) (1+e) b(v)

= Tk >y (v) b(v) > (1+2)"/"

- cpg < |Og1Jfr€KTK = ! Inn < =
InTK lnT In (1‘1'5) "~ Togiie Tk €
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Prove by contradiction: assume > K iterations.

@ Among the first K iterations some node v appears as a “bottleneck”
node in at least K/ n iterations.

@ In each of K/ n iterations, y (v) is increased by a factor of 1 4 ¢.

14¢)</"

> 1 K/n — (7

vk (v) =y (v) (1+e) b(v)

= Tk >y (v) b(v) > (1+2)"/"

- cpg < |Og1Jfr€KTK = ! Inn < =
InTK lnT In (1‘1'5) "~ Togiie Tk €

@ By the stopping rule, the number of iterations < K, which is a
contradiction.
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Correctness of The output Solution

k: number of iterations.

Claim: By the end of the j-th iteration for 1 < j < k, the energy
consumption percentage of each node u is zj (u), i.e.,

Lren; Xnpn (u)
7 (u) = b0)

VYueV.
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Correctness of The output Solution

k: number of iterations.

Claim: By the end of the j-th iteration for 1 < j < k, the energy
consumption percentage of each node u is zj (u), i.e.,

_ Lner; xHpH (u)

zj (u) = b (o) Nue V.

Therefore, the final scaling by a factor ¢ results in a feasible solution.

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule



Lower Bound on ¢

s 1 BB :
Claim: t; > o J,ijl opt for each 1 < j < k,
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Lower Bound on ¢

Claim: t; > 81 ﬁfﬁﬁ’ opt for each 1 < j < k,

Bj = Z b(u)y; (u)

ueV
pr; (u)

u;/b (1—|—€tj b())
:Zb(u) —{-EtJ(ZpH )>

ueV ueVv
= Pj-1+ et <Z pH; (u) yj—1 (U))

ueV

< Bj-1+et- P"Bojptl-
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Approximation Bound

y opt o~ Bj —Bj-1 _ opt Pk _ opt P
ti > — — 2 - > In=—==—In—
j=1 EU j=1 :Bj—l EU 130 EU n
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Approximation Bound

th_optzﬁj /511 opt ,Bk_optln@'
=1

e = Bi-r ﬁo e n
So,
Zjl'(:1 tj 7| ﬁk 1 ¢ ot — opt
bk T eu cpk £y1+8 (I4+e)p

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule



Problem Description
Min-Cost Routing
Ellipsoid Algorithm
Price-Directive Algorithm

Flow-Based Algorithm

Peng-Jun Wan (wan@cs.iit.edu) Maximum-Life Routing Schedule



Single Flow

e D= (V,A): adigraph with two distinct nodes s and t
o feR} isans—tflowin D if

f (6% (v)) = f (6" (v)),Vv € V\ {s,t} (flow conservation law)

Figure: An an s —t flow of value 11.

e Value of f: val (f) = f (6% (s)) — f (6™ (s)) .
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Single Flow

e D= (V,A): adigraph with two distinct nodes s and t
o feR} isans—tflowin D if

f (6% (v)) = f (6" (v)),Vv € V\ {s,t} (flow conservation law)

Figure: An an s —t flow of value 11.

e Value of f: val (f) = f (6% (s)) — f (6™ (s)) .
o f is subject to an arc-capacity z € lRi if f <z
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Flow Decomposition

Figure: Any s — t flow of value L can be decomposed into at most |A| s — t
paths of total value L and possibly some circuits.
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Maximum Flow

Maximum Flow: finding an s — t flow f subject to a given arc-capacity
z € RY such that val (f) is maximized.
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Maximum Flow

Maximum Flow: finding an s — t flow f subject to a given arc-capacity
z € RY such that val (f) is maximized.

