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A General Speci�cation of Multihop Wireless Networks

(V ,A, I):
V : network nodes

A: communication links

(V ,A): communication topology

I : collection of independent (i.e. con�ict-free) links in A

implicitly given by an interference model (IM)
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Protocol Interference Model (IM)
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Figure: (a) Communication range and interference range of each node; (b) a
communication link; (c) a con�icting pair of communication links.
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802.11 Interference Model (IM)
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Figure: (a) Communication range and interference range of each node; (b) a
communication edge; (c) a con�icting pair of communication edges.
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(Fractional) Link Schedule

S = f(Ij ,λj ) 2 I �R+ : 1 � j � kg

∑k
j=1 λj : length (or latency) of S

jS j: size of S

If the length of S � 1, it determines a link capacity function

cS = ∑
1�j�k

λj1Ij .

Capacity Region P � RA
+: convex hull of

�
1I : I 2 I

	
, or equivalently

P = fcS : S is a link schedule of length � 1g .
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(Fractional) Multi�ow

1 Maximum Multi�ow (MMF): Given a set of commodities, �nd a
link schedule S of length at most one such that the maximum
multi�ow subject to cS is maximized.

2 Maximum Concurrent Multi�ow (MCMF): Given a set of
commodities with demands, �nd a link schedule S of length at most
one such that the maximum concurrent multi�ow subject to cS is
maximized.
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Related Problems

1 Maximum Weighted Independent Set of Links (MWISL): Given
d 2 RA

+, �nd an I 2 I such that d (I ) is maximized

2 Shortest Weighted Link Schedule (SWLS) : Given d 2 RA
+, �nd a

shortest link schedule

S = f(Ij ,λj ) 2 I �R+ : 1 � j � kg

such that d = ∑1�j�k λj1Ij .
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Roadmap

Problem Description

Practical Approximation Algorithms
Polynomial-Time Approximation Scheme

Summary
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A Polyhedral Approach

Theorem If there is a capacity sub-region Q � P s.t.
1 Q is a µ-approximation of P, i.e., P � µQ,
2 Q has an explicit polynomial representation, and
3 8d 2 Q, a fractional link schedule of length at most one for d can be
computed in poly. time.

Then, both MMF and MCMF have a polynomial µ-approximation.

Any Q � P meeting the three above conditions is called a poly. µ-approx.
capacity subregion.
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Link-Flow LP

Fi : set of si�ti �ows

max. multi�ow max. concurrent multi�ow
max ∑k

j=1 val (fj )
s.t. fj 2 Fj , 81 � j � k

∑k
j=1 fj 2 P

max φ
s.t. fj 2 Fj , 81 � j � k

val (fj ) � φd (j) , 81 � j � k
∑k
j=1 fj 2 P
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Restricted Multi�ow

max. Q-restricted multi�ow max. concurrent Q-restricted multi�ow
max ∑k

j=1 val (fj )
s.t. fj 2 Fj , 81 � j � k

∑k
j=1 fj 2 Q

max φ
s.t. fj 2 Fj , 81 � j � k

val (fj ) � φd (j) , 81 � j � k
∑k
j=1 fj 2 Q

Step 1: solve the Q-restricted LP to obtain a k-�ow hf1, f2, � � � , fk i,
Step 2: compute a fractional link schedule of length at most one for
∑k
j=1 fj .
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Roadmap

Problem Description
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Independence Polytope

G = (V ,E ): an undirected graph

I : collection of independent sets of G
Independence polytope P � RV

+: convex hull of
�
1I : I 2 I

	
.
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Fractional (Weighted) Coloring

For any d 2 RV
+, a fractional coloring of (G , d) is a set of k pairs

(Ij ,λj ) 2 I �R+ s.t.

∑
1�j�k ,v2Ij

λj = d (v) , 8v 2 V .

k: coloring number
∑kj=1 λj : coloring weight

fractional chromatic number χf (G , d): minimum weight of all
fractional colorings of (G , d) .

χf (G , d) �
d (V )
α (G )

.

