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A General Specification of Multihop Wireless Networks

(V,AI):

@ V: network nodes
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A General Specification of Multihop Wireless Networks

(V,AI):
@ V: network nodes
@ A: communication links

e (V,A): communication topology
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A General Specification of Multihop Wireless Networks

(V,AI):
@ V: network nodes
@ A: communication links

o (V,A): communication topology

@ T: collection of independent (i.e. conflict-free) links in A
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A General Specification of Multihop Wireless Networks

(V,AI):
@ V: network nodes
@ A: communication links
o (V,A): communication topology
@ T: collection of independent (i.e. conflict-free) links in A

e implicitly given by an interference model (IM)
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Protocol Interference Model (IM)

(b) (c)

Figure: (a) Communication range and interference range of each node; (b) a
communication link; (c) a conflicting pair of communication links.
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802.11 Interference Model (IM)
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Figure: (a) Communication range and interference range of each node; (b) a
communication edge; (c) a conflicting pair of communication edges.
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(Fractional) Link Schedule

S={(lAj) €T xRy :1<j <k}
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(Fractional) Link Schedule

S={(lAj) €T xRy :1<j <k}

° Zf:l Aj: length (or latency) of S
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(Fractional) Link Schedule

S={(lAj) €T xRy :1<j <k}

° Zj’-‘zl Aj: length (or latency) of S
@ |S|: sizeof S
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(Fractional) Link Schedule

S={(lAj) €T xRy :1<j <k}

° Zj’-‘zl Aj: length (or latency) of S
o |S|: sizeof S
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(Fractional) Link Schedule

S={(lAj) €T xRy :1<j <k}
° Zj’-‘zl Aj: length (or latency) of S

o |S|: sizeof S

If the length of S < 1, it determines a link capacity function

Cs = Z AJ].IJ

1<j<k
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(Fractional) Link Schedule

S={(lAj) €T xRy :1<j <k}

° Zj’-‘zl Aj: length (or latency) of S
o |S|: sizeof S

If the length of S < 1, it determines a link capacity function

Cs = Z AJ].IJ

157<k
Capacity Region P C R%: convex hull of {1': 1 € T}, or equivalently

P = {cs : S is a link schedule of length < 1}.
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(Fractional) Multiflow

@ Maximum Multiflow (MMF): Given a set of commodities, find a
link schedule S of length at most one such that the maximum
multiflow subject to cs is maximized.
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(Fractional) Multiflow

@ Maximum Multiflow (MMF): Given a set of commodities, find a
link schedule S of length at most one such that the maximum
multiflow subject to cs is maximized.

@ Maximum Concurrent Multiflow (MCMF): Given a set of
commodities with demands, find a link schedule S of length at most
one such that the maximum concurrent multiflow subject to cs is
maximized.
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Related Problems

@ Maximum Weighted Independent Set of Links (MWISL): Given
d € R%}, find an I € I such that d (/) is maximized
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Related Problems

@ Maximum Weighted Independent Set of Links (MWISL): Given
d € R%, find an I € I such that d (/) is maximized

@ Shortest Weighted Link Schedule (SWLS) : Given d € R%, find a
shortest link schedule

S={(h ) €TxRy:1< <k}

such that d = Zlﬁjgk /\Jllj
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Problem Description
Practical Approximation Algorithms

Polynomial-Time Approximation Scheme

Summary
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A Polyhedral Approach

Theorem If there is a capacity sub-region Q C P s.t.

Q@ Q is a py-approximation of P, i.e., P C uQ,

@ Q@ has an explicit polynomial representation, and

Q Vd € Q, a fractional link schedule of length at most one for d can be
computed in poly. time.

Then, both MMF and MCMF have a polynomial p-approximation.
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A Polyhedral Approach

Theorem If there is a capacity sub-region Q C P s.t.

Q@ Q is a py-approximation of P, i.e., P C uQ,

@ Q@ has an explicit polynomial representation, and

Q Vd € Q, a fractional link schedule of length at most one for d can be
computed in poly. time.

Then, both MMF and MCMF have a polynomial p-approximation.