Solvable in polynomial time by flow-augmentation algorithms.
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Multiflow

@ Given k commodities with s;, t; being the source and sink, resp., for
commodity /.

o F;: the set of s;—t; flows.
o A k-flow is a sequence (fi, f, - -+, fi) with f; € F; V1 < i < k.
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Multiflow

@ Given k commodities with s;, t; being the source and sink, resp., for
commodity /.

o F;: the set of s;—t; flows.
o A k-flow is a sequence (fi, f, - -+, fi) with f; € F; V1 < i < k.

o A k-flow (fi,f, -, f;) is subject to an arc-capacity z € R% if
YL fi<z
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Maximum Concurrent Multiflow

max L

sit. e FVi<i<k
val (i) =L V1<i<k
2f=1fi§2
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Concurrent Unicasts

@ Given k unicasts are treated as k commodities.
o A k-flow (fi,f, -, f) is subject to an energy budget b € RY if

Y, c(e) (Z;f,-@)) <b(v),VveV.

ecsout(v)
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Concurrent Unicasts

@ Given k unicasts are treated as k commodities.
o A k-flow (fi,f, -, f) is subject to an energy budget b € RY if

k
Y, c(e) (Zf;(e)> <b(v),VveV.
ecsout (v) i=1

@ MLRS corresponds to maximum concurrent multiflow subject to
energy budget b
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MLRS for Concurrent Unicasts

Step 1: Solve the LP

max L
st. e F,Vi<i<k
val (i) =L V1 <i<k

Yecsonv) € (€) ( K f,-(e)) <b(v), VeV
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MLRS for Concurrent Unicasts

Step 1: Solve the LP

max L
st. e F,Vi<i<k
val (i) =L V1 <i<k

Eecauen) € (€) (Tir fi(e)) < b(v) Vv e v

Step 2: Decompose each f; into at most |A| si—t; paths of total value L
and discarding the rest circuits if there is any.
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Fractional Arborescence Packing

e D= (V, A): a digraph with a "root” node s
@ 7 collection of spanning arborescences rooted at s
@ A fractional s-arborescence packing in D subject to given arc-capacity
ze ]Rﬂ is a set of k pairs (T;,A;) € T x Ry satisfying that
Z /\jSZ(e),VeEA.
1<j<k,e€T;
@ The value of this packing is Zjl-‘zl Aj.
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Maximum Fractional Arborescence Packing

Maximum Fractional Arborescence Packing: finding a fractional

s-arborescence packing in D subject to a given arc-capacity z € ]Ri whose
value is is maximized.
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Maximum Fractional Arborescence Packing

Maximum Fractional Arborescence Packing: finding a fractional
s-arborescence packing in D subject to a given arc-capacity z € ]Ri whose

value is is maximized.
Gabow-Manu algorithm

@ a greedy algorithm
@ using at most |A| spanning s-arborescences.

Maximum-Life Routing Schedule
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A Min-Max Relation

mflow (u, z): the value of a maximum s — u flow in D subject to z,

Vue V\ {s}

The value of a maximum fractional s-arborescence packing in D subject to
z is equal to

min _mflow (u, z) .

ueV\{s}
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MLRS for Aggregation

Step 1: Compute an “optimal” arc-capacity z € ]Rﬁ by solving the LP:

max L

sit. Yecson(vyC(e)z(e) <b(v),VveV
val (f,) = L,Yu e V\ {s}
f, € Fu,Vue V\ {s}
fy <z,Yue V\{s}
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MLRS for Aggregation

Step 1: Compute an “optimal” arc-capacity z € ]Rﬁ by solving the LP:

max L

sit. Yecson(vyC(e)z(e) <b(v),VveV
val (f,) = L,Yu € V\ {s}
f, € Fu,Vue V\ {s}
fy <z,Yue V\{s}

Step 2: Compute a maximum fractional packing of spanning inward
s-arborescences subject to z using the Gabow-Manu algorithm.
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Correctness

@ opt: life of a max-life routing schedule
@ L: the value of the LP in Step 1
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Correctness

@ opt: life of a max-life routing schedule
@ L: the value of the LP in Step 1

Then,
Q opt<L
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Correctness

@ opt: life of a max-life routing schedule
@ L: the value of the LP in Step 1

Then,

Q opt<L
@ the life of the output solution in Step 2 > L by the min-max relation,
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