P =
�
d 2 RV

+ : χf (G , d) � 1
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Fractional (Weighted) Coloring: Example

4 v5

v1v3

v

2v

Figure: For the all-one demand vector d , χf (G , d) = 2.5. On the other hand,
χ (G ) = 3.
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Poly. Approx. of Independence Polytope

A polytope Q � P is a polynomial µ-approximation of P if

1 Q is a µ-approximation of P, i.e., P � µQ,
2 Q has an explicit polynomial representation, and
3 8d 2 Q, a fractional coloring of (G , d) with weight at most one can
be computed in poly. time
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First-Fit Fractional Weighted Coloring

hv1, v2, � � � , vni: a vertex ordering

Initialization: S  ∅; U  fv 2 V : d (v) > 0g
Iterations: while U 6= ∅ do

1 select an IS I � U in the �rst-�t manner
2 λ minv2I d (v)
3 add (I ,λ) to S
4 8v 2 U: d (v) d (v)� λ; if d (v) = 0, remove v from U

output S
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First-Fit Fractional Weighted Coloring

Coloring number of S � n

Coloring weight of S � max1�i�n d (N� (vi )), where

N� (vi ) = fvj : 1 � j � i , vj 2 N (vi )g
N� (vi ) = fvj : 1 � j < i , vj 2 N (vi )g .

max1�i�n d (N� (vi )): (closed) d-inductivity of hv1, v2, � � � , vni
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First-Fit Fractional Weighted Coloring

k: # of iterations/colors

81 � j � k,
Uj : the subset of nodes with residue demands at the beginning of the
j-th iteration�
Ij ,λj

�
: the pair selected in the j-th iteration.

Consider an arbitrary node vi 2 Uk . 8 1 � j � k, let Vi ,j = N� (vi ) \Uj .
Then, 81 � j � k, Ij \ Vi ,j 6= ∅. Hence,

d (N� (vi )) =
k

∑
j=1

λj jIj \ Vi ,j j �
k

∑
j=1

λj .
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Smallest-Last Ordering

Question: how to compute a vertex ordering with least closed
d-inductivity?

H  G .

For i = n down to 1,

vi  a vertex of smallest closed weighted degree in H
H  H � fvig
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Smallest-Last Ordering

closed d-inductivity of G :

δ
�
(G , d) = max

U�V
min
u2U

d
�
NG [U ] [u]

�

Theorem

The smallest-last ordering achieves the smallest d-inductivity δ
�
(G , d)

among all vertex orderings.
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Proof of The Theorem

For any ordering hv1, v2, � � � , vni,

max
1�i�n

d (N� (vi )) � δ
�
(G , d) .

Let U � V be s.t.

δ
�
(G , d) = min

u2U
d
�
NG [U ] [u]

�
and j be the last index such that vj 2 U. Then,

max
1�i�n

d (N� (vi )) � d (N� (vj )) � d
�
NG [U ] [vj ]

�
= δ

�
(G , d) .
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max
1�i�n

d (N� (vi )) � d (N� (vj )) � d
�
NG [U ] [vj ]

�
= δ

�
(G , d) .
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Proof of The Theorem

For the smallest-last ordering hv1, v2, � � � , vni,

max
1�i�n

d (N� (vi )) � δ
�
(G , d) .

For any 1 � i � n, let Vi = fv1, v2, � � � , vig. Then,

d (N� (vi )) = min
u2Vi

d
�
NG [Vi ] [u]

�
� δ

�
(G , d) .

Hence,
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�
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Inductive Local Independence Number (LIN)

hv1, v2, � � � , vni: a vertex ordering

Its Inductive LIN:

α� = max
1�i�n

fjI j : I 2 I , I � N� (vi )g .

8d 2 RV
+,

δ
�
(G , d) � max

1�i�n
d (N� (vi )) � α�χf (G , d) .
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Inductive LIN: The Second Inequality

81 � i � n,

χf (G , d) � d (N� (vi )) /α� + d (vi )

) d (N� (vi )) � α� (χf (G , d)� d (vi )) + d (vi )
= α�χf (G , d)� (α� � 1) d (vi )
� α�χf (G , d)� (α� � 1)min

v2V
d (v) .
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Inductive Independence Polytope

The polytope

Q =
�
d 2 RV

+ : max
1�i�n

d (N� (vi )) � 1
�
.

is a polynomial α�-approx. of P.
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Inward Local Independence Number (LIN)

D = (V ,A): an orientation of G

Its inward LIN:

β� = max
u2V

�
jI j : I 2 I , I � N inD (v)

	
.

8d 2 RV
+,

δ
�
(G , d) � max

v2V

�
d (v) + 2d

�
N inD (v)

��
� 2β�χf (G , d) .
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Inward LIN: The First Inequality

For any U � V , 9u 2 U s.t.

d
�
N inD [U ] (u)

�
� d

�
NoutD [U ] (u)

�
.