Any @ C P meeting the three above conditions is called a poly. u-approx.
capacity subregion.
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Link-Flow LP

F;: set of s;i—t; flows

max. multiflow max. concurrent multiflow

max 2}‘:1 val (f;) max ¢
st. e F,VI<j<k st. e FV1<j<k
YiifieP val (i) > ¢d (j) V1 < j < k
Y fiep
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Restricted Multiflow

max. Q-restricted multiflow max. concurrent @-restricted multiflow

max Zjlle val (f;) max ¢
st. e F,VI<j<k st. e FV1<j<k
Y fieQ val (fj) = ¢d (j) V1 <j < k
Yfieq
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Restricted Multiflow

max. Q-restricted multiflow max. concurrent @-restricted multiflow
max Zjlle val (f;) max ¢
st. e F,VI<j<k st. e FV1<j<k
Yafieq val () 2 ¢d (j) V1 < j < k
Y fieQ
Step 1: solve the Q-restricted LP to obtain a k-flow (fi, f, -, k),

Step 2: compute a fractional link schedule of length at most one for

Y f
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Problem Description

Practical Approximation Algorithms

o Episode: Independence Polytope And Fractional Coloring
o Approximate Capacity Subregion

Polynomial-Time Approximation Scheme

Summary
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Independence Polytope

e G = (V,E): an undirected graph
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Independence Polytope

e G = (V,E): an undirected graph

@ 7: collection of independent sets of G
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Independence Polytope

e G = (V,E): an undirected graph
@ 7: collection of independent sets of G
@ Independence polytope P C IRK: convex hull of {1’ S I}.
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Fractional (Weighted) Coloring

@ Forany d € RY, a fractional coloring of (G, d) is a set of k pairs
(ljv)\j) €7 x IR+ s.t.

Y, Aj=d(v).VveV.

1<j<k,vel;
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Fractional (Weighted) Coloring

e For any d € RY, a fractional coloring of (G, d) is a set of k pairs
(li,Aj) € T xRy st

Z Aj=d(v),VveV.

1<j<k,vel;

e k: coloring number

Peng-Jun Wan (wan@cs.iit.edu) Multiflows in Multihop Wireless Networks



Fractional (Weighted) Coloring

e For any d € RY, a fractional coloring of (G, d) is a set of k pairs
(li,Aj) € T xRy st

Z Aj=d(v),VveV.

1<j<k,vel;

e k: coloring number
° Jl'(:]_ Aj: coloring weight
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Fractional (Weighted) Coloring

e Forany d € ]RK, a fractional coloring of (G, d) is a set of k pairs
(li,Aj) € T xRy st

Z Aj=d(v),VveV.

1<j<k,vel;

e k: coloring number
° )i Aj: coloring weight

e fractional chromatic number xf (G, d): minimum weight of all
fractional colorings of (G, d).
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Fractional (Weighted) Coloring

e Forany d € ]RK, a fractional coloring of (G, d) is a set of k pairs
(li,Aj) € T xRy st

Z Aj=d(v),VveV.

1<j<k,vel;

e k: coloring number
° )i Aj: coloring weight

e fractional chromatic number xf (G, d): minimum weight of all
fractional colorings of (G, d).

o P={deRY:xf(G,d) <1}
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Fractional (Weighted) Coloring: Example

Vy Vs

Figure: For the all-one demand vector d, xf (G, d) = 2.5. On the other hand,
x(6)=3.
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Poly. Approx. of Independence Polytope

A polytope Q C P is a polynomial u-approximation of P if
© Q is a p-approximation of P, i.e., P C uQ,
@ @ has an explicit polynomial representation, and

@ Vd € Q, a fractional coloring of (G, d) with weight at most one can
be computed in poly. time

Peng-Jun Wan (wan@cs.iit.edu) Multiflows in Multihop Wireless Networks



First-Fit Fractional Weighted Coloring

@ (vi, vy, -+, Vp): a vertex ordering

Peng-Jun Wan (wan@cs.iit.edu) Multiflows in Multihop Wireless Networks



First-Fit Fractional Weighted Coloring

@ (vi,vp, -+, Vp): a vertex ordering
e Initialization: S «+— @; U «— {ve V:d(v) >0}
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First-Fit Fractional Weighted Coloring

