Fractional Wireless Link Scheduling and Polynomial Approximate Capacity Regions of Wireless Networks

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Ji

wan@cs.iit.edu
Outline

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary
Wireless network \((V, A; \mathcal{I})\)
Problem Description

- Wireless network \((V, A; \mathcal{I})\)
- Link demand \(d \in \mathbb{R}_+^A\)
Problem Description

- Wireless network \((V, A; I)\)
- Link demand \(d \in \mathbb{R}^A_+\)
 - \(\chi^*(d)\): its minimum schedule length
Problem Description

- Wireless network \((V, A; \mathcal{I})\)
- Link demand \(d \in \mathbb{R}^A_+\)
 - \(\chi^*(d)\): its minimum schedule length
- Capacity region \(\Omega := \{d \in \mathbb{R}^A_+: \chi^*(d) \leq 1\}\)
Problem Description

- Wireless network \((V, A; \mathcal{I})\)
- Link demand \(d \in \mathbb{R}^A_+\)
 - \(\chi^*(d)\): its minimum schedule length
- Capacity region \(\Omega := \{d \in \mathbb{R}^A_+ : \chi^*(d) \leq 1\}\)
- Polynomial \((\alpha, \beta)\)-approximate capacity region \(\Phi: \frac{1}{\alpha} \Omega \subseteq \Phi \subseteq \beta \Omega\).
Prior Art

- Protocol interference model (IM)
Protocol interference model (IM)

- Greedy scheduling with explicit bound on the output schedule length
Prior Art

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region
Prior Art

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region

- Physical IM and other advanced networks
Prior Art

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region

- Physical IM and other advanced networks
 - Reduction to Profitable Independent Set (MWIS): expensive
Prior Art

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region

- Physical IM and other advanced networks
 - Reduction to Profitable Independent Set (MWIS): expensive
 - No explicit bound on the output schedule length
Prior Art

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region

- Physical IM and other advanced networks
 - Reduction to Profitable Independent Set (MWIS): expensive
 - No explicit bound on the output schedule length
 - No explicit polynomial approximate capacity region

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Fractional Wireless Link Scheduling and Polynomial Approximate Capacity Regions of Wireless Networks
Contributions

- A general paradigm for link scheduling
Contributions

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial
Contributions

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial
 - Explicit bound on the output schedule length
Contributions

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial
 - Explicit bound on the output schedule length
- Explicit polynomial constant-approximate capacity region
Contributions

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial
 - Explicit bound on the output schedule length

- Explicit polynomial constant-approximate capacity region

- Applications
Roadmap

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary
Profitable Subset

- Link weight $w \in \mathbb{R}_{++}^A$
Profitable Subset

- Link weight \(w \in \mathbb{R}^{A+} \)
- \textit{Return rate of} \(a \in A \): \(\overline{w}(a) := \frac{w(a)}{d(a)} \)
Profitable Subset

- Link weight $w \in \mathbb{R}^A_{++}$
- Return rate of $a \in A$: $\overline{w}(a) := \frac{w(a)}{d(a)}$
- Return rate of $I \subseteq A$: $\overline{w}(I)$
Profitable Subset

- Link weight $w \in \mathbb{R}^{A}_{++}$
- Return rate of $a \in A$: $\overline{w}(a) := \frac{w(a)}{d(a)}$
- Return rate of $I \subseteq A$: $\overline{w}(I)$
- β-profitable subset of $S \subseteq A$: $I \subseteq S$ s.t. $\overline{w}(I) \geq \frac{w(S)}{\beta}$
Profitable Subset

- Link weight $w \in \mathbb{R}_{++}^A$
- *Return rate* of $a \in A$: $\overline{w}(a) := \frac{w(a)}{d(a)}$
- *Return rate* of $I \subseteq A$: $\overline{w}(I)$
- β-profitable subset of $S \subseteq A$: $I \subseteq S$ s.t. $\overline{w}(I) \geq \frac{w(S)}{\beta}$
 - β depends only on d
A New Paradigm for Link Scheduling

- β-Profitable oracle A: for any $S \subseteq A$, compute a β-profitable IS I of S
A New Paradigm for Link Scheduling

