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Network model

Communication topology: D = (V ,A; c)

Adjustable transmission power

Fixed received power cost: q 2 RV
+
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Routings for Primitive Communication Tasks

Unicast: a directed path

Aggregation: a spanning in-arborescence

Broadcast: a spanning out-arborescence

Multicast: a Steiner out-arborescence
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Power Consumption

For D 0 = (V 0,A0) � D,
Transmission power consumption

For each u 2 V 0: pD 0 (u) = max
�
c (a) : a 2 δoutD 0 (u)

	
Total: p (D 0) = ∑u2V 0 pD 0 (u)

Receiving power consumption

For each u 2 V 0: qD 0 (u) = deginD 0 (u) � q (u)
Total: q (D 0) = ∑u2V 0 qD 0 (u)

Power consumption of D 0: p (D 0) + q (D 0)
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Three Types of Networks

Asymmetric Networks

for some (u, v) 2 A, either (v , u) /2 A or (v , u) 2 A but
c (u, v) 6= c (v , u)

Symmetric Networks

(u, v) 2 A implies (v , u) 2 A and c (u, v) = c (v , u)

Plane Geometric Networks

symmetric
D is a R-disk graph for some R > 0
c (u, v) = c (v , u) = kuvkκ
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Summary on Routing Algorithms

Receiving power consumption is ignored

for clarity and simplicity
minor modi�cation

Unicast: shortest path, and hence not covered

Aggregation: polynomial optimal algorithms

Broadcast: approximations in three types of networks

Multicast: approximations in three types of networks
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Aggregation Routing

Min-power aggregation routing: Min-weight spanning in-arborescence

symmetric networks: min-weight spanning tree

Equivalent to min-weight spanning out-arborescence by taking reverse

subsequently all arborescences are out-arborescences

Failure of the greedy method

2 3

1

s

vu
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Orphan Strong Component

s
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A Recursive Algorithm: Base

A0  fa 2 A : c (a) = 0g;
If (V ,A0) contains no orphan strong component,

T  an out-arborescence of (V ,A0) rooted at v ;
output T ;
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A Recursive Algorithm: Recursion

K  an orphan strong component of (V ,A0);
µ min

�
c (a) : a 2 δinD (K )

	
;

for each a 2 δin (K ), c 0 (a) c (a)� µ;
for each a /2 δin (K ), c 0 (a) c (a);
�nd recursively a MSA T 0 w.r.t. c 0;
modify T 0 to a MSA T w.r.t. c 0 s.t. T enters K exactly once;
output T .

Optimality: for a MSA T � = (V ,F �) w.r.t. c ,

c (T �) = c 0 (T �) + µ
��F � \ δinD (K ))

��
� c 0 (T �) + µ � c 0 (T ) + µ = c (T ) .
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Modi�cation

v  a node in K of minimum depth in T 0;
T 00  an out-arborescence of K rooted at v ;
T  T 0 �

�
δinT 0 (u) : u 2 K n fvg

	
+ T 00;

(c)(a) (b)

s ss
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Submodular Set Functions

f : 2E ! R for some ground set E .
Marginal values:

∆B f (A) = f (A[ B)� f (A) ,
∆x f (A) = f (A[ fxg)� f (A)

f is submodular if for any A � E and distinct x , y 2 E n A.

∆x f (A) � ∆x f (A[ fyg) .

Decreasing marginal values: diminishing returns
Alternatively:

f (X [ Y ) + f (X \ Y ) � f (X ) + f (Y ) , 8X ,Y � E .
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Increasing And Submodular Functions

f is increasing if ∆x f (A) � 0 for any A � E and x 2 E n A.

, for any A � B � E , f (A) � f (B)

f is increasing and submodular , for any A,B � E ,

f (B)� f (A) � ∑
x2BnA

∆x f (A) .

f is a polymatroid function if f is increasing, submodular, and f (∅) = 0.
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Power

D = (V ,A; c): a weighted digraph.
f : 2A ! R de�ned by

f (B) = power of (V ,B) , 8B � A.

For each a 2 A with tail u,

∆af (B) = max
�
0, c (a)� max

b2B\δoutD (u)
c (b)

�
.
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Graph Matroid Rank

D = (V ,A): a digraph.
f : 2A ! R de�ned by

f (B) = jV j �# of weak components of (V ,B) , 8B � A.