@ (vi,vp, -+, Vp): a vertex ordering
e Initialization: S «— @; U «— {v e V:d(v) > 0}
@ lterations: while U # @ do
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First-Fit Fractional Weighted Coloring

@ (vi,vp, -+, Vp): a vertex ordering
o Initialization: S «+— @; U «— {ve V:d(v) >0}
@ lterations: while U # @ do

@ sclect an IS | C U in the first-fit manner
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First-Fit Fractional Weighted Coloring

@ (vi,vp, -+, Vp): a vertex ordering
e Initialization: S «— @; U «— {v e V:d(v) > 0}
@ lterations: while U # @ do

@ select an IS | C U in the first-fit manner
Q@ A «—min, ¢ d(v)
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First-Fit Fractional Weighted Coloring

@ (vi,vp, -+, Vp): a vertex ordering
e Initialization: S «— @; U «— {v e V:d(v) > 0}
@ lterations: while U # @ do

@ select an IS | C U in the first-fit manner
Q@ A —min, ¢ d(v)
Q add (/,A)to S
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First-Fit Fractional Weighted Coloring

@ (vi,vp, -+, Vp): a vertex ordering
e Initialization: S «— @; U «— {v e V:d(v) > 0}
@ lterations: while U # @ do

@ select an IS | C U in the first-fit manner

Q@ A —min, ¢ d(v)

@ add (/,A) to S

Q@ VveU d(v)«—d(v)—A;ifd(v) =0, remove v from U
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First-Fit Fractional Weighted Coloring

@ (vi,vp, -+, Vp): a vertex ordering
o Initialization: S «+— @; U «— {ve V:d(v) >0}
@ lterations: while U # @ do
@ select an IS | C U in the first-fit manner
Q@ A —min, ¢ d(v)
Q add ([,A)to S
Q VveU: d(v)—d(v)—A;ifd(v) =0, remove v from U
@ output S
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First-Fit Fractional Weighted Coloring

@ Coloring number of S < n
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First-Fit Fractional Weighted Coloring

@ Coloring number of S < n

@ Coloring weight of S < maxj<j<,d (N< (v;)), where
N (v) = {y 1< < iy N (w)}
No(vi)={vi:1<j<i,vye N(vi)}.
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First-Fit Fractional Weighted Coloring

@ Coloring number of S < n

o Coloring weight of S < maxj<j<,d (N< (v;)), where

N<(vi) ={v:1<j<ivieN(v)}
No(vi)={vi:1<j<i,vye N(v)}.

e maxj<j<pd (N<(v;)): (closed) d-inductivity of (vi,vp, -, vp)
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First-Fit Fractional Weighted Coloring

@ k: # of iterations/colors
o V1< <k,
o U;: the subset of nodes with residue demands at the beginning of the

Jj-th iteration
° (Ij,)\j): the pair selected in the j-th iteration.
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First-Fit Fractional Weighted Coloring

@ k: # of iterations/colors
o V1< <k,
o U;: the subset of nodes with residue demands at the beginning of the
Jj-th iteration
° (Ij,)\j): the pair selected in the j-th iteration.
Consider an arbitrary node v; € U,. V1 <j <k, let V;j = N<(v;)NU;.
Then, V1 < j < k, ;N V;; # @. Hence,

k k
d(N<(vi) =Y ANV > Y A
j=1 j=1
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Smallest-Last Ordering

Question: how to compute a vertex ordering with least closed
d-inductivity?
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Smallest-Last Ordering

Question: how to compute a vertex ordering with least closed
d-inductivity?

o H+—G.

@ For i = ndown to 1,

@ v; < a vertex of smallest closed weighted degree in H
o H—H—-{v;}
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Smallest-Last Ordering

closed d-inductivity of G:

5°(6.d) = pmaymind (No[u])

The smallest-last ordering achieves the smallest d-inductivity 5" (G,d)
among all vertex orderings.
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Proof of The Theorem

For any ordering (vi, va,- -+, va),

max d (N< (v,)) >3 (G, d).

1<i<n
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Proof of The Theorem

For any ordering (vi, va,- -+, va),

max d (N< (v;)) >3 (G, d).