Thus,

d
�
NG [U ] [u]

�
= d (u) + d

�
N inD [U ] (u)

�
+ d

�
NoutD [U ] (u)

�
� d (u) + 2d

�
N inD [U ] (u)

�
� d (u) + 2d

�
N inD (u)

�
� max

v2V

�
d (v) + 2d

�
N inD (v)

��
.

So,
δ
�
(G , d) � max

v2V

�
d (v) + 2d

�
N inD (v)

��
.

Peng-Jun Wan (wan@cs.iit.edu) Multi�ows in Multihop Wireless Networks 29 / 42



Inward LIN: The Second Inequality

8v 2 V ,

χf (G , d) � d
�
N inD (v)

�
/β� + d (v)

) d
�
N inD (v)

�
� β� (χf (G , d)� d (v))

) d (v) + 2d
�
N inD (v)

�
� 2β�χf (G , d)� (2β� � 1) d (v)
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Inward Independence Polytope

The polytope

Q =
�
d 2 RV

+ : max
v2V

�
d (v) + 2d

�
N inD (v)

��
� 1

�
.

is a polynomial 2β�-approx. of P
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Problem Description

Practical Approximation Algorithms

Episode: Independence Polytope And Fractional Coloring
Approximate Capacity Subregion

Polynomial-Time Approximation Scheme
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Protocol IM

Orientation of the con�ict graph: for any a pair of con�icting links
a1 = (u1, v1) and a2 = (u2, v2)

if v1 is in the interference range of u2, take (a2, a1);
otherwise, take (a1, a2).

Q: inward independence polytope of this orientation

β�: inward LIN of this orientation

Lemma

β� �
�
π/ arcsin c�12c

�
� 1, and hence Q is a poly.

2
��

π/ arcsin c�12c
�
� 1

�
-approx capacity subregion.
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802.11 IM: Uniform interference Radii

Lexicographic ordering: sort all edges in the lexicographic order of
their right endpoints

Q: inductive independence polytope of this ordering

α�: inductive LIN of this ordering

Lemma
α� � 7 and hence Q is a poly. 7-approx capacity subregion.
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802.11 IM: Arbitrary Interference Radii

Interference radius decreasing ordering: sort all edges in the
decreasing order of their larger interference radii

Q: inductive independence polytope of this ordering

α�: inductive LIN of this ordering

Lemma
α� � 23 hence Q is a poly. 23-approx capacity subregion.
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Approximation-Preserving Reduction to MWISL

Theorem Restricted to a network class N , if there is a poly. (resp., a
poly. µ-approx.) alg. for MWISL, then there is a poly. (resp., a poly.
µ-approx.) alg. for (1) SWLS, (2) MMF, and (3) MCMF.
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Ellipsoid Method with (Approx.) Separation Oracle

Pj for 1 � j � k: the set of paths for commodity j
P : union of P1, � � � ,Pk
Pe for e 2 A: the set of paths in P that use link e
Ie for e 2 A: the set of I in P containing e

Primary (path-�ow) LP for MMF dual LP
max x (P)
s.t. x (Pe ) � λ (Ie ) , 8e 2 A

λ (I) � 1
x 2 RP+,λ 2 RI+

min τ
s.t. y(p) � 1, 8p 2 P

y(I ) � τ, 8I 2 I
y 2 RA

+, τ 2 R+
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PTAS for MWISL

Theorem Restricted to any of the three network classes, MWISL has a
PTAS:

1 802.11 IM;

2 Protocol IM, and the interference radius of each node is at least c
times its communication radius for some constant c > 1;

3 Protocol IM, and every k-hop neighborhood in the con�ict-graph
contains at most O (kc ) independent links for some constant c > 0.

Approaches:

for the �rst two classes: shifting strategy + dynamic programming

for the third class: polynomial growth
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PTAS for All Four

Theorem Restricted to any of the following three network classes, all of
MWISL, SWLS, MMF, and MCMF have a PTAS:

1 802.11 IM;
2 Protocol IM, and the interference radius of each node is at least c
times its communication radius for some constant c > 1;

3 Protocol IM, and every k-hop neighborhood in the con�ict-graph
contains at most O (kc ) independent links for some constant c > 0.
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Summary

Approx-preserving reduction (independent of IM) to

1 MWISL
2 Polynomial approximate capacity subregion

Independence polytope and fractional (weighted) coloring

Practical constant-approximations

802.11 IM: 7-approx with uniform interference radii, 23-approx in
general

protocol IM: 2
�l

π/ arcsin c�12c
m
� 1

�
-approx

PTAS in broader ranges of networks
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