For each a = (u, v) 2 A, ∆af (B) = 0 if u and v belong to the same weak
component in (V ,B), and 1 otherwise.
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Graph Matroid Rank

G = (V ,E ): an undirected graph.
f : 2E ! R de�ned by

f (B) = jV j �# of components of (V ,B) , 8B � A.

For each e 2 E , ∆e f (B) = 0 if both ends of e belong to the same
component in (V ,B), and 1 otherwise.
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Vertex Domination

G = (V ,E ): an undirected graph.
f : 2V ! R

f (U) = jN [U ]j , 8U � V

∆v f (U) = jN [v ] nN [U ]j .
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Undirected cut

G = (V ,E ): an undirected graph.
f : 2V ! R

f (U) = jδ (U)j , 8U � V

∆v f (U) = jN (v) n U j � jN (v) \U j = deg (v)� 2 jN (v) \U j .

vU
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Undirected cut
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Directed cut

D = (V ,A): a digraph.
f : 2V ! R

f (U) =
��δout (U)�� , 8U � V

∆v f (U) =
��Nout (v) n U��� ��N in (v) \U��

= degout (v)�
���Nout (v) \U��+ ��Nout (v) \U��� .
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Directed cut
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A¢ ne Combination

f , g : submodular on 2E . c : a nonnegative constant

Multiplication by positive scalar: cf .

Summation: f + g
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Mapping

f : submodular on 2E .
g : S ! 2E . De�ne g (X ) = [x2X g (x) for any X � S .
Then, f � g is submodular on 2S .

f � g (A) + f � g (B)
= f (g (A)) + f (g (B))

� f ((g (A) [ g (B))) + f (g (A) \ g (B))
� f (g (A[ B)) + f (g (A\ B)) .
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Integral Submodular Cover with Submodular Cost

f : a integer-valued polymatroid function on 2E ;
g : a polymatroid function on 2E .
The minimization problem

min fg (X ) : X � E , f (X ) = f (E )g .
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Greedy Algorithm

GSC:
X  ∅;
While f (X ) < f (E ) do

select x 2 E with minimum g (x) /∆x f (X ) ;
X  X [ fxg;

Output X .
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Approximation Ratio

De�ne the curvature of c to be

ρ = min
S : min-cost cover

∑e2S g (e)
g (S)

.

Theorem
The approximation ratio of GSC is at most ρH (γ) where
γ = maxe2E f (e).
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Proof by A Charging Argument

S : a cover of min-cost cover satisfying that

∑
e2S

g (e) = ρ � g (S) .

x1, x2, � � � , xk : the sequence of elements selected by the greedy algorithm.
Let X0 = ∅, and for each 1 � i � k let Xi be the �rst i elements.
µi =

g (xi )
∆xi f (Xi�1)

: the average price per increment of coverage by the i-th

element. Then
µ1 � µ2 � � � � � µk .

In the iteration i , we charge each e 2 S with µi (∆e f (Xi�1)� ∆e f (Xi )).
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Proof by A Charging Argument

∑k
i=1 g (xi ) is no more than the total charge on S .

The total charge on e 2 S is at most H (γ) g (e).

Hence,

g (X ) �
k

∑
i=1
g (xi ) � H (γ) ∑

e2S
g (e) = ρH (γ) � g (S) .
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Min-Power Broadcast Routing

NP-hard

Approximality:

Plane geometric: O (1)
Symmetric/Asymmetric: no (1� ε) ln n-approx. for any ε > 0 unless
P=NP

Approx. bounded achieved:

Plane geometric: 6
Symmetric: 2H (∆)
Asymmetric: 2H (n� 1)� 1
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Min-Power Broadcast Routing in Plane Geometric
Networks

NP-hard

Two constant-approximations

MST-based heuristic
Broadcast Incremental power (BIP)

Peng-Jun Wan (wan@cs.iit.edu) Minimum-Power Routing: Part I 33 / 77



A Lower Bound on Minimum Power

opt: the power required by broadcast from s.
MST : an Eucildean minimum spanning tree

Lemma
opt � c (MST ) /6.
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A Property of Euclidean MST

Theorem
Let D is a unit-disk centered at u. Then, for any �nite point set V � D
which contains u and any Euclidean MST (V ,E ) of V ,

∑
e2E
kek2 � 6.
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Proof of The Lower Bound

s v2 3v
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MST-Based Broadcast Routing

MSA: the out-arborescence rooted at s oriented from MST .

p (MSA) � c (MSA) = c (MST ) � 6opt.