1<i<n
Let U C V bes.t.

5 (G,d) = mind (NG[U] [u])

and j be the last index such that v; € U. Then,

max d (V< () 2 d (N< () = d (N [y]) =37 (G, d).
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Proof of The Theorem

For the smallest-last ordering (vi, v, -, vy),

max d (N< (v;)) <3 (G, d).

1<i<n
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Proof of The Theorem

For the smallest-last ordering (vi, v, -, vy),

max d (N< (v;)) <3 (G, d).

1<i<n

Forany 1 <i<n,let Vi ={vi,vo,---,vj}. Then,
d (N () = min d (N [u]) <& (G, d).

Hence, 7
max d (N< (v;)) <3 (G,d).

1<i<n
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Inductive Local Independence Number (LIN)

@ (vi, vy, -+ ,Vp): a vertex ordering
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Inductive Local Independence Number (LIN)

@ (vi,vp, -+ ,Vp): a vertex ordering
@ lts Inductive LIN:

o = max {|I|:1e€Z, 1 CNs(v)}.

1<i<n
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Inductive Local Independence Number (LIN)

@ (vi,vp, -+ ,Vp): a vertex ordering

@ lts Inductive LIN:

o = max {|I|:1e€Z, 1 CN(v)}.

1<i<n

e Vd e RY,

5 (G, d) < max d(N<(v;)) < axr (G, d).

T 1<i<n

Multiflows in Multihop Wireless Networks
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Inductive LIN: The Second Inequality

V1<i<n
xr (G, d) > d(N<(v)) /e +d (v;)
= d(N<(vi)) <a” (xr (G, d) —d(v;)) +d(v)
=a"xr (G, d)— («" —1)d (v)
14
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Inductive Independence Polytope

The polytope
Q= {d € IRK : lrg%xnd(Nj (vi)) < 1} :

is a polynomial a*-approx. of P.
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Inward Local Independence Number (LIN)

e D = (V,A): an orientation of G
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Inward Local Independence Number (LIN)

e D = (V,A): an orientation of G
@ Its inward LIN:

ﬁ*:rpea&{|l| 1 €Z, 1 CNE(v)}.
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Inward Local Independence Number (LIN)

e D = (V,A): an orientation of G
@ Its inward LIN:

5*:Tea&<{|/|:/ez,/ C NG (v)}.

° VdE]R_\(,

6 (G, d) < max(d(v)+2d (N5 (v))) <28 xr (G, d).

veV
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Inward LIN: The First Inequality

Forany U C V, du € U s.t.

d (NG () > d (Nt ()

Thus,
d (Nepy [u]) = d (u) +d (N () +d (N3 ()
< d(u)+2d (N[g[u] (u))
< d (u) +2d (N3 (u))
< max (d (v) +2d (N3 (v))) .
So,

*

5 (G d) < max (d(v)+2d (NJ (v))) -
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Inward LIN: The Second Inequality

Yv eV,

xr(G.d)>d(NB(v)) /B +d(v)
= d (Np (v)) < B" (xr (G, d) —d (v))
= d(v)+2d (NJ (v)) <2B*xr (G, d) — (2B* —1)d (v)
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Inward Independence Polytope

The polytope

Q= {de]RX :max (d (v) +2d (N (v))) < 1}.

veV

is a polynomial 2B*-approx. of P
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Problem Description

Practical Approximation Algorithms

o Episode: Independence Polytope And Fractional Coloring
o Approximate Capacity Subregion

Polynomial-Time Approximation Scheme

Summary
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Protocol IM

@ Orientation of the conflict graph: for any a pair of conflicting links
al = (Ul, Vl) and ay = (UQ, VQ)

Peng-Jun Wan (wan@cs.iit.edu) Multiflows in Multihop Wireless Networks



Protocol IM

@ Orientation of the conflict graph: for any a pair of conflicting links
ap = (u1,v1) and ap = (w2, v)

o if v1 is in the interference range of wup, take (ap, a1);
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Protocol IM

@ Orientation of the conflict graph: for any a pair of conflicting links
ap = (u1,v1) and ap = (w2, v)

o if vy is in the interference range of up, take (ap, a1);
o otherwise, take (a1, a).
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Protocol IM

@ Orientation of the conflict graph: for any a pair of conflicting links
ap = (u1,v1) and ap = (w2, v)

o if vy is in the interference range of up, take (ap, a1);
o otherwise, take (a1, ap).