- β-Profitable oracle A: for any $S \subseteq A$, compute a β-profitable IS I of S
- $\epsilon \in (0, 1/2]$: accuracy-efficiency trade-off parameter
A New Paradigm for Link Scheduling

- β-Profitable oracle A: for any $S \subseteq A$, compute a β-profitable IS I of S
- $\varepsilon \in (0, 1/2]$: accuracy-efficiency trade-off parameter
- $LS(\varepsilon)$: computes a link schedule of d
• \(\beta \)-Profitable oracle \(\mathcal{A} \): for any \(S \subseteq A \), compute a \(\beta \)-profitable IS \(I \) of \(S \)

• \(\varepsilon \in (0, 1/2] \): accuracy-efficiency trade-off parameter

• \(\text{LS}(\varepsilon) \): computes a link schedule of \(d \)
 • length \(\leq (1 + \varepsilon) \beta \)
A New Paradigm for Link Scheduling

- β-Profitable oracle A: for any $S \subseteq A$, compute a β-profitable IS I of S
- $\epsilon \in (0, 1/2]$: accuracy-efficiency trade-off parameter
- $LS(\epsilon)$: computes a link schedule of d
 - length $\leq (1 + \epsilon) \beta$
 - $O(\epsilon^{-2} \vert A \vert \ln \vert A \vert)$ calls of A
```
// initialization
Γ ← ∅, //schedule
P ← 0, // vector of proportion of demands served by Γ
φ ← \frac{\ln|A|+\varepsilon}{\varepsilon(1+\varepsilon)+\ln(1-\varepsilon)}; //inactive threshold
S ← A, // active links

// schedule augmentations
...

// scaling
return \frac{1}{φ} Γ.
```
Schedule Augmentations

```latex
while \( S \neq \emptyset \) do

    \begin{align*}
    &\text{// augmentation}\nonumber \\
    &I \leftarrow \text{IS of } S \text{ output by } \mathcal{A} \text{ w.r.t. exponential weight} 
onumber \\
    &w(a) = (1 - \varepsilon)^{P(a)}, \forall a \in S 
    
    &t \leftarrow \min_{a \in I} d(a); 
    
    &\Gamma \leftarrow \Gamma \cup \{(l, t)\}; 
    \end{align*}

    \begin{align*}
    &\text{// updates} 
    
    &\text{for each } a \in I \text{ do} 
    
    &P(a) \leftarrow P(a) + \frac{t}{d(a)}; \text{// update the profit} 
    
    &\text{if } P(a) \geq \phi \text{ then } S \leftarrow S \setminus \{a\}; \text{// inactive} 
    \end{align*}
```
Roadmap

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary
Conflict factor $\rho : A \times A \rightarrow [0, 1]$
Conflict factor $\rho : A \times A \rightarrow [0, 1]$

ρ-feasible set I: $\rho (I \setminus \{a\}, a) < 1, \forall a \in I$
Conflict factor $\rho : A \times A \rightarrow [0, 1]$

ρ-feasible set I: $\rho(I \setminus \{a\}, a) < 1, \forall a \in I$

Maximum local load

$$\Delta (d) = \max_{a \in A} \left[d(a) + \sum_{b \in A \setminus \{a\}} \rho(b, a) d(b) \right]$$
Profitable Feasible Set

- Conflict factor $\rho : A \times A \rightarrow [0, 1]$
- ρ-feasible set I: $\rho (I \setminus \{a\}, a) < 1, \forall a \in I$
- Maximum local load

$$\Delta (d) = \max_{a \in A} \left[d(a) + \sum_{b \in A \setminus \{a\}} \rho(b, a) d(b) \right]$$

- Algorithm **PFS**: For any $w \in \mathbb{R}_+^A$ and $S \subseteq A$, output a $4\Delta (d)$-profitable ρ-feasible set $I \subseteq S$
Extraction Procedure

\[\bar{\rho}(b, a) := \frac{\overline{w}(b)}{\overline{w}(a)} \rho(a, b) + \rho(b, a), \forall a, b \in S \]
Extraction Procedure

\[
\bar{\rho}(b, a) := \frac{\overline{w}(b)}{\overline{w}(a)} \rho(a, b) + \rho(b, a), \forall a, b \in S
\]