Theorem
The approximation ratio of the MSA heuristic is 6

1

1

1

1

1

1

p6

p
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p
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p
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p
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p
5

o
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Broadcasting Incremental Power (BIP)

BIP:
T  (fsg ,∅);
U  fsg;
For i = 1 to jV j � 1,

Choose a = (u, v) 2 δout (U) minimizing c (a)� pT (u);
T  T + a;
U  U [ fvg;

Output T .
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Approx. Ratio of BIP

Theorem

The approximation ratio of the BIP heuristic is between 13
3 and 6.

p
2

p
3

p
4

p
5

p6

q
2

q
1 q

m
q

m+1

p
1

o

qπ/3−3θ

π/3−3θ

π/3−2θ

π/3−2θ

π/3−θ

Figure: A bad instance for BIP.
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Approx. Ratio of BIP

Lemma
The power of the BIP arborescence is at most c (MST ).

T : the BIP arborescence.

a1, a2, � � � , an�1: the sequence of the arcs selected.
ei for 1 � i � n� 1: the edge between the ends of ai
D = (V ,E ; c)
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Approx. Ratio of BIP

De�ne c 0 2 RE+ by
c 0 (ei ) = the incremental power of ai , for 1 � i � n� 1
c 0 (e) = c (e) for any e 2 E n fei : 1 � i � n� 1g

Then, T is a minimum spanning tree of (V ,E ; c 0).
Hence,

p (T ) = c 0 (T ) = c 0
�
T
�
� c 0 (MST ) � c (MST ) .
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Two-Phased Approximation

Phase 1: Compute a weakly-connected spanning digraph D 0 with
p (D 0) � H (∆) opt

Phase 2: Compute a spanning tree of D 0 and orient it to an arborescence
T rooted at s

(b)(a)

ss

p (T ) � 2p
�
D 0
�
� 2H (∆) opt
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Phase 1: Formulation into MSC

For any a = (u, v) 2 A, de�ne

S (a) =
�
b 2 δout (u) : c (b) � c (a)

	
.

For each B � A,de�ne

S (B) = [a2BS (a) ,
f (B) = n�# of weak components of (V ,S (B)) ,

g (B) = power of (V ,S (B)) .

MSC formulation:

min fg (B) : B � A, f (B) = f (A)g

.
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Approximation Bound

maxa2A f (a) = ∆.

Curvature of g : ρ = 1, as there is an optimal solution which is the union
of directed stars with distinct roots.

Theorem
The approximation ratio of the greedy algorithm is at most H (∆).
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Greedy Algorithm

GBA:
B  ∅;
while f (B) > 0,
�nd a cheapest T 2 T (B) ;
B  B [ T ;

output BFS arborescence of (V ,B) rooted at s.

f (B) = # of orphan components of (V ,B)
Head of an orphan component: node of smallest ID.

price of T =
p (T )

# of heads in T

T (B): a set of at most jAj � f (B) candidates
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Candidate Arborescences

For each u 2 V , denote

L (u) =
�
c (a) : a 2 δout (u)

	
.

T (B, u, l): at most f (B) candidates supplied by u 2 V at the power level
l 2 L (u)

T (B): the set of all candidates given by

T (B) =
[
u2V

[
l2L(u)

T (B, u, l) .
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Candidate Arborescences Supplied by u at Power Level l

D (B, u, l): a weighted digraph obtained from D by:
removing all arcs a 2 δout (u) with c (a) > l and
resetting the weights of all arcs a 2 δout (u) with c (a) � l to zero.

U: the set of heads reachable from u in D (B, u, l).
If U = ∅ or if jU j = 1 and u 6= s, then T (B, u, l) = ∅.