@ @: inward independence polytope of this orientation
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Protocol IM

@ Orientation of the conflict graph: for any a pair of conflicting links
ap = (u1,v1) and ap = (w2, v)

o if vy is in the interference range of up, take (ap, a1);
o otherwise, take (a1, ap).
@ @: inward independence polytope of this orientation

e [*: inward LIN of this orientation
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Protocol IM

@ Orientation of the conflict graph: for any a pair of conflicting links
ap = (u1,v1) and ap = (w2, v)

o if vy is in the interference range of up, take (ap, a1);
o otherwise, take (a1, ap).
@ @: inward independence polytope of this orientation

e B*: inward LIN of this orientation
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Protocol IM

@ Orientation of the conflict graph: for any a pair of conflicting links
ap = (u1,v1) and ap = (w2, v)
o if vy is in the interference range of up, take (ap, a1);
o otherwise, take (a1, ap).
@ @: inward independence polytope of this orientation

e B*: inward LIN of this orientation

B* < frc/ arcsin 1 — 1, and hence Q is a poly.
2

((71 / arcsin 2—11 ) -approx capacity subregion.
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802.11 IM: Uniform interf

@ Lexicographic ordering: sort all edges in the lexicographic order of
their right endpoints
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802.11 IM: Uniform interf

@ Lexicographic ordering: sort all edges in the lexicographic order of
their right endpoints

@ @: inductive independence polytope of this ordering
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802.11 IM: Uniform interference Radii

@ Lexicographic ordering: sort all edges in the lexicographic order of
their right endpoints

@ @: inductive independence polytope of this ordering

@ «*: inductive LIN of this ordering
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802.11 IM: Uniform interference Radii

@ Lexicographic ordering: sort all edges in the lexicographic order of
their right endpoints

@ @: inductive independence polytope of this ordering

@ «*: inductive LIN of this ordering
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802.11 IM: Uniform interference Radii

@ Lexicographic ordering: sort all edges in the lexicographic order of
their right endpoints

@ @: inductive independence polytope of this ordering

@ «*: inductive LIN of this ordering

a® < 7 and hence Q is a poly. T-approx capacity subregion. \
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802.11 IM: Arbitrary Interference Radii

@ Interference radius decreasing ordering: sort all edges in the
decreasing order of their larger interference radii
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802.11 IM: Arbitrary Interference Radii

@ Interference radius decreasing ordering: sort all edges in the
decreasing order of their larger interference radii

@ @: inductive independence polytope of this ordering
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802.11 IM: Arbitrary Interference Radii

@ Interference radius decreasing ordering: sort all edges in the
decreasing order of their larger interference radii

@ @: inductive independence polytope of this ordering

@ «*: inductive LIN of this ordering
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802.11 IM: Arbitrary Interference Radii

@ Interference radius decreasing ordering: sort all edges in the
decreasing order of their larger interference radii

@ @: inductive independence polytope of this ordering

@ «*: inductive LIN of this ordering
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802.11 IM: Arbitrary Interference Radii

@ Interference radius decreasing ordering: sort all edges in the
decreasing order of their larger interference radii

@ @: inductive independence polytope of this ordering

@ «*: inductive LIN of this ordering

o™ < 23 hence Q is a poly. 23-approx capacity subregion. l
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Problem Description
Practical Approximation Algorithms

Polynomial-Time Approximation Scheme

Summary
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Approximation-Preserving Reduction to MWISL

Theorem Restricted to a network class NV, if there is a poly. (resp., a
poly. p-approx.) alg. for MWISL, then there is a poly. (resp., a poly.
p-approx.) alg. for (1) SWLS, (2) MMF, and (3) MCMF.
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Ellipsoid Method with (Approx.) Separation Oracle