- **Initialization:** \(I \leftarrow \emptyset \)
Extraction Procedure

\[\bar{\rho}(b, a) := \frac{w(b)}{w(a)}\rho(a, b) + \rho(b, a), \forall a, b \in S \]

- **Initialization:** \(I \leftarrow \emptyset \)

- **Growing Phase:** While \(S \neq \emptyset \), remove any \(a \) from \(S \), and add it to \(I \) if
 \[\bar{\rho}(I, a) + \frac{1}{2\Delta(d)} \sum_{b \in S} \bar{\rho}(b, a) d(b) < 1. \]
Extraction Procedure

$$\bar{\rho}(b, a) := \frac{w(b)}{w(a)} \rho(a, b) + \rho(b, a), \forall a, b \in S$$

- **Initialization:** $I \leftarrow \emptyset$

- **Growing Phase:** While $S \neq \emptyset$, remove any a from S, and add it to I if

$$\bar{\rho}(I, a) + \frac{1}{2\Delta(d)} \sum_{b \in S} \bar{\rho}(b, a) d(b) < 1.$$

- **Pruning Phase:** While I is not ρ-feasible, remove from I any a with $\rho(I \setminus \{a\}, a) \geq 1$
Roadmap

- Introduction
- A New Paradigm
- Profitable Feasible Set
- **Applications**
- Summary
∃ conflict factor ρ s.t.,
∃ conflict factor \(\rho \) s.t.,

\(\rho \)-feasibility \iff \) independence
∃ conflict factor ρ s.t.,

- ρ-feasibility ⇔ independence
- Δ(d) ≤ μχ∗(d) for constant μ (under linear transmission power)
∃ conflict factor ρ s.t.,

- ρ-feasibility \iff independence
- $\Delta(d) \leq \mu \chi^*(d)$ for constant μ (under linear transmission power)

- $4\Delta(d)$-Profitable oracle A: PFS
∃ conflict factor ρ s.t.,

- ρ-feasibility \iff independence
- $\Delta(d) \leq \mu \chi^*(d)$ for constant μ (under linear transmission power)

4$\Delta(d)$-Profitable oracle \mathcal{A}: PFS

Schedule length: $\leq 4(1 + \varepsilon)\Delta(d) \leq 4(1 + \varepsilon)\mu \chi^*(d)$
∃ conflict factor ρ s.t.,

- ρ-feasibility ⇔ independence
- Δ(d) ≤ μχ*(d) for constant μ (under linear transmission power)

4Δ(d)-Profitable oracle \(\mathcal{A} \): PFS

Schedule length: \(\leq 4(1 + \varepsilon)\Delta(d) \leq 4(1 + \varepsilon)\mu\chi^*(d) \)

Polynomial (\(\mu, 4 \))-approximate capacity region:

\[
\Phi = \left\{ d \in \mathbb{R}_+^A : \Delta(d) \leq 1 \right\}.
\]
MIMO Wireless Networks under Protocol IM

- DoF τ

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Fractional Wireless Link Scheduling and Poly...
MIMO Wireless Networks under Protocol IM

- DoF τ
- Links \leftrightarrow streams
MIMO Wireless Networks under Protocol IM

- DoF τ
- Links \leftrightarrow streams
- Independence under receiver-side interference suppression
DoF τ

Links \leftrightarrow streams

Independence under receiver-side interference suppression

Half-Duplex Constraint
MIMO Wireless Networks under Protocol IM

- DoF τ
- Links \leftrightarrow streams
- Independence under receiver-side interference suppression
 - **Half-Duplex Constraint**
 - **Receiver Constraint**: Each receiving node v is interfered by $< \tau$ streams
MIMO Wireless Networks under Protocol IM

- DoF τ
- Links \leftrightarrow streams
- Independence under receiver-side interference suppression
 - **Half-Duplex Constraint**
 - **Receiver Constraint**: Each receiving node v is interfered by $< \tau$ streams
 - **(Sender Constraint)**
Conflict factor