(b)(a) (c)

uuu
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Candidate Arborescences Supplied by u at Power Level l

Otherwise,

T (B, u, l): the shortest-path arborescence in D (B, u, l) from u to U

sort U in the increasing order of distance in T (B, u, l)
Th (B, u, l) for each 1 � h � jU j: the minimal aborescence in
T (B, u, l) spanning u and the �rst h heads.
If u = s, then,

T (B, u, l) = fTh (B, u, l) : 1 � h � jU jg ;

otherwise,

T (B, u, l) = fTh (B, u, l) : 2 � h � jU jg .
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Candidate Arborescences Supplied by u at Power Level l
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Candidate Arborescences Supplied by u at Power Level l

(a) (b) (c)

(d) (e) (f) (g)
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Approximation Ratio

Theorem
The approximation ratio of GBA is at most 2H (n� 1)� 1.
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Gain of A Candidate Arborescence

Lemma
Suppose that f (B) > 0. Then for any T 2 T (B) containing h heads
w.r.t. B,

f (B)� f (B [ T ) � h/2.

u: root of T .
If u = s, then

f (B)� f (B [ T ) � h � h/2.

If u 6= s, then h � 2 and

f (B)� f (B [ T ) � h� 1 � h/2.
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Gain of A Candidate Arborescence

(b) (c)(a)
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Price of The Cheapest Candidate Arborescence

Lemma
Suppose that f (B) > 0. Then the price of the cheapest arborescence in
T (B) is at most opt

f (B ) .
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Spider Decomposition of An Optimal Arborescence

(a) (b)

(c) (d)

s

ss

s
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Price of The Cheapest Spider

S1,S2, � � � ,St : spiders .
hj for each 1 � j � t: the number of heads in Sj .
S : the cheapest one among S1,S2, � � � ,St .

t

∑
j=1
hj = f (B) and

t

∑
j=1
p (Sj ) � opt

) price of S � min
1�j�t

p (Sj )
hj
� ∑t

j=1 p (Sj )

∑t
j=1 hj

� opt
f (B)

.
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Power of The Cheapest Spider

u: root of S
v1, v2, � � � , vh: heads in S .
l = pS (u)) S � D (B, u, l)

p (S) = l +
h

∑
i=1
distS (u, vi ) .

u

v2 v

1

3

v
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Power of The Candidate Arborescence Th(B, u, l)

v 01, v
0
2, � � � , v 0h: heads in Th (B, u, l).

p (Th (B, u, l))

� l +
h

∑
i=1
distD (B ,u,l)

�
u, v 0i

�
� l +

h

∑
i=1
distD (B ,u,l) (u, vi )

� l +
h

∑
i=1
distS (u, vi )

= p (S) .

(b)

uu

(a)

v'

v2 v3

1

v'3v'2

v1
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Price of The Cheapest Candidate Arborescence

price of the cheapest candidate arboresence

� price of Th (B, u, l) =
p (Th (B, u, l))

h

� p (S)
h

= price of S

� opt
f (B)

.
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Power of The Cheapest Candidate Arborescence

T1,T2, � � � ,Tk : the sequence of selected arborescences
`0 = n� 1
`i : # of orphan components just after iteration i .
hi : # of heads in Ti .

For each 1 � i � k,

`i�1 � `i � hi/2) hi � 2 (`i�1 � `i ) ;
p (Ti )
hi

� opt
`i�1

.

Hence,

p (Tk ) � opt,

p (Ti ) �
hi
`i�1

opt � 2 (`i�1 � `i )
`i�1

opt, 81 � i � k � 1
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Power of The Cheapest Candidate Arborescence
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Upper Bound on Greedy Solution

k

∑
i=1
p (Ti ) � 2opt

k�1
∑
i=1

`i�1 � `i
`i�1

+ opt

� 2opt
k�1
∑
i=1

`i�1

∑
j=`i+1

1
j
+ opt

= 2opt
`0

∑
j=`k�1+1

1
j
+ opt

� 2opt
n�1
∑
j=2

1
j
+ opt

= (2H (n� 1)� 1) opt.