Pj for 1 < j < k: the set of paths for commodity j

P: union of Py, -+, Py«

Pe for e € A: the set of paths in P that use link e
Te for e € A: the set of | in P containing e
Primary (path-flow) LP for MMF dual LP
max x (P) min T
st. x(Pe) <A(Z.),Ve€e A | st. y(p)>1VpeP
AMI)<1 y() <t Vliel

x € RY, A e RY

y€]Rj‘_,T€IR+
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PTAS for MWISL

Theorem Restricted to any of the three network classes, MWISL has a
PTAS:

Q 802.11 IM;
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PTAS for MWISL

Theorem Restricted to any of the three network classes, MWISL has a
PTAS:

Q 802.11 IM;

@ Protocol IM, and the interference radius of each node is at least ¢
times its communication radius for some constant ¢ > 1;
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PTAS for MWISL

Theorem Restricted to any of the three network classes, MWISL has a
PTAS:

Q 802.11 IM;

@ Protocol IM, and the interference radius of each node is at least ¢
times its communication radius for some constant ¢ > 1;

© Protocol IM, and every k-hop neighborhood in the conflict-graph
contains at most O (k¢) independent links for some constant ¢ > 0.

Peng-Jun Wan (wan@cs.iit.edu) Multiflows in Multihop Wireless Networks




PTAS for MWISL

Theorem Restricted to any of the three network classes, MWISL has a
PTAS:

Q 802.11 IM;

@ Protocol IM, and the interference radius of each node is at least ¢
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© Protocol IM, and every k-hop neighborhood in the conflict-graph
contains at most O (k¢) independent links for some constant ¢ > 0.
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PTAS for MWISL

Theorem Restricted to any of the three network classes, MWISL has a
PTAS:

Q 802.11 IM;

@ Protocol IM, and the interference radius of each node is at least ¢
times its communication radius for some constant ¢ > 1;

© Protocol IM, and every k-hop neighborhood in the conflict-graph
contains at most O (k¢) independent links for some constant ¢ > 0.

Approaches:

o for the first two classes: shifting strategy + dynamic programming

o for the third class: polynomial growth
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PTAS for All Four

Theorem Restricted to any of the following three network classes, all of
MWISL, SWLS, MMF, and MCMF have a PTAS:
Q 802.11 IM;

@ Protocol IM, and the interference radius of each node is at least ¢
times its communication radius for some constant ¢ > 1;

© Protocol IM, and every k-hop neighborhood in the conflict-graph
contains at most O (k) independent links for some constant ¢ > 0.
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Roadmap

Problem Description
Practical Approximation Algorithms

Polynomial-Time Approximation Scheme

Summary
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Summary

@ Approx-preserving reduction (independent of IM) to
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o Approx-preserving reduction (independent of IM) to
Q@ MWISL
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o Approx-preserving reduction (independent of IM) to

O MWISL
@ Polynomial approximate capacity subregion

Peng-Jun Wan (wan@cs.iit.edu) Multiflows in Multihop Wireless Networks



o Approx-preserving reduction (independent of IM) to

Q@ MWISL
© Polynomial approximate capacity subregion

@ Independence polytope and fractional (weighted) coloring
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o Approx-preserving reduction (independent of IM) to
O MWISL
© Polynomial approximate capacity subregion
e Independence polytope and fractional (weighted) coloring

@ Practical constant-approximations
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o Approx-preserving reduction (independent of IM) to

O MWISL

© Polynomial approximate capacity subregion
e Independence polytope and fractional (weighted) coloring
@ Practical constant-approximations

e 802.11 IM: 7-approx with uniform interference radii, 23-approx in
general
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o Approx-preserving reduction (independent of IM) to

O MWISL

© Polynomial approximate capacity subregion
e Independence polytope and fractional (weighted) coloring
@ Practical constant-approximations

e 802.11 IM: 7-approx with uniform interference radii, 23-approx in
general

e protocol IM: 2 ({n/ arcsin & —‘ 1) -approx
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o Approx-preserving reduction (independent of IM) to

O MWISL

© Polynomial approximate capacity subregion
e Independence polytope and fractional (weighted) coloring
@ Practical constant-approximations

e 802.11 IM: 7-approx with uniform interference radii, 23-approx in
general

e protocol IM: 2 ({7‘[/ arcsin & —‘ 1) -approx

@ PTAS in broader ranges of networks
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