- Conflict factor: $\rho(a, b) = 1/\tau$ if the receiver of b is interfered by a; and 0 otherwise.
Conflict factor

- Conflict factor: $\rho(a, b) = \frac{1}{\tau}$ if the receiver of b is interfered by a; and 0 otherwise.
- ρ-feasibility \iff meeting Receiver Constraint
Conflict factor

- Conflict factor: $\rho(a, b) = 1/\tau$ if the receiver of b is interfered by a; and 0 otherwise.
- ρ-feasibility \iff meeting Receiver Constraint
- $\Delta(d) \leq \mu \chi^*(d)$ for constant μ
Phase 1: **PFS** to produce a $4\Delta(d)$-profitable $J \subseteq S$ meeting the Receiver Constraint
Oracle for Profitable IS

- **Phase 1**: **PFS** to produce a $4\Delta (d)$-profitable $J \subseteq S$ meeting the Receiver Constraint
- **Phase 1**: extracting a $16\Delta (d)$-profitable $I \subseteq J$ meeting the Half-duplex Constraint
Oracle for Profitable IS

- **Phase 1**: PFS to produce a $4\Delta (d)$-profitable $J \subseteq S$ meeting the Receiver Constraint

- **Phase 1**: extracting a $16\Delta (d)$-profitable $I \subseteq J$ meeting the Half-duplex Constraint
 - **Bipartition of Nodes**: $U = U' \cup U''$ s.t. $J[U', U'']$ has $1/2^+$ return rate of J
Oracle for Profitable IS

- **Phase 1**: PFS to produce a $4\Delta (d)$-profitable $J \subseteq S$ meeting the Receiver Constraint
- **Phase 1**: extracting a $16\Delta (d)$-profitable $I \subseteq J$ meeting the Half-duplex Constraint
 - **Bipartition of Nodes**: $U = U' \cup U''$ s.t. $J [U', U'']$ has $1/2^+$ return rate of J
 - greedy partition \sim Maximum Cut
Oracle for Profitable IS

- **Phase 1:** **PFS** to produce a $4\Delta (d)$-profitable $J \subseteq S$ meeting the Receiver Constraint

- **Phase 1:** Extracting a $16\Delta (d)$-profitable $I \subseteq J$ meeting the Half-duplex Constraint

 - **Bipartition of Nodes:** $U = U' \cup U''$ s.t. $J[U', U'']$ has $1/2^+$ return rate of J
 - greedy partition \sim Maximum Cut

 - **Bipartition of Streams:** $(U' \rightarrow U'') \cup (U' \leftarrow U'')$; return the one with largest return rate
Schedule length: \[\leq 16 (1 + \varepsilon) \Delta (d) \leq 16 (1 + \varepsilon) \mu \chi^* (d) \]
• Schedule length: $\leq 16 (1 + \varepsilon) \Delta (d) \leq 16 (1 + \varepsilon) \mu \chi^* (d)$

• Polynomial $(\mu, 16)$-approximate capacity region:

$$\Phi = \left\{ d \in \mathbb{R}_+^A : \Delta (d) \leq 1 \right\}. $$
Roadmap

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary
Summary

Profitable IS \leftrightarrow Link Schedule \leftrightarrow Poly. Approx. Capacity Region
Summary

Profitable IS \leftrightarrow Link Schedule \leftrightarrow Poly. Approx. Capacity Region

- Purely combinatorial, fast, simple
Profitable IS \leftrightarrow Link Schedule \leftrightarrow Poly. Approx. Capacity Region

- Purely combinatorial, fast, simple
- \sim Best-known approximation bound
Summary

Profitable IS \leftrightarrow Link Schedule \leftrightarrow Poly. Approx. Capacity Region

- Purely combinatorial, fast, simple
- \sim Best-known approximation bound
- Explicit upper bound on schedule length
Summary

Profitable IS \leftrightarrow Link Schedule \leftrightarrow Poly. Approx. Capacity Region

- Purely combinatorial, fast, simple
- \sim Best-known approximation bound
- Explicit upper bound on schedule length
- Explicit polynomial approximate capacity region