Peng-Jun Wan (wan@cs.iit.edu) Minimum-Power Routing: Part I 63 / 77



Roadmap

Introduction

Aggregation Routing

Minimum Submodular Cover With Submodular Cost

Broadcast Routing

Multicast Routing

Plane Geometric Networks
Symmetric Networks
Asymmetric Networks

Peng-Jun Wan (wan@cs.iit.edu) Minimum-Power Routing: Part I 64 / 77



Min-Power Multicast Routing

NP-hard

Approximality:

Plane geometric: O (1)
Symmetric: no (1� ε) ln n-approx. for any ε > 0 unless P=NP
Asymmetric: no log2�ε n approximation for any ε > 0 unless NP has
quasi-polynomial Las Vegas algorithms

Approx. bounded achieved:

Plane geometric: � 12
Symmetric: 4H (k)� 2
Asymmetric: O (k ε) for any �xed ε > 0
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Min-Power Multicast Routing in Plane Geometric Networks

NP-hard

Steiner Tree Based Approach

v1

v2
v3

v4

v5

v7v6
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Min-Weight Steiner Tree

NP-hard

Constant-approximations:

Robins-Zelikovsky algorithm: approx. ratio � 1+ ln3
2 + ε t 1.55+ ε.

Takahashi-Matsuyama algorithm: 2-approximation

Prim�s-like
iteratively expanding a tree by a shortest path between terminals in the
current tree and terminal outside the current tree
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A Lower Bound on Minimum Power

opt: the power required by broadcast from s.
SMT : a Min-Weight Steiner tree

Lemma
opt � c (SMT ) /6.
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ST-Based Multicast Routing

A: an α-approximation algorithm for Min-Weight Steiner Tree

A� for Min-Power Multicast Routing:
1 Step 1: Apply A to D to produce a Steiner tree ST for fsg [ X
2 Step 2: Orient ST to an arborescence SA rooted at s

p (SA) � c (SA) = c (ST ) � α � c (SMT ) � 6α � opt.

Theorem
The approximation ratio of the algorithm A� is at most 6α.
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Two-Phased Approximation

Phase 1: Compute a weak Steiner Connector D 0 with

p
�
D 0
�
� (2H (k)� 1) opt

Phase 2: Compute a spanning tree of D 0 and orient it to an arborescence
T rooted at s

p (T ) � 2p
�
D 0
�
� (4H (k)� 2) opt
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Greedy Algorithm for Phase 1

GWSC:
B  ∅;
while f (B) > 0,
�nd a cheapest T 2 T (B) ;
B  B [ T ;

output (V ,B) .

piece w.r.t. B: a weak component of (V ,B) containing at least one
destination but not s
f (B) = # of pieces w.r.t. B
Head of a piece: node of smallest ID.

price of T =
p (T )

# of heads in T

T (B): a set of at most jAj � f (B) candidates, de�ned exactly as in GBA
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Reduction to Min-Weight Steiner Arborescence

Construction of a weighted digraph D 0 = (V [ V 0,A0; c 0) from D:

For each (u, v) 2 A, add to V 0 a node [uv ], and add to A0 two arcs
(u, [uv ]) and ([uv ] , v) of weight c (u, v) and 0 respectively.
For each node u, sort arcs in δout (u) in the increasing order of weight:

c (u, v1) � c (u, v2) � � � � � c (u, vk ) ,
and add to A0 the arcs ([uvj ] , [uvi ]) of zero weight for 1 � i < j � k.

0

(a) (b)

u

x

y

z

0

0

0

0

0

u

x

y

z

(    )c u,y

[    ]ux

[    ]uy

[    ]uz

(    )c u,z

(    )c u,x
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SA-Based Algorithm

A : an α-approximation algorithm for Min-Weight Steiner Arborescence

Best known approximation α: O (k ε) for any �xed ε > 0

1 Apply A to D 0 to construct a SA T 0 � D 0 for s and X .
2 Construct another SA T 00 � D 0 such that c 0 (T 00) � c 0 (T 0) and
degoutT 00 (u) � 1 for each u 2 V .

3 Construct a SA T � D from T 00 satisfying that p (T ) = c 0 (T 00).

(c)

ux

[    ]uy

[    ]uz

u

x

y

z
(b)

u

x

y

z

[    ]

u

x

y

z
(a)

[    ]uz
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Approximation Ratio

OPT : a min-power SA in D for s and X
opt: power of T �.

Construct a SA OPT 0 � D 0 such that c 0 (OPT 0) = p (OPT ) = opt.

p (T ) = c 0
�
T 00
�
� c 0

�
T 0
�
� α � c 0

�
OPT 0

�
� α � opt.

[    ]uz

u

x

y

z
(a) (b)

u

x

y